Please use this identifier to cite or link to this item: doi:10.22028/D291-37574
Title: Simultaneous regression and classification for drug sensitivity prediction using an advanced random forest method
Author(s): Lenhof, Kerstin
Eckhart, Lea
Gerstner, Nico
Kehl, Tim
Lenhof, Hans-Peter
Language: English
Title: Scientific Reports
Volume: 12
Issue: 1
Publisher/Platform: Springer Nature
Year of Publication: 2022
Free key words: Cancer therapy
Computational models
Machine learning
Tumour heterogeneity
DDC notations: 004 Computer science, internet
Publikation type: Journal Article
Abstract: Machine learning methods trained on cancer cell line panels are intensively studied for the prediction of optimal anti-cancer therapies. While classifcation approaches distinguish efective from inefective drugs, regression approaches aim to quantify the degree of drug efectiveness. However, the high specifcity of most anti-cancer drugs induces a skewed distribution of drug response values in favor of the more drug-resistant cell lines, negatively afecting the classifcation performance (class imbalance) and regression performance (regression imbalance) for the sensitive cell lines. Here, we present a novel approach called SimultAneoUs Regression and classifcatiON Random Forests (SAURON-RF) based on the idea of performing a joint regression and classifcation analysis. We demonstrate that SAURON-RF improves the classifcation and regression performance for the sensitive cell lines at the expense of a moderate loss for the resistant ones. Furthermore, our results show that simultaneous classifcation and regression can be superior to regression or classifcation alone.
DOI of the first publication: 10.1038/s41598-022-17609-x
URL of the first publication: https://www.nature.com/articles/s41598-022-17609-x
Link to this record: urn:nbn:de:bsz:291--ds-375745
hdl:20.500.11880/33999
http://dx.doi.org/10.22028/D291-37574
ISSN: 2045-2322
Date of registration: 13-Oct-2022
Description of the related object: Supplementary Information
Related object: https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-022-17609-x/MediaObjects/41598_2022_17609_MOESM1_ESM.pdf
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Prof. Dr. Hans-Peter Lenhof
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s41598-022-17609-x.pdf2,63 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons