Please use this identifier to cite or link to this item: doi:10.22028/D291-38389
Volltext verfügbar? / Dokumentlieferung
Title: Quadratic complete intersections
Author(s): Eisenbud, David
Peeva, Irena
Schreyer, Frank-Olaf
Language: English
Title: Journal of Algebra
Volume: 571
Pages: 15-31
Publisher/Platform: Elsevier
Year of Publication: 2021
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: We study Betti numbers of graded finitely generated modules over a quadratic complete intersection. In the case of codimension 1, we give a natural class of quadratic forms Q whose Clifford algebras are division rings, and deduce the possible Betti numbers of modules over the hypersurfaces . Our approach leads to a new version of the Betti degree Conjecture. In higher codimensions, we obtain formulas for the Betti numbers in terms of the ranks of certain free modules in a higher matrix factorization.
DOI of the first publication: 10.1016/j.jalgebra.2019.11.031
URL of the first publication: http://dx.doi.org/10.1016/j.jalgebra.2019.11.031
Link to this record: urn:nbn:de:bsz:291--ds-383896
hdl:20.500.11880/34649
http://dx.doi.org/10.22028/D291-38389
ISSN: 0021-8693
Date of registration: 6-Dec-2022
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Frank-Olaf Schreyer
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.