Please use this identifier to cite or link to this item: doi:10.22028/D291-37549
Volltext verfügbar? / Dokumentlieferung
Title: Propagation of uncertainty for an Adaptive Linear Approximation algorithm
Author(s): Dorst, Tanja
Eichstädt, Sascha
Schneider, Tizian
Schütze, Andreas
Editor(s): Gerlach, Gerald
Sommer, Klaus-Dieter
Language: English
Title: SMSI 2020 : Sensor and Measurement Science International : 22-25 June 2020, Nuremberg, Germany
Pages: 366-367
Publisher/Platform: AMA Service GmbH
Year of Publication: 2020
Place of publication: Wunstorf
Place of the conference: Nürnberg, Germany
Free key words: measurement uncertainty
uncertainty propagation
feature extraction
Adaptive Linear Approximation
machine learning
DDC notations: 600 Technology
Publikation type: Conference Paper
Abstract: In machine learning, a variety of algorithms are available for feature extraction. To obtain reliable features from measured data, the propagation of measurement uncertainty is proposed here in line with the Guide to the Expression of Uncertainty in Measurement (GUM). Recently, methods for the discrete Fourier and Wavelet transform have been published. Here, the Adaptive Linear Approximation (ALA) as a further complementary feature extraction algorithm is considered in combination with an analytical model for the uncertainty evaluation of the ALA features.
DOI of the first publication: 10.5162/SMSI2020/E2.3
URL of the first publication: https://www.ama-science.org/proceedings/details/3801
Link to this record: urn:nbn:de:bsz:291--ds-375492
hdl:20.500.11880/33970
http://dx.doi.org/10.22028/D291-37549
ISBN: 978-3-9819376-2-6
Date of registration: 12-Oct-2022
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Systems Engineering
Professorship: NT - Prof. Dr. Andreas Schütze
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.