Please use this identifier to cite or link to this item: doi:10.22028/D291-37565
Title: Anticanonical geometry of the blow-up of P4 in 8 points and its Fano model
Author(s): Xie, Zhixin
Language: English
Title: Mathematische Zeitschrift
Publisher/Platform: Springer Nature
Year of Publication: 2022
Free key words: 14J35
14J45
14E30
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: Building on the work of Casagrande–Codogni–Fanelli, we develop our study on the birational geometry of the Fano fourfold Y = MS,−KS which is the moduli space of semi-stable ranktwo torsion-free sheaves with c1 = −KS and c2 = 2 on a polarised degree-one del Pezzo surface (S, −KS). Based on the relation between Y and the blow-up of P4 in 8 points, we describe completely the base scheme of the anticanonical system |−KY |. We also prove that the Bertini involution ιY of Y , induced by the Bertini involution ιS of S, preserves every member in |−KY |. In particular, we establish the relation between ιY and the anticanonical map of Y , and we describe the action of ιY by analogy with the action of ιS on S.
DOI of the first publication: 10.1007/s00209-022-03123-3
URL of the first publication: https://link.springer.com/article/10.1007/s00209-022-03123-3
Link to this record: urn:nbn:de:bsz:291--ds-375651
hdl:20.500.11880/33987
http://dx.doi.org/10.22028/D291-37565
ISSN: 1432-1823
0025-5874
Date of registration: 13-Oct-2022
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s00209-022-03123-3.pdf546,43 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons