Please use this identifier to cite or link to this item: doi:10.22028/D291-37899
Title: Predicting the Law Area and Decisions of French Supreme Court Cases
Author(s): Şulea, Octavia-Maria
Zampieri, Marcos
Vela, Mihaela
van Genabith, Josef
Language: English
Title: Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017
Pages: 716–722
Publisher/Platform: INCOMA Ltd.
Year of Publication: 2017
Place of publication: Shumen, Bulgaria
Place of the conference: Varna, Bulgaria
DDC notations: 400 Language, linguistics
Publikation type: Conference Paper
Abstract: In this paper, we investigate the application of text classification methods to predict the law area and the decision of cases judged by the French Supreme Court. We also investigate the influence of the time period in which a ruling was made over the textual form of the case description and the extent to which it is necessary to mask the judge’s motivation for a ruling to emulate a real-world test scenario. We report results of 96% f1 score in predicting a case ruling, 90% f1 score in predicting the law area of a case, and 75.9% f1 score in estimating the time span when a ruling has been issued using a linear Support Vector Machine (SVM) classifier trained on lexical features.
DOI of the first publication: 10.26615/978-954-452-049-6_092
Link to this record: urn:nbn:de:bsz:291--ds-378999
hdl:20.500.11880/34336
http://dx.doi.org/10.22028/D291-37899
ISBN: 9789544520496
Date of registration: 14-Nov-2022
Faculty: P - Philosophische Fakultät
Department: P - Sprachwissenschaft und Sprachtechnologie
Professorship: P - Prof. Dr. Elke Teich
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
RANLP092.pdf327,35 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons