Please use this identifier to cite or link to this item: doi:10.22028/D291-36136
Volltext verfügbar? / Dokumentlieferung
Title: Discovering User Groups for Natural Language Generation
Author(s): Engonopoulos, Nikos
Teichmann, Christoph
Koller, Alexander
Language: English
Publisher/Platform: arXiv
Year of Publication: 2018
Publikation type: Other
Abstract: We present a model which predicts how individual users of a dialog system understand and produce utterances based on user groups. In contrast to previous work, these user groups are not specified beforehand, but learned in training. We evaluate on two referring expression (RE) generation tasks; our experiments show that our model can identify user groups and learn how to most effectively talk to them, and can dynamically assign unseen users to the correct groups as they interact with the system.
DOI of the first publication: 10.48550/arXiv.1806.05947
URL of the first publication: https://arxiv.org/abs/1806.05947
Link to this record: hdl:20.500.11880/32904
http://dx.doi.org/10.22028/D291-36136
Date of registration: 11-May-2022
Notes: Preprint
Faculty: P - Philosophische Fakultät
Department: P - Sprachwissenschaft und Sprachtechnologie
Professorship: P - Prof. Dr. Alexander Koller
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.