Please use this identifier to cite or link to this item: doi:10.22028/D291-37990
Title: EARS: Efficiency-Aware Russian Roulette and Splitting
Author(s): Rath, Alexander
Grittmann, Pascal
Herholz, Sebastian
Weier, Philippe
Slusallek, Philipp
Language: English
Title: ACM Transactions on Graphics
Volume: 41
Issue: 4
Publisher/Platform: ACM
Year of Publication: 2022
Free key words: global illumination
importance sampling
path guiding
DDC notations: 004 Computer science, internet
Publikation type: Journal Article
Abstract: Russian roulette and splitting are widely used techniques to increase the efficiency of Monte Carlo estimators. But, despite their popularity, there is little work on how to best apply them. Most existing approaches rely on simple heuristics based on, e.g., surface albedo and roughness. Their efficiency often hinges on user-controlled parameters. We instead iteratively learn optimal Russian roulette and splitting factors during rendering, using a simple and lightweight data structure. Given perfect estimates of variance and cost, our fixed-point iteration provably converges to the optimal Russian roulette and splitting factors that maximize the rendering efficiency. In our application to unidirectional path tracing, we achieve consistent and significant speed-ups over the state of the art.
DOI of the first publication: 10.1145/3528223.3530168
URL of the first publication: https://dl.acm.org/doi/10.1145/3528223.3530168
Link to this record: urn:nbn:de:bsz:291--ds-379907
hdl:20.500.11880/34849
http://dx.doi.org/10.22028/D291-37990
ISSN: 0730-0301
1557-7368
Date of registration: 4-Jan-2023
Third-party funds sponsorship: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement.
Sponsorship ID: 956585
Description of the related object: Supplemental Material
Related object: https://dl.acm.org/action/downloadSupplement?doi=10.1145%2F3528223.3530168&file=081-668-supp-mtl.zip
https://dl.acm.org/action/downloadSupplement?doi=10.1145%2F3528223.3530168&file=3528223.3530168.mp4
https://dl.acm.org/action/downloadSupplement?doi=10.1145%2F3528223.3530168&file=3528223.3530168.vtt
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Prof. Dr. Philipp Slusallek
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
3528223.3530168.pdf31,41 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons