Please use this identifier to cite or link to this item: doi:10.22028/D291-38519
Volltext verfügbar? / Dokumentlieferung
Title: Compact perturbations of scalar type spectral operators
Author(s): Albrecht, Ernst
Chevreau, Bernard
Language: English
Title: Journal of Operator Theory
Volume: 86
Issue: 1
Pages: 163-188
Publisher/Platform: Theta Foundation
Year of Publication: 2021
Free key words: scalar-type spectral operators
decomposable operators
compact perturbations
hyperinvariant subspaces
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: We consider compact perturbations S = D Λ + K of normal diagonal operators D Λ by certain compact operators. Sufficient conditions for K to ensure the existence of non-trivial hyperinvariant subspaces for S have recently been obtained by Foia\c{s} et al. in C.\ Foia\c{s}, I.B.\ Jung, E.\ Ko, C. Pearcy, \textit{J.\ Funct. Anal.} \textbf{253}(2007), 628--646, C.\ Foia\c{s}, I.B.\ Jung, E.\ Ko, C.~Pearcy, \textit{Indiana Univ.\ Math.\ J.} \textbf{57}(2008), 2745--2760, {C.\ Foia\c{s}, I.B.\ Jung, E.\ Ko, C.Pearcy}, \textit{J.\ Math.\ Anal.\ Appl.} \textbf{375}(2011), 602--609 (followed by Fang--Xia \textit{J.\ Funct. Anal} \textbf{263}(2012), 135-1377, and Klaja \textit{J.\ Operator Theory} \textbf{73}(2015), 127--142, by using certain spectral integrals along straight lines through the spectrum of S . In this note, the authors use circular cuts and get positive results under less restrictive local conditions for K .
DOI of the first publication: 10.7900/jot.2020feb17.2269
URL of the first publication: http://dx.doi.org/10.7900/jot.2020feb17.2269
Link to this record: urn:nbn:de:bsz:291--ds-385194
hdl:20.500.11880/34725
http://dx.doi.org/10.22028/D291-38519
ISSN: 1841-7744
0379-4024
Date of registration: 12-Dec-2022
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.