Please use this identifier to cite or link to this item: doi:10.22028/D291-36246
Volltext verfügbar? / Dokumentlieferung
Title: Itô’s formula for Gaussian processes with stochastic discontinuities
Author(s): Bender, Christian
Language: English
Title: The annals of probability
Volume: 48
Issue: 1
Startpage: 458
Endpage: 492
Publisher/Platform: Institute of Mathematical Statistics
Year of Publication: 2020
Free key words: Gaussian processes
Itô’s formula
stochastic discontinuities
stochastic integrals
S-transform
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: We introduce a Skorokhod type integral and prove an Itô formula for a wide class of Gaussian processes which may exhibit stochastic discontinuities. Our Itô formula unifies and extends the classical one for general (i.e., possibly discontinuous) Gaussian martingales in the sense of Itô integration and the one for stochastically continuous Gaussian non-martingales in the Skorokhod sense, which was first derived in Alòs et al. (Ann. Probab. 29 (2001) 766–801).
DOI of the first publication: 10.1214/19-AOP1369
URL of the first publication: https://projecteuclid.org/journals/annals-of-probability/volume-48/issue-1/It%c3%b4s-formula-for-Gaussian-processes-with-stochastic-discontinuities/10.1214/19-AOP1369.short
Link to this record: urn:nbn:de:bsz:291--ds-362463
hdl:20.500.11880/33121
http://dx.doi.org/10.22028/D291-36246
ISSN: 0091-1798
Date of registration: 15-Jun-2022
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Christian Bender
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.