Please use this identifier to cite or link to this item: doi:10.22028/D291-38201
Title: Uniqueness of Degenerating Solutions to a Diffusion-Precipitation Model for Clogging Porous Media
Author(s): Schulz, Raphael
Language: English
Title: Mathematical Modelling and Analysis
Volume: 27
Issue: 3
Pages: 471-491
Publisher/Platform: Vilnius Gediminas Technical University
Year of Publication: 2022
Free key words: evolving porous media
degenerate equations
clogging
weighted spaces
uniqueness
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: The current article presents a degenerating diffusion-precipitation model including vanishing porosity and focuses primarily on uniqueness results. This is accomplished by assuming sufficient conditions under which the uniqueness of weak solutions can be established. Moreover, a proof of existence based on a compactness argument yields rather regular solutions, satisfying these unique conditions. The results show that every strong solution is unique, though a slightly different condition is additionally required in three dimensions. The analysis presents particular challenges due to the nonlinear structure of the underlying problem and the necessity to work with appropriate weights and manage possible degeneration.
DOI of the first publication: 10.3846/mma.2022.15132
URL of the first publication: http://dx.doi.org/10.3846/mma.2022.15132
Link to this record: urn:nbn:de:bsz:291--ds-382013
hdl:20.500.11880/34483
http://dx.doi.org/10.22028/D291-38201
ISSN: 1648-3510
1392-6292
Date of registration: 24-Nov-2022
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
15132-Article Text-65894-3-10-20220801.pdf470,98 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons