Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-36003
Titel: | Non-disruptive use of light fields in image and video processing |
VerfasserIn: | Hariharan, Harini Priyadarshini |
Sprache: | Englisch |
Erscheinungsjahr: | 2022 |
DDC-Sachgruppe: | 004 Informatik 600 Technik |
Dokumenttyp: | Dissertation |
Abstract: | In the age of computational imaging, cameras capture not only an image but also data. This captured additional data can be best used for photo-realistic renderings facilitating numerous post-processing possibilities such as perspective shift, depth scaling, digital refocus, 3D reconstruction, and much more. In computational photography, the light field imaging technology captures the complete volumetric information of a scene. This technology has the highest potential to accelerate immersive experiences towards close-toreality. It has gained significance in both commercial and research domains. However, due to lack of coding and storage formats and also the incompatibility of the tools to process and enable the data, light fields are not exploited to its full potential. This dissertation approaches the integration of light field data to image and video processing. Towards this goal, the representation of light fields using advanced file formats designed for 2D image assemblies to facilitate asset re-usability and interoperability between applications and devices is addressed. The novel 5D light field acquisition and the on-going research on coding frameworks are presented. Multiple techniques for optimised sequencing of light field data are also proposed. As light fields contain complete 3D information of a scene, large amounts of data is captured and is highly redundant in nature. Hence, by pre-processing the data using the proposed approaches, excellent coding performance can be achieved. Im Zeitalter der computergestützten Bildgebung erfassen Kameras nicht mehr nur ein Bild, sondern vielmehr auch Daten. Diese erfassten Zusatzdaten lassen sich optimal für fotorealistische Renderings nutzen und erlauben zahlreiche Nachbearbeitungsmöglichkeiten, wie Perspektivwechsel, Tiefenskalierung, digitale Nachfokussierung, 3D-Rekonstruktion und vieles mehr. In der computergestützten Fotografie erfasst die Lichtfeld-Abbildungstechnologie die vollständige volumetrische Information einer Szene. Diese Technologie bietet dabei das größte Potenzial, immersive Erlebnisse zu mehr Realitätsnähe zu beschleunigen. Deshalb gewinnt sie sowohl im kommerziellen Sektor als auch im Forschungsbereich zunehmend an Bedeutung. Aufgrund fehlender Kompressions- und Speicherformate sowie der Inkompatibilität derWerkzeuge zur Verarbeitung und Freigabe der Daten, wird das Potenzial der Lichtfelder nicht voll ausgeschöpft. Diese Dissertation ermöglicht die Integration von Lichtfelddaten in die Bild- und Videoverarbeitung. Hierzu wird die Darstellung von Lichtfeldern mit Hilfe von fortschrittlichen für 2D-Bilder entwickelten Dateiformaten erarbeitet, um die Wiederverwendbarkeit von Assets- Dateien und die Kompatibilität zwischen Anwendungen und Geräten zu erleichtern. Die neuartige 5D-Lichtfeldaufnahme und die aktuelle Forschung an Kompressions-Rahmenbedingungen werden vorgestellt. Es werden zudem verschiedene Techniken für eine optimierte Sequenzierung von Lichtfelddaten vorgeschlagen. Da Lichtfelder die vollständige 3D-Information einer Szene beinhalten, wird eine große Menge an Daten, die in hohem Maße redundant sind, erfasst. Die hier vorgeschlagenen Ansätze zur Datenvorverarbeitung erreichen dabei eine ausgezeichnete Komprimierleistung. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-360039 hdl:20.500.11880/32873 http://dx.doi.org/10.22028/D291-36003 |
Erstgutachter: | Herfet, Thorsten |
Tag der mündlichen Prüfung: | 23-Feb-2022 |
Datum des Eintrags: | 2-Mai-2022 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Professur: | MI - Prof. Dr. Thorsten Herfet |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
Harini_PhDThesis.pdf | Doctoral Thesis | 41,65 MB | Adobe PDF | Öffnen/Anzeigen |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.