Please use this identifier to cite or link to this item: doi:10.22028/D291-38712
Title: Cross-talk between red blood cells and plasma influences blood flow and omics phenotypes in severe COVID-19
Author(s): Recktenwald, Steffen M.
Simionato, Greta
Lopes, Marcelle G. M.
Gamboni, Fabia
Dzieciatkowska, Monika
Meybohm, Patrick
Zacharowski, Kai
von Knethen, Andreas
Wagner, Christian
Kaestner, Lars
D'Alessandro, Angelo
Quint, Stephan
Language: English
Title: eLife
Volume: 11
Publisher/Platform: eLife Sciences Publications
Year of Publication: 2022
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: Coronavirus disease 2019 (COVID-19) is caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and can affect multiple organs, among which is the circulatory system. Inflammation and mortality risk markers were previously detected in COVID-19 plasma and red blood cells (RBCs) metabolic and proteomic profiles. Additionally, biophysical properties, such as deformability, were found to be changed during the infection. Based on such data, we aim to better characterize RBC functions in COVID-19. We evaluate the flow properties of RBCs in severe COVID-19 patients admitted to the intensive care unit by using microfluidic techniques and automated methods, including artificial neural networks, for an unbiased RBC analysis. We find strong flow and RBC shape impairment in COVID-19 samples and demonstrate that such changes are reversible upon suspension of COVID-19 RBCs in healthy plasma. Vice versa, healthy RBCs resemble COVID-19 RBCs when suspended in COVID-19 plasma. Proteomics and metabolomics analyses allow us to detect the effect of plasma exchanges on both plasma and RBCs and demonstrate a new role of RBCs in maintaining plasma equilibria at the expense of their flow properties. Our findings provide a framework for further investigations of clinical relevance for therapies against COVID-19 and possibly other infectious diseases.
DOI of the first publication: 10.7554/eLife.81316
URL of the first publication: https://doi.org/10.7554/eLife.81316
Link to this record: urn:nbn:de:bsz:291--ds-387129
hdl:20.500.11880/34890
http://dx.doi.org/10.22028/D291-38712
ISSN: 2050-084X
Date of registration: 17-Jan-2023
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Physik
Professorship: NT - Prof. Dr. Christian Wagner
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
elife-81316-v1.pdf5,11 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons