Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-37231
Titel: | Comparison of different ML methods concerning prediction quality, domain adaptation and robustness |
VerfasserIn: | Goodarzi, Payman Schütze, Andreas Schneider, Tizian |
Sprache: | Englisch |
Titel: | Technisches Messen : tm |
Bandnummer: | 89 |
Heft: | 4 |
Startseite: | 224 |
Endseite: | 239 |
Verlag/Plattform: | De Gruyter |
Erscheinungsjahr: | 2022 |
Freie Schlagwörter: | Machine learning condition monitoring domain adaptation neural network |
DDC-Sachgruppe: | 620 Ingenieurwissenschaften und Maschinenbau |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | Nowadays machine learning methods and data-driven models have been used widely in different fields including computer vision, biomedicine, and condition monitoring. However, these models show performance degradation when meeting real-life situations. Domain or dataset shift or out-of-distribution (OOD) prediction is mentioned as the reason for this problem. Especially in industrial condition monitoring, it is not clear when we should be concerned about domain shift and which methods are more robust against this problem. In this paper prediction results are compared for a conventional machine learning workflow based on feature extraction, selection, and classification/regression (FESC/R) and deep neural networks on two publicly available industrial datasets. We show that it is possible to visualize the possible shift in domain using feature extraction and principal component analysis. Also, experimental competition shows that the cross-domain validated results of FESC/R are comparable to the reported state-of-the-art methods. Finally, we show that the results for simple randomly selected validation sets do not correctly represent the model performance in real-world applications. |
DOI der Erstveröffentlichung: | 10.1515/teme-2021-0129 |
URL der Erstveröffentlichung: | https://www.degruyter.com/document/doi/10.1515/teme-2021-0129/html |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-372312 hdl:20.500.11880/33755 http://dx.doi.org/10.22028/D291-37231 |
ISSN: | 2196-7113 0171-8096 |
Datum des Eintrags: | 15-Sep-2022 |
Fakultät: | NT - Naturwissenschaftlich- Technische Fakultät |
Fachrichtung: | NT - Systems Engineering |
Professur: | NT - Prof. Dr. Andreas Schütze |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.