Please use this identifier to cite or link to this item: doi:10.22028/D291-36107
Title: Knowledge extraction from fictional texts
Author(s): Chu, Cuong Xuan
Language: English
Year of Publication: 2022
Free key words: knowledge base construction
information extraction
natural language processing
machine learning
knowledge extraction
DDC notations: 004 Computer science, internet
500 Science
Publikation type: Dissertation
Abstract: Knowledge extraction from text is a key task in natural language processing, which involves many sub-tasks, such as taxonomy induction, named entity recognition and typing, relation extraction, knowledge canonicalization and so on. By constructing structured knowledge from natural language text, knowledge extraction becomes a key asset for search engines, question answering and other downstream applications. However, current knowledge extraction methods mostly focus on prominent real-world entities with Wikipedia and mainstream news articles as sources. The constructed knowledge bases, therefore, lack information about long-tail domains, with fiction and fantasy as archetypes. Fiction and fantasy are core parts of our human culture, spanning from literature to movies, TV series, comics and video games. With thousands of fictional universes which have been created, knowledge from fictional domains are subject of search-engine queries - by fans as well as cultural analysts. Unlike the real-world domain, knowledge extraction on such specific domains like fiction and fantasy has to tackle several key challenges: - Training data: Sources for fictional domains mostly come from books and fan-built content, which is sparse and noisy, and contains difficult structures of texts, such as dialogues and quotes. Training data for key tasks such as taxonomy induction, named entity typing or relation extraction are also not available. - Domain characteristics and diversity: Fictional universes can be highly sophisticated, containing entities, social structures and sometimes languages that are completely different from the real world. State-of-the-art methods for knowledge extraction make assumptions on entity-class, subclass and entity-entity relations that are often invalid for fictional domains. With different genres of fictional domains, another requirement is to transfer models across domains. - Long fictional texts: While state-of-the-art models have limitations on the input sequence length, it is essential to develop methods that are able to deal with very long texts (e.g. entire books), to capture multiple contexts and leverage widely spread cues. This dissertation addresses the above challenges, by developing new methodologies that advance the state of the art on knowledge extraction in fictional domains. - The first contribution is a method, called TiFi, for constructing type systems (taxonomy induction) for fictional domains. By tapping noisy fan-built content from online communities such as Wikia, TiFi induces taxonomies through three main steps: category cleaning, edge cleaning and top-level construction. Exploiting a variety of features from the original input, TiFi is able to construct taxonomies for a diverse range of fictional domains with high precision. - The second contribution is a comprehensive approach, called ENTYFI, for named entity recognition and typing in long fictional texts. Built on 205 automatically induced high-quality type systems for popular fictional domains, ENTYFI exploits the overlap and reuse of these fictional domains on unseen texts. By combining different typing modules with a consolidation stage, ENTYFI is able to do fine-grained entity typing in long fictional texts with high precision and recall. - The third contribution is an end-to-end system, called KnowFi, for extracting relations between entities in very long texts such as entire books. KnowFi leverages background knowledge from 142 popular fictional domains to identify interesting relations and to collect distant training samples. KnowFi devises a similarity-based ranking technique to reduce false positives in training samples and to select potential text passages that contain seed pairs of entities. By training a hierarchical neural network for all relations, KnowFi is able to infer relations between entity pairs across long fictional texts, and achieves gains over the best prior methods for relation extraction.
Wissensextraktion ist ein Schlüsselaufgabe bei der Verarbeitung natürlicher Sprache, und umfasst viele Unteraufgaben, wie Taxonomiekonstruktion, Entitätserkennung und Typisierung, Relationsextraktion, Wissenskanonikalisierung, etc. Durch den Aufbau von strukturiertem Wissen (z.B. Wissensdatenbanken) aus Texten wird die Wissensextraktion zu einem Schlüsselfaktor für Suchmaschinen, Question Answering und andere Anwendungen. Aktuelle Methoden zur Wissensextraktion konzentrieren sich jedoch hauptsächlich auf den Bereich der realen Welt, wobei Wikipedia und Mainstream- Nachrichtenartikel die Hauptquellen sind. Fiktion und Fantasy sind Kernbestandteile unserer menschlichen Kultur, die sich von Literatur bis zu Filmen, Fernsehserien, Comics und Videospielen erstreckt. Für Tausende von fiktiven Universen wird Wissen aus Suchmaschinen abgefragt – von Fans ebenso wie von Kulturwissenschaftler. Im Gegensatz zur realen Welt muss die Wissensextraktion in solchen spezifischen Domänen wie Belletristik und Fantasy mehrere zentrale Herausforderungen bewältigen: • Trainingsdaten. Quellen für fiktive Domänen stammen hauptsächlich aus Büchern und von Fans erstellten Inhalten, die spärlich und fehlerbehaftet sind und schwierige Textstrukturen wie Dialoge und Zitate enthalten. Trainingsdaten für Schlüsselaufgaben wie Taxonomie-Induktion, Named Entity Typing oder Relation Extraction sind ebenfalls nicht verfügbar. • Domain-Eigenschaften und Diversität. Fiktive Universen können sehr anspruchsvoll sein und Entitäten, soziale Strukturen und manchmal auch Sprachen enthalten, die sich von der realen Welt völlig unterscheiden. Moderne Methoden zur Wissensextraktion machen Annahmen über Entity-Class-, Entity-Subclass- und Entity- Entity-Relationen, die für fiktive Domänen oft ungültig sind. Bei verschiedenen Genres fiktiver Domänen müssen Modelle auch über fiktive Domänen hinweg transferierbar sein. • Lange fiktive Texte. Während moderne Modelle Einschränkungen hinsichtlich der Länge der Eingabesequenz haben, ist es wichtig, Methoden zu entwickeln, die in der Lage sind, mit sehr langen Texten (z.B. ganzen Büchern) umzugehen, und mehrere Kontexte und verteilte Hinweise zu erfassen. Diese Dissertation befasst sich mit den oben genannten Herausforderungen, und entwickelt Methoden, die den Stand der Kunst zur Wissensextraktion in fiktionalen Domänen voranbringen. • Der erste Beitrag ist eine Methode, genannt TiFi, zur Konstruktion von Typsystemen (Taxonomie induktion) für fiktive Domänen. Aus von Fans erstellten Inhalten in Online-Communities wie Wikia induziert TiFi Taxonomien in drei wesentlichen Schritten: Kategoriereinigung, Kantenreinigung und Top-Level- Konstruktion. TiFi nutzt eine Vielzahl von Informationen aus den ursprünglichen Quellen und ist in der Lage, Taxonomien für eine Vielzahl von fiktiven Domänen mit hoher Präzision zu erstellen. • Der zweite Beitrag ist ein umfassender Ansatz, genannt ENTYFI, zur Erkennung von Entitäten, und deren Typen, in langen fiktiven Texten. Aufbauend auf 205 automatisch induzierten hochwertigen Typsystemen für populäre fiktive Domänen nutzt ENTYFI die Überlappung und Wiederverwendung dieser fiktiven Domänen zur Bearbeitung neuer Texte. Durch die Zusammenstellung verschiedener Typisierungsmodule mit einer Konsolidierungsphase ist ENTYFI in der Lage, in langen fiktionalen Texten eine feinkörnige Entitätstypisierung mit hoher Präzision und Abdeckung durchzuführen. • Der dritte Beitrag ist ein End-to-End-System, genannt KnowFi, um Relationen zwischen Entitäten aus sehr langen Texten wie ganzen Büchern zu extrahieren. KnowFi nutzt Hintergrundwissen aus 142 beliebten fiktiven Domänen, um interessante Beziehungen zu identifizieren und Trainingsdaten zu sammeln. KnowFi umfasst eine ähnlichkeitsbasierte Ranking-Technik, um falsch positive Einträge in Trainingsdaten zu reduzieren und potenzielle Textpassagen auszuwählen, die Paare von Kandidats-Entitäten enthalten. Durch das Trainieren eines hierarchischen neuronalen Netzwerkes für alle Relationen ist KnowFi in der Lage, Relationen zwischen Entitätspaaren aus langen fiktiven Texten abzuleiten, und übertrifft die besten früheren Methoden zur Relationsextraktion.
Link to this record: urn:nbn:de:bsz:291--ds-361070
hdl:20.500.11880/32914
http://dx.doi.org/10.22028/D291-36107
Advisor: Weikum, Gerhard
Date of oral examination: 25-Apr-2022
Date of registration: 17-May-2022
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
thesis-twoside-toprint.pdfCuong Xuan Chu - doctoral thesis3,93 MBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.