Please use this identifier to cite or link to this item: doi:10.22028/D291-36728
Title: Quantitative analysis of mixed niobium-titanium carbonitride solubility in HSLA steels based on atom probe tomography and electrical resistivity measurements
Author(s): Webel, Johannes
Mohrbacher, Hardy
Detemple, Eric
Britz, Dominik
Mücklich, Frank
Language: English
Title: Journal of Materials Research and Technology
Volume: 18
Pages: 2048-2063
Publisher/Platform: Elsevier
Year of Publication: 2022
Free key words: High-strength low-alloy steel
Nb-Ti-Mixed carbonitrides
Solubility
Electrical resistivity measurements
Atom probe tomography
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: Solubility of mixed niobium-titanium carbonitrides in commercially relevant High Strength Low-Alloy (HSLA) steel was investigated by combined use of electrical re sistivity measurements and APT after interrupted quenching from soaking temperatures between 950 and 1250 C. Increasing electrical resistivity of the bulk material towards higher soaking temperatures was proportional to the nominal niobium addition which was varied between 0.002 and 0.022e0.043e0.085 wt.-%. Correlative APT analysis of the solutes in the steel matrix showed good agreement with electrical resistivity. Investigating numerous precipitate particles, APT also derived a precise composition for mixed niobium titanium-carbonitrides which constitute the steel microstructure after casting/before soaking. The scavenging of microalloy elements by insoluble titanium nitrides was cor rected by means of combined APT analysis of such precipitate and a quantitative image analysis for the estimation of the total volume fraction of titanium nitrides. For the first time, solute and precipitate composition together were used for solubility calculations of such mixed carbonitrides to derive an experimental solubility product. This was compared to solubility products of well-established simple carbides and nitrides and theoretical calculations of the solubility of multicomponent carbonitrides. The large discrepancy between experimentally derived and modelled solubility emphasizes the ne cessity of a robust methodology for the quantification of microalloy precipitation in HSLA steels.
DOI of the first publication: 10.1016/j.jmrt.2022.03.098
URL of the first publication: https://www.sciencedirect.com/science/article/pii/S2238785422004057
Link to this record: urn:nbn:de:bsz:291--ds-367281
hdl:20.500.11880/33374
http://dx.doi.org/10.22028/D291-36728
ISSN: 2214-0697
2238-7854
Date of registration: 11-Jul-2022
Description of the related object: Supplementary data
Related object: https://ars.els-cdn.com/content/image/1-s2.0-S2238785422004057-mmc1.docx
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Materialwissenschaft und Werkstofftechnik
Professorship: NT - Prof. Dr. Frank Mücklich
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
1-s2.0-S2238785422004057-main.pdf2,78 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons