Please use this identifier to cite or link to this item:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-38389
Title: | Quadratic complete intersections |
Author(s): | Eisenbud, David Peeva, Irena Schreyer, Frank-Olaf |
Language: | English |
Title: | Journal of Algebra |
Volume: | 571 |
Pages: | 15-31 |
Publisher/Platform: | Elsevier |
Year of Publication: | 2021 |
DDC notations: | 510 Mathematics |
Publikation type: | Journal Article |
Abstract: | We study Betti numbers of graded finitely generated modules over a quadratic complete intersection. In the case of codimension 1, we give a natural class of quadratic forms Q whose Clifford algebras are division rings, and deduce the possible Betti numbers of modules over the hypersurfaces . Our approach leads to a new version of the Betti degree Conjecture. In higher codimensions, we obtain formulas for the Betti numbers in terms of the ranks of certain free modules in a higher matrix factorization. |
DOI of the first publication: | 10.1016/j.jalgebra.2019.11.031 |
URL of the first publication: | http://dx.doi.org/10.1016/j.jalgebra.2019.11.031 |
Link to this record: | urn:nbn:de:bsz:291--ds-383896 hdl:20.500.11880/34649 http://dx.doi.org/10.22028/D291-38389 |
ISSN: | 0021-8693 |
Date of registration: | 6-Dec-2022 |
Faculty: | MI - Fakultät für Mathematik und Informatik |
Department: | MI - Mathematik |
Professorship: | MI - Prof. Dr. Frank-Olaf Schreyer |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
There are no files associated with this item.
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.