Please use this identifier to cite or link to this item: doi:10.22028/D291-37478
Volltext verfügbar? / Dokumentlieferung
Title: Prediction quality, domain adaptation and robustness of machine learning methods: a comparison
Author(s): Goodarzi, Payman
Schütze, Andreas
Schneider, Tizian
Editor(s): Reindl, Leonhard M.
Wöllenstein, Jürgen
Language: English
Title: Sensoren und Messsysteme : Beiträge der 21. ITG/GMA-Fachtagung 10. – 11. Mai 2022 in Nürnberg
Pages: 281-282
Publisher/Platform: VDE-Verlag
Year of Publication: 2022
Place of publication: Berlin
Place of the conference: Nürnberg, Germany
DDC notations: 620 Engineering and machine engineering
Publikation type: Conference Paper
Abstract: Domain or database shift causes performance degradation in machine learning models encountering real-life scenarios. However, it is not clear how and to what extent this degradation can be prevented, and which methods are more robust against that. In this paper, we compare a workflow based on conventional machine learning methods and deep neural networks for condition monitoring with emphasis on domain shift. It is shown that possible domain shifts can be detected using visualization techniques at feature level. Also, the conventional method shows superior results in the domain shift scenario compared with the deep learning model. Finally, domain adaptation is used to improve the models’ performance.
URL of the first publication: https://www.vde-verlag.de/proceedings-en/455835053.html
Link to this record: urn:nbn:de:bsz:291--ds-374787
hdl:20.500.11880/33897
http://dx.doi.org/10.22028/D291-37478
ISBN: 978-3-8007-5835-7
Date of registration: 4-Oct-2022
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Systems Engineering
Professorship: NT - Prof. Dr. Andreas Schütze
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.