Please use this identifier to cite or link to this item: doi:10.22028/D291-38663
Volltext verfügbar? / Dokumentlieferung
Title: DART: A Lightweight Quality-Suggestive Data-to-Text Annotation Tool
Author(s): Chang, Ernie
Caplinger, Jeriah
Marin, Alex
Shen, Xiaoyu
Demberg, Vera
Language: English
Publisher/Platform: arXiv
Year of Publication: 2020
DDC notations: 400 Language, linguistics
Publikation type: Other
Abstract: We present a lightweight annotation tool, the Data AnnotatoR Tool (DART), for the general task of labeling structured data with textual descriptions. The tool is implemented as an interactive application that reduces human efforts in annotating large quantities of structured data, e.g. in the format of a table or tree structure. By using a backend sequence-to-sequence model, our system iteratively analyzes the annotated labels in order to better sample unlabeled data. In a simulation experiment performed on annotating large quantities of structured data, DART has been shown to reduce the total number of annotations needed with active learning and automatically suggesting relevant labels.
URL of the first publication: https://arxiv.org/abs/2010.04141
Link to this record: urn:nbn:de:bsz:291--ds-386635
hdl:20.500.11880/34851
http://dx.doi.org/10.22028/D291-38663
Date of registration: 5-Jan-2023
Notes: Preprint
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Prof. Dr. Vera Demberg
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.