Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-37231
Volltext verfügbar? / Dokumentlieferung
Titel: Comparison of different ML methods concerning prediction quality, domain adaptation and robustness
VerfasserIn: Goodarzi, Payman
Schütze, Andreas
Schneider, Tizian
Sprache: Englisch
Titel: Technisches Messen : tm
Bandnummer: 89
Heft: 4
Startseite: 224
Endseite: 239
Verlag/Plattform: De Gruyter
Erscheinungsjahr: 2022
Freie Schlagwörter: Machine learning
condition monitoring
domain adaptation
neural network
DDC-Sachgruppe: 620 Ingenieurwissenschaften und Maschinenbau
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Nowadays machine learning methods and data-driven models have been used widely in different fields including computer vision, biomedicine, and condition monitoring. However, these models show performance degradation when meeting real-life situations. Domain or dataset shift or out-of-distribution (OOD) prediction is mentioned as the reason for this problem. Especially in industrial condition monitoring, it is not clear when we should be concerned about domain shift and which methods are more robust against this problem. In this paper prediction results are compared for a conventional machine learning workflow based on feature extraction, selection, and classification/regression (FESC/R) and deep neural networks on two publicly available industrial datasets. We show that it is possible to visualize the possible shift in domain using feature extraction and principal component analysis. Also, experimental competition shows that the cross-domain validated results of FESC/R are comparable to the reported state-of-the-art methods. Finally, we show that the results for simple randomly selected validation sets do not correctly represent the model performance in real-world applications.
DOI der Erstveröffentlichung: 10.1515/teme-2021-0129
URL der Erstveröffentlichung: https://www.degruyter.com/document/doi/10.1515/teme-2021-0129/html
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-372312
hdl:20.500.11880/33755
http://dx.doi.org/10.22028/D291-37231
ISSN: 2196-7113
0171-8096
Datum des Eintrags: 15-Sep-2022
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Systems Engineering
Professur: NT - Prof. Dr. Andreas Schütze
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.