Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-36506
Titel: Combination of MALDI-TOF Mass Spectrometry and Machine Learning for Rapid Antimicrobial Resistance Screening: The Case of Campylobacter spp.
VerfasserIn: Feucherolles, Maureen
Nennig, Morgane
Becker, Sören L.
Martiny, Delphine
Losch, Serge
Penny, Christian
Cauchie, Henry-Michel
Ragimbeau, Catherine
Sprache: Englisch
Titel: Frontiers in Microbiology
Bandnummer: 12
Verlag/Plattform: Frontiers
Erscheinungsjahr: 2022
Freie Schlagwörter: MALDI-TOF MS
antimicrobial resistance screening
AMR
machine learning
Campylobacter
diagnostics
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: While MALDI-TOF mass spectrometry (MS) is widely considered as the reference method for the rapid and inexpensive identification of microorganisms in routine laboratories, less attention has been addressed to its ability for detection of antimicrobial resistance (AMR). Recently, some studies assessed its potential application together with machine learning for the detection of AMR in clinical pathogens. The scope of this study was to investigate MALDI-TOF MS protein mass spectra combined with a prediction approach as an AMR screening tool for relevant foodborne pathogens, such as Campylobacter coli and Campylobacter jejuni. A One-Health panel of 224 C. jejuni and 116 C. coli strains was phenotypically tested for seven antimicrobial resistances, i.e., ciprofloxacin, erythromycin, tetracycline, gentamycin, kanamycin, streptomycin, and ampicillin, independently, and were submitted, after an on- and off-plate protein extraction, to MALDI Biotyper analysis, which yielded one average spectra per isolate and type of extraction. Overall, high performance was observed for classifiers detecting susceptible as well as ciprofloxacin- and tetracycline-resistant isolates. A maximum sensitivity and a precision of 92.3 and 81.2%, respectively, were reached. No significant prediction performance differences were observed between on and off-plate types of protein extractions. Finally, three putative AMR biomarkers for fluoroquinolones, tetracyclines, and aminoglycosides were identified during the current study. Combination of MALDI-TOF MS and machine learning could be an efficient and inexpensive tool to swiftly screen certain AMR in foodborne pathogens, which may enable a rapid initiation of a precise, targeted antibiotic treatment.
DOI der Erstveröffentlichung: 10.3389/fmicb.2021.804484
URL der Erstveröffentlichung: https://www.frontiersin.org/articles/10.3389/fmicb.2021.804484/full
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-365065
hdl:20.500.11880/33150
http://dx.doi.org/10.22028/D291-36506
ISSN: 1664-302X
Datum des Eintrags: 20-Jun-2022
Bezeichnung des in Beziehung stehenden Objekts: Supplementary Material
In Beziehung stehendes Objekt: https://ndownloader.figstatic.com/collections/5848850/versions/1
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Infektionsmedizin
Professur: M - Prof. Dr. Sören Becker
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
fmicb-12-804484.pdf4,05 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons