Please use this identifier to cite or link to this item: doi:10.22028/D291-36247
Volltext verfügbar? / Dokumentlieferung
Title: “Regression anytime” with brute-force SVD truncation
Author(s): Bender, Christian
Schweizer, Nikolaus
Language: English
Title: The annals of applied probability
Volume: 31
Issue: 3
Startpage: 1140
Endpage: 1179
Publisher/Platform: Institute of Mathematical Statistics
Year of Publication: 2021
Free key words: BSDEs
dynamic programming
least-squares Monte Carlo
Monte Carlo simulation
quantitative finance
regression later
Statistical learning
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: We propose a new least-squares Monte Carlo algorithm for the approximation of conditional expectations in the presence of stochastic derivative weights. The algorithm can serve as a building block for solving dynamic programming equations, which arise, for example, in nonlinear option pricing problems or in probabilistic discretization schemes for fully nonlinear parabolic partial differential equations. Our algorithm can be generically applied when the underlying dynamics stem from an Euler approximation to a stochastic differential equation. A built-in variance reduction ensures that the convergence in the number of samples to the true regression function takes place at an arbitrarily fast polynomial rate, if the problem under consideration is smooth enough.
DOI of the first publication: 10.1214/20-AAP1615
URL of the first publication: https://projecteuclid.org/journals/annals-of-applied-probability/volume-31/issue-3/Regression-anytime-with-brute-force-SVD-truncation/10.1214/20-AAP1615.short
Link to this record: urn:nbn:de:bsz:291--ds-362470
hdl:20.500.11880/33124
http://dx.doi.org/10.22028/D291-36247
ISSN: 2168-8737
1050-5164
Date of registration: 15-Jun-2022
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Christian Bender
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.