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Abstract
Non-Disruptive Use of Light Fields in Image and Video Processing

In the age of computational imaging, cameras capture not only an image but
also data. This captured additional data can be best used for photo-realistic
renderings facilitating numerous post-processing possibilities such as per-
spective shift, depth scaling, digital refocus, 3D reconstruction, and much
more. In computational photography, the light field imaging technology cap-
tures the complete volumetric information of a scene. This technology has
the highest potential to accelerate immersive experiences towards close-to-
reality. It has gained significance in both commercial and research domains.
However, due to lack of coding and storage formats and also the incompati-
bility of the tools to process and enable the data, light fields are not exploited
to its full potential. This dissertation approaches the integration of light field
data to image and video processing. Towards this goal, the representation
of light fields using advanced file formats designed for 2D image assemblies
to facilitate asset re-usability and interoperability between applications and
devices is addressed. The novel 5D light field acquisition and the on-going
research on coding frameworks are presented. Multiple techniques for opti-
mised sequencing of light field data are also proposed. As light fields contain
complete 3D information of a scene, large amounts of data is captured and
is highly redundant in nature. Hence, by pre-processing the data using the
proposed approaches, excellent coding performance can be achieved.
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Zusammenfassung

Non-Disruptive Use of Light Fields in Image and Video Processing

Im Zeitalter der computergestützten Bildgebung erfassen Kameras nicht mehr
nur ein Bild, sondern vielmehr auch Daten. Diese erfassten Zusatzdaten
lassen sich optimal für fotorealistische Renderings nutzen und erlauben zahlre-
iche Nachbearbeitungsmöglichkeiten, wie Perspektivwechsel, Tiefenskalierung,
digitale Nachfokussierung, 3D-Rekonstruktion und vieles mehr. In der com-
putergestützten Fotografie erfasst die Lichtfeld-Abbildungstechnologie die
vollständige volumetrische Information einer Szene. Diese Technologie bi-
etet dabei das größte Potenzial, immersive Erlebnisse zu mehr Realitätsnähe
zu beschleunigen. Deshalb gewinnt sie sowohl im kommerziellen Sektor als
auch im Forschungsbereich zunehmend an Bedeutung. Aufgrund fehlender
Kompressions- und Speicherformate sowie der Inkompatibilität der Werkzeuge
zur Verarbeitung und Freigabe der Daten, wird das Potenzial der Lichtfelder
nicht voll ausgeschöpft. Diese Dissertation ermöglicht die Integration von
Lichtfelddaten in die Bild- und Videoverarbeitung. Hierzu wird die Darstel-
lung von Lichtfeldern mit Hilfe von fortschrittlichen für 2D-Bilder entwick-
elten Dateiformaten erarbeitet, um die Wiederverwendbarkeit von Assets-
Dateien und die Kompatibilität zwischen Anwendungen und Geräten zu er-
leichtern. Die neuartige 5D-Lichtfeldaufnahme und die aktuelle Forschung
an Kompressions-Rahmenbedingungen werden vorgestellt. Es werden zu-
dem verschiedene Techniken für eine optimierte Sequenzierung von Licht-
felddaten vorgeschlagen. Da Lichtfelder die vollständige 3D-Information
einer Szene beinhalten, wird eine große Menge an Daten, die in hohem Maße
redundant sind, erfasst. Die hier vorgeschlagenen Ansätze zur Datenvorver-
arbeitung erreichen dabei eine ausgezeichnete Komprimierleistung.
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Chapter 1

Preface

Immersive and interactive experience has become increasingly important in
media, VFX and the film industry. According to research on physiological
science, experiences make human beings happier than materialistic things
[KKG14]. Creating immersive experiences enhances people’s lives by fading
the gap between reality and the virtual world. It attracts and engages a per-
son into an interactive world via advanced and sophisticated technologies.

There have been several advancements in 2D video production like High Dy-
namic Range (HDR), Ultra High Definition (UHD) and White Color Gamut
(WCG), however, they still lack life-like representations. In 3D video tech-
nology, the most popular format is the stereoscopic video composed of two
views, one for each eye. Although advanced, this technology limits the user
from changing the viewpoint and the depth perception, the vital element of
immersive technology. On the other hand, digitally simulated immersive ap-
plications using augmented or virtual reality are well explored. However,
they are still far from providing close-to-reality experiences.

The Light Field (LF) imaging technology captures the complete spatial and
angular information of light rays and uses hundreds or even thousands of
views with small offsets to densely sample the observation space of a scene or
an object. Over the last decade, light fields for content production has gained
prominence in both research and commercial environment moving immer-
sive experience towards close-to-reality. However, the lack of state-of-the-art
coding, transmission, and storage formats and also the incompatibility of the
available tools to edit, post-process, and enable light field data has restricted
its usage in current applications. Approaches for non-disruptive integration
of light fields in image and video processing chains to facilitate its use to full
potential is a core topic of interest which has been explored in this thesis.

1.1 Motivation

Since the emergence of digital photography, digital image processing and
computer vision have been in the limelight. On one hand, the digital imag-
ing devices and video acquisition hardware have evolved rapidly, but on the
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other hand the increasing amount of low-budget media productions have in-
troduced new challenges to data processing approaches. Present-day influ-
encers like to modify their captured content easily to express their creativity
and artistic ideas. Therefore, with regard to the post-processing needs, it is
important to conquer the constraints imposed by traditional imaging tech-
niques and the corporeal world as such.

While traditionally only color (RGB) information is captured, the light field
imaging technology allows capturing and realising light intensities passing
through every point in space and in every direction, recording a huge vol-
ume of data for representation of a given scene. With the constantly advanc-
ing pixel density on devices and more newfangled processing techniques ex-
ploiting the additional information, incorporating the light field technology
in end user devices is a viable option. However, the additional magnitude
of flexibility attained from the light field technology comes at the expense
of higher transmission capacities and storage requirements, which explic-
itly signifies increased data rates on all applications and devices employed
to capture, display, and exchange light field content. Hence, pre-processing
and compression of light field data are key elements to enable consumer us-
age of light fields.

In this context, the research questions addressed in this thesis work are as
follows. Primarily, is interoperability possible with light field data and can it
be seamlessly integrated in current workflows along with the light field post-
processing capabilities intact. This requires developing techniques to adapt
light field images to the existing consumer and professional file formats.

Furthermore, the need for low-complexity and feasible approaches to pre-
process, compress, and store higher dimensions of light field data. Light field
data contains multiple viewpoints captured within a restricted viewing angle
and the perspective changes between adjacent views are consistent. Conse-
quently, the views are highly correlated exhibiting structured redundancies
both spatially and temporally. The objective is to utilise the view redundan-
cies to achieve a better compression ratio at an optimal coding cost.

Lastly, as most of the available professional and consumer services and prod-
ucts are designed for conventional image content, it is essential to analyse
whether the available image and video coding standards can be optimised
for light field images and videos. This requires algorithms for adapting the
light field data and the reference lists of the coding formats for incorporating
newer imaging modalities into existing state-of-the-art standards.

1.2 Overview

This dissertation is composed of six chapters. The current chapter introduces
the motivation and the problem statement that has been addressed in the up-
coming chapters.
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Chapter 2 discusses the basic knowledge for understanding plenoptics and
light fields. The technical advances which enable light field acquisition using
novel hardware and approaches are presented, including our own 5D light
field camera array, as described in the conference proceeding [P9]. Further,
techniques for processing the captured raw data to light fields are introduced
and as well as some of the popular post-processing features of light fields are
showcased.

In Chapter 3, we propose techniques to extract and transcode high resolu-
tion light field data to professional file formats like PSD and OpenEXR. The
implication of the transcoding effects from the different data compression
methods have been compared against the state-of-the-art compression stan-
dards and the evaluation results are presented. The work described in this
chapter has been published as a conference proceeding in [P6].

Chapter 4 addresses multiple approaches for sequencing of light field data
in an optimised fashion and adapting the reference lists to be compatible
with state-of-the-art codecs. First, a low-complexity pre-processing solution
by pseudo-temporal re-ordering of frames is presented, which maximizes
the correlation between the neighbouring frames. This approach has been
published as conference proceedings in [P4] and [P8]. The second technique
showcases pre-processing the light field data with superpixel segmentation
based adaptive Gaussian filtering and pseudo-temporal sequencing. The
superpixel segmentation technique applied here is derived from our prior
works [P1] and [P2] and the proposed approach is published as a conference
proceeding in [P5]. Finally, an algorithm for re-ordering higher dimension
light fields, including the temporal domain and generating adaptive refer-
ence lists are discussed. Using the various proposed techniques, it is demon-
strated that the state-of-the-art video codecs are able to better exploit the data
redundancy using both intra and inter-frame prediction. Results of this ap-
proach have been published as conference proceedings in [P3] and [P7].

In Chapter 5, the efforts towards facilitating interoperability of light field data
between devices and applications at a cross-modality level is addressed. The
JPEG and MPEG standardisation committees have commenced new formats
JPEG Pleno and MPEG-I respectively, to support plenoptic modalities and
immersive media.

Chapter 6 summarises the research findings and presents an overall view of
the approaches, the algorithms developed, and the evaluations performed
during the course of the studies. In addition, potential future opportunities
are discussed and proposed.
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Chapter 2

Towards Computational Imaging

2.1 Plenoptics and Light Fields

The concept of interpreting light rays as fields dates back to 1846, first pro-
posed by Michael Faraday in his lecture “Thoughts on Ray Vibrations” [Far46].
Following the conceptualization, the term Light Field was envisaged by Arun
Gershun in 1936. A light field is the amount of light traveling in every direc-
tion through every point in space [Ger36]. The plenoptic function param-
eters light rays at any given point in both space and time. Mathematically,
plenoptics as defined by Adelson and Bergen [AW92], is a seven-dimensional
function that describes light in terms of time (t), space (Vx, Vy, Vz), direction
(θ, φ) and frequency (λ).

FIGURE 2.1: a) Parameterizing a ray in a three-dimensional
space; b) Representing light fields in two-plane parameteriza-

tion

Light field technology was introduced to the world of computer graphics
in the year 1996 by Levoy and Hanrahan [LH96]. As a derivative of Adel-
son and Bergen’s plenoptic function, rays in space are parameterized in five-
dimensions. L(x, y, z, θ, φ) where, x, y, z represent the 3D position in space,
and θ, φ represent the direction, as illustrated in figure 2.1 a). Since in free
space, the radiance along the light rays is constant, the plenoptic function
can be deduced to a four-dimensions, representing 4D light fields L(a, b, x, y)
or photic field [MS81].

Although 4D light fields can be parameterized in multiple ways, the most
common representation of rays is using the two-plane parameterization, as
shown in figure 2.1 b). Taking the points of intersection of the light rays with
an arbitrary starting point on the parallel planes, it is possible to identify the
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corresponding position and direction. The light rays passing in all direction
can be described using this parameterization, except for the rays that are par-
allel to the two planes. An intuitive way of conceptualizing a two-plane light
field is by imagining the ab plane as a collection of views from different per-
spectives, each captured from an unique observer position on the xy plane
respectively.

The commonly used mathematical representation of light fields is size(4DLF) =
(s, t, u, v, c), where, st represents the spatial domain (horizontal respectively
the vertical scene), uv represents the angular domain (horizontal receptively
the vertical views) and c represents the color information. In this thesis work,
we have introduced light fields of higher dimensions that include informa-
tion beyond intensity and direction. To maintain consistency and to avoid
ambiguity with respect to the temporal dimension, we in our works de-
note uv as xy for the angular domain and st as ab for the spatial domain.
The time domain will be denoted with t as usual and the color information
with c. The overall representation will be size(4DLF) = (a, b, x, y, c) and
size(5DLF) = (t, a, b, x, y, c).

2.2 Light Fields Acquisition

Light fields can be captured and realised with different devices and tech-
niques, including a handheld camera fitted with a microlens array or mir-
rors, an array of cameras, robotically controlled moving camera or rendered
synthetically using computer graphics software. Few of the prominent ap-
proaches and devices are discussed in this section.

2.2.1 Single Sensor Cameras

Conventional cameras capture light rays as a two-dimensional and flat in-
formation. The sensor in the cameras only records the color and intensity
of the light rays at each pixel position. While, plenoptic cameras record in-
formation beyond the brightness and color, including the direction of the
light rays arriving at the sensor. The captured additional information can
be used for reconstruction of the light rays position and aid in rendering a
three-dimensional perception of the captured scene.

The principle behind a lenslet based camera was initially proposed in 1908
by Gabriel Lippmann as "Integral Photography," in which an array of small
and spherical lenses with narrow baselines are used to capture a scene, to
produce images from slightly different perspectives [Lip08]. The model as
shown in figure 2.2 was later conceptualized as a commercial light field cam-
era [Ng+05]. The setup consists of three major components, a main lens, a
lenslet array and a photosensor. Incoming light rays from the object are fo-
cused onto the lenslet array by the main lens and the converging light rays
are split by the lenslet array to form an image on the photosensor. Each
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FIGURE 2.2: Lenslet camera model

lenslet forms a miniature portion of the lens aperture that measures the di-
rectional distributing of the light rays at that lenslet. The raw data as an
overall view looks similar to a conventional image, however microscopically
the sub-aperture images captured by each microlens are visible. This pro-
vides the direction and angular information of the light in real-world, from
which the depth of the objects can be computed.

FIGURE 2.3: Two configurations of the plenoptic 2.0 cameras
a) Real image recorded in front of the lenslet array;
b) Virtual image recorded behind the lenslet array

Plenoptic cameras can be categorised into two versions based on the underly-
ing working principle. In plenoptic 1.0 which is also the traditional plenoptic
camera model as shown in figure 2.2, the lenslets are focused at optical in-
finity and the main lens is focused at the lenslet plane, while in plenoptic 2.0
the lenslet array is focused onto the main lens focal plane. The plenoptic 2.0
based cameras are widely known as the focused plenoptic cameras [LG09].
The focused plenoptic cameras comparatively provide a better trade-off be-
tween the angular resolution and the depth of focus, and implicitly improve
the spatial resolution [PKV18]. The two different plenoptic 2.0 configurations
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are illustrated in figure 2.3. The primary difference is how the pixels on the
sensor are ordered. Based on the placement of the lenslet array, it is possible
to record a real image in front of the lenslet array, as in figure 2.3 a) or a vir-
tual image behind the lenslet array, as in figure 2.3 b).

FIGURE 2.4: Aperture matching between lenslet array and
main lens in handheld plenoptic cameras

The significance of matching the focal ratio, f/#’s of the optics in a plenoptic
1.0 based light field camera is depicted in figure 2.4. It is important to design
the relative sizes of the lenslet array and the main lens so the captured im-
ages are without reduction in angular and directional resolution. To achieve
a sharp lenslet image, the lenslets are focused onto the principal plane of the
main lens. As the lenslets are small in size compared to the main lens, the
main lens is placed at the optical infinity and the photosensor is fixed at the
focal depth of the lenslet array respectively. To maximally utilise the photo-
sensor pixels, it is critical to choose an optimal aperture size for both the main
lens and the lenslets. As described in [Ng+05], if the chosen main lens f/# is
higher (smaller aperture), the recorded lenslet images are cropped, reducing
the overall resolution. On the other hand, if the main lens f/# is lower (larger
aperture), the resulting lenslet images overlap, producing unsatisfactory re-
sults. By matching the two f/#, the images under the lenslets are maximal in
size without reduced resolution or overlapping.
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FIGURE 2.5: A sample RAW light field image captured using a
handheld plenoptic camera

From figure 2.4, it can be observed that due to mismatch in packing, where
spherically designed lenslets are placed in a square (rectangular) layout lenslet
array, significant amount of pixels are not fully exploited. The spherical
lenslets packing can be improved, for instance by approximating it in a hexag-
onal grid, which yields higher packing density. During processing, ray trac-
ing approaches have to be applied for resampling the pixels to render the
final images. A sample light field image captured using a handheld plenop-
tic camera fitted with a hexagonal grid lenslet array is shown in figure 2.5.
Due to dense packing of the lenslets, the black (no information) pixels are
considerably reduced.

2.2.1.1 Lytro Light Field Cameras

The Lytro is the first ever launched portable consumer light field camera. The
Lytro Camera is a square and tube less device with a lens opening on one side
and a LCD touch screen on the other. The different models are as shown in
figure 2.6 a), majorly varying in color based on the internal storage size. The
Lytro cameras are fitted with a 11 megaray CMOS Light Filed sensor. The
lenslets redirects the light rays to different pixels on the CMOS sensor, which
generates the angular dimension of the rays.

FIGURE 2.6: Lytro light field cameras
a) The Lytro camera - figure illustrated from [Lyc];

b) The Lytro Illum camera - figure illustrated from [Lyi]

Succeeding the Lytro cameras, the second generation was a professional grade
light field digital camera, the Lytro Illum with a 40 megaray sensor, as shown
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in figure 2.6 b). The Lytro Illum Cameras have a 8x zoom lens which is simi-
lar to a 30-350mm digital camera lens and the camera can focus from 0mm to
infinity. An important add-on was the display, featuring a live view overlay
of the objects at multiple depths and their refocusable range. Both the Lytro
cameras are based on plenoptic 1.0.

Lytro further introduced light field solutions for virtual reality, the Lytro Im-
merge and for cinematic content, the Lytro Cinema, a first of its kind. Al-
though with these products, Lytro pioneered a progressive transformation
from traditional 2D capturing to 3D volumetric video, they have been taken
over by Google and have suspended the productions, while we continue to
research with the data generated using these novel devices.

2.2.1.2 Raytrix

Raytrix manufactures light field cameras for scientific and industrial appli-
cations. The Raytrix cameras simultaneously record the 2D information of a
scene, along with the metrically calibrated depth information. The process-
ing is performed using their proprietary software to digitally manipulate the
captured information. While the underlying conceptual model of the dif-
ferent Raytrix cameras are the same, as shown in figure 2.7, there are several
additional adaptable features such as extending up to 65 MegaRays at 71 FPS,
different sensor sizes, resolutions, frame rates, and also versions that capture
Near-Infrared and mono information. Several of the latest Raytrix cameras
are conceptualised based on plenoptic 2.0.

FIGURE 2.7: Raytrix 3D camera
Figure illustrated from [Ray]

2.2.2 Camera Arrays

The fundamental geometry of a multi-camera array setup is illustrated in fig-
ure 2.8. Only the vertical dimension is illustrated for simplicity. As described
in our research work [P9], to achieve a desired number of views and exploit
the captured data as light fields, the frustrum of the individual cameras has
to overlap. Considering N as the number of cameras and with the given
multi-camera array geometry N2 views can be captured by recording rays
from N2 directions. Occlusion of the rays can occur based on the convex hull
of the capturing scene and the effective f-number of the individual cameras
is only a 1

N of the overall focal ratio, widening the resulting depth of field.
Light fields captured using a multi-camera array are sparse compared to a
hand-held plenoptic cameras that record dense light fields. The relatively
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FIGURE 2.8: Multi-camera array geometry

high packing density of the microlens array densely samples the acquired
light field. As the sensors in a multi-camera array system cannot significantly
overlap due to the large physical baselines between the cameras depending
on its grid layout, the acquired light fields are sparsely sampled. Concep-
tually, the number of microlens in a plenoptic camera is equivalent to the
resolution of a single view from a camera array, and similarly, the number of
pixels behind each lenslet in a plenoptic camera is equivalent to the number
of views in a camera array.

2.2.2.1 The Stanford Multi-Camera Array

A reconfigurable multi-camera array system was first introduced by Stanford
University [Wil+05]. The goal of the setup was to overcome the restrictions
of conventional cameras and build a cost efficient virtual camera setup that
represents a computational imaging system. The Stanford multi-camera ar-
ray depicted in figure 2.9, consists of a 100 CMOS sensor based cameras that
capture and deliver content synchronously and in real-time.

FIGURE 2.9: The Stanford multi-camera array
Figure illustrated from [Wil+05]

As discussed in [Wil+05], a multi-camera array system can vary in function-
ality based on the physical configuration of the cameras. By placing the in-
dividual cameras within a close proximity enables the system to operate as
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FIGURE 2.10: Lego knights from the Stanford light field archive
Dataset source [VA08a]

a) Lenslet view; b) Sub-aperture images (SAIs)

a single-center-of-projection synthetic camera, while if the cameras are con-
figured over a wider proximity the system operates as a multiple-center-of-
projection camera, capturing light field content. Figure 2.10 shows a multi-
camera array asset from the (New) Stanford light field archive. The left im-
age, figure 2.10 a) shows the lenslet view (each pixel is an assembly of 17x17
rays) and the right image, figure 2.10 b) shows the combined sub-apertures
(17x17 images or 1024x1024 pixel).

2.2.2.2 The 5D Light Field Camera Array

FIGURE 2.11: The 5D light field camera array

Our own 5D light field camera array (conceptualised and assembled at the
Telecommunication Lab, Saarland University, Germany) is shown in figure
2.11. The array consists of 64 FLIR Blackfly cameras, capturing light field
videos at 40 f ps with a resolution of 1920 x 1200. The customised rig allows
the cameras to be reconfigured to different layouts within a specified range
as described in table 2.1, introduced in our research work [P9]. With custom
electronics the exposure/triggering time of the individual cameras are con-
trolled independently, allowing the camera array to capture 5D information,
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i.e. 4D rays plus the temporal resolution.

TABLE 2.1: The 5D light field array parameters

Parameters
Sensor Type IMX249

Sensor size (diagonal) 13.4mm
Pixel width 5.86µm
Resolution (horizontal) 1920 pixel
Resolution (vertical) 1200 pixel
Aspect Ratio 1.592
Framerate 40 f ps

Lens
Focal length 12.5mm
Aperture f /1.4mm

Shutter Control
Min. exposure time 19µs
Control of exposure time 10µs

Array dimension
Number of cameras 64
Spacing (horizontal) 90–550mm
Spacing (vertical) 90–250mm

Other notable multi-camera array systems are, a self-reconfigurable camera
array [ZC04], the PICam [Ven+13] and the ProFUSION-25C3 camera array
[Hua+15].

2.2.3 Other Techniques

Apart from the above discussed two widely popular categories, there are few
other devices and techniques that can capture light fields.

2.2.3.1 Camera gantries

In camera gantries, the camera is mounted and moved using a supporting
structure and captures the scene at regular intervals. The displacement be-
tween the shots and the camera resolution correspond to the angular and
spatial sampling. While, the light fields captured by gantries are sampled
similar to camera arrays, the cost and overall effort are reduced consider-
ably. Nevertheless, such gantries are constricted to only capture static light
fields. Two popular gantries from the Stanford Laboratory are the Light Field
Gantry, shown in figure 2.12 a) and the Lego Mindstroms Gantry, shown in
figure 2.12 b) respectively.



14 Chapter 2. Towards Computational Imaging

FIGURE 2.12: Camera gantries
a) Light field gantry; b) Lego mindstorms gantry

Figures illustrated from [VA08b]

2.2.3.2 Mirror based systems

Instead of a microlens array, some devices use a mirror system to capture
light fields. The K|Lens technology [Kle] uses mirrors in a tunnel setup
(like a kaleidoscope) to separate the light beams to form multiple perspec-
tives, achieving the best of both microlens technology and multi-camera ar-
ray. K|Lens commercialises the technology as a camera add-on product that
can be used with any standard digital camera turning the device to capture
light fields, as illustrated in figure 2.13. Few other devices that use mirrors
rather than a microlens array to record light field are described in [Tag+10]
and [Tsa+17].

FIGURE 2.13: K|Lens camera add-on
Figure illustrated from [Kle]

Finally, a unique device that combines both the camera gantry and the multi-
camera array technology is proposed by Google, generating panoramic light
fields [Ove+18] for AR and VR content.

2.3 Processing of Light Fields

The captured raw sensor data using both the lenslet based cameras and the
multi-camera arrays undergoes several processing steps to be realised as
light fields. The ab and xy planes vary with respect to the light fields ac-
quisition method. For single sensor based light field cameras, ab denotes the
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lenslet plane and xy denotes the main lens. On the other hand, for camera
arrays capturing light field video, ab represents the individual camera lens
and xy represents the scene plane, while the additional time component is
defined by t. An intuitive technique for rendering the data obtained using
the plenoptic cameras is by decoding the raw 2D microlens images to a 4D
light field format from which 2D slices (views) can be extracted. In accor-
dance to the two plane parameterization discussed in section 2.1, the figure
2.14 illustrates slicing of a light field image to form multiple sub-aperture
views, as initially presented in [LH96]. Here, consider the xy plane as a set
of pinholes or lenslets and the ab plane as the image sensor or pixel plane.
By fixing a constant x & y and considering all the a & b values, renders a
sub-aperture view of the scene as captured by a pinhole at the position (x,y),
as illustrated in figure 2.14 a). While, fixing a & b and considering all pos-
sible values for x & y shows every pixel at position (a,b) from the different
views, as illustrated in figure 2.14 b). Another interesting way to visualise
light fields is using the Epipolar Plane Images (EPIs), initially proposed in
[BBM87] for spatio-temporal volume analysis. The epipolar plane images
depict the intensities of the pixels in terms of vertical or horizontal angular
and spatial coordinates.

FIGURE 2.14: 4D light fields visualisation
a) Sub-aperture views; b) Lenslet views

Processing lenslet-based plenoptic camera light fields have been researched
in detail by Dansereau et al. [DPW13] and their light field toolbox for MAT-
LAB [Dan] provides a bunch of tools to decode, calibrate, rectify and manip-
ulate light fields. In their works, the main lens of the lenslet-based plenoptic
camera is modelled as a thin lens and the microlens as an array of pinholes.
As the grid placement of the lenslet array varies from an image to another
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based on the camera settings, a set of white images (images captured through
a diffuser) with different focus and zoom settings are captured prior. The
white images, due to vignetting has a bright spot in each lenslet, approxi-
mating it as the pinhole centers. These lenslet centers are used for estimating
the grid parameters such as the vertical and horizontal spacing, offsets and
shifts, which is applied during decoding to compensate the non-integer mi-
crolens spacing and the translational and rotational offsets.

FIGURE 2.15: 4D light field data structure [x ∗ y ∗ a ∗ b ∗ 4]

The initial step for decoding a lenslet-based light field to a 4D unrectified
light field is demosaicing the raw lenslet image to reconstruct a full color
image and then divide it by an appropriate white image (chosen based on
closely matched camera settings) to correct for vignetting. Using the de-
termined grid parameters, the lenslets are resampled, overcoming the non-
integer spacing, scaling and rotational imbalances. This aligns all the mi-
crolens centers to the pixel centers. Then the individual lenslets are sliced
into equally sized rectangles which slightly overlap with each other due to
the close packaging density of lenslets . Now the raw 2D lenslet image is in
a 4D format and has a hexagonal sampling at lenslet indices a,b and rectan-
gular pixels at pixel indices x,y. The next steps primarily focuses on interpo-
lation. The lenslets are interpolated from a hexagonal grid to a rectangular
grid (this step can be ignored if the lenslet array has a square or rectangular
packaging), which also compensates for the horizontal and vertical sampling
offsets. Then the interpolation is performed at the pixel indices to correct for
the non-square pixels. Finally, the outlier pixels are masked off, resulting in
an unrectified 4D light field. Figure 2.15 depicts the 4D light field structure
consisting of 2D RGB images. A weighting image W, containing a confidence
score for each pixel, is also included in the structure. The horizontal and the
vertical resolution of the sub-apertures are represented by a ∗ b, whereas the
number of sub-apertures in both directions are depicted by x ∗ y. The factor
4 represents the channels RGB plus the weighting image W. The W channel
is used in filtering applications that accept a weighting parameter. For exam-
ple, while estimating histogram equalization for adjusting the brightness of
a light field images, the W channel can be used for ignoring the zero-weight
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pixels.

Calibration and rectification of the decoded light fields is very essential to
overcome the lens distortions and allow accurate feature matching between
sub-aperture images. For simplicity, in this thesis work, the rectified light
fields are mostly used. Some of the prominent research works on plenoptic
camera calibration include, generating a 5 ∗ 5 homogeneous intrinsic matrix
that relates each spatial ray to its respective pixel indices [DPW13]. An ap-
proach for calibrating focused plenoptic cameras by metric analysing the cap-
tured scene [Joh+13]. A method that estimates the orientation and position
of the lenslet array using a calibration image and camera geometry [TFT14].
Another recent work proposes a hybrid calibration model considering both
the microlens array and the main lens geometry [DBM19].

FIGURE 2.16: 3D representation of camera coordinates
Figure illustrated from [P9]

On the contrary, in the case of multi-camera array systems, the 4D repre-
sentation of light fields is straightforward and does not require a multi-step
decoding process, but the challenges are due to optical aberrations, misalign-
ment and irregular spatial and angular sampling. The cameras have to be
calibrated very precisely, as even the smallest variation in the coordinates
results in angular correspondence errors between views. This causes super-
position of rays from wrong direction, producing severe visible artefacts and
as well as poor geometrical reconstruction [Via+17]. For multi-camera ar-
rays, every individual camera requires a complete camera matrix with all
intrinsic and extrinsic parameters, as they are device dependent. Figure 2.16
illustrates the 3D representation of our 5D light field camera array’s camera
coordinates, as introduced in [P9]. For initial experimentation, an OpenVC
implementation based on the work [Zha00] was used to estimate the camera
parameters. It can be observed that, in X and Y directions the geometrical
transformations are precise for many cameras, while there are large devia-
tions in the Z direction. The errors majorly occur due to inaccurate feature
detection arising from changes in camera focus and the surround lighting.
Several iterations of refinement have to be performed based system specific
issues to obtain accurate results.
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Further, the most common processing steps for the data captured using a
multi-camera array includes, demosaicing the raw sensor data to retrieve the
full color range. This process is applied on all the views from the individ-
ual cameras. Then, color alignment is carried out to eliminate the different
camera responses. To overcome the camera alignment errors, the views are
accurately rectified using the parameters from calibration. Finally, the recti-
fied views are stored as uncompressed light field data.

As we have looked into the challenges and the need for a tedious processing
pipeline to convert raw sensor data to light fields, rendering them photo-
realistically is another option. By synthetically rendering, we can precisely
program the geometry, texture, viewpoints and lighting of the virtual scene.
A major effort is only required in creating sophisticated 3D models for the
scene file. Generating ground truth and depth/disparity maps are as well
trivial and produce accurate results.

2.4 Features and Applications

Capturing light fields over 2D images, opens up several new avenues on how
the data can be creatively utilised. Even the basic features of an image can be
changed after capturing. While, light field features extends manifold, some
of the core ingredients are discussed briefly.

Digital Refocus: The ability to refocus after the picture has been captured is
one of the remarkable feature. By recording and algorithmic manipulation of
the angular dimension of the rays (combine rays at the same point from dif-
ferent lenslets or camera views), it is possible to reconstruct multiple versions
of a picture with adjustable focus. On the other hand, there exists a refocus-
able range limitation over every image. The refocusable range consists of all
the rays focused relatively sharp after the image has been captured. Figure
2.17 illustrates how the light field image, shown in figure 2.5 can be refocused
at different depths.

FIGURE 2.17: Digital refocusing
a) Refocused on foreground; b) Refocused on background
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Varying the Depth of Field: Another interesting concept is the synthetic
aperture. By capturing 4D light fields we implicitly have a 3D model and
the direction of the rays. Using this knowledge, the optical parameters can
be modified computationally, reproducing the angular integration among the
rays which are fixed in conventional cameras. The aperture plays a key role
in determining the depth of field in an image and can be synthetically ad-
justed to render scenes with infinite (all in focus), shallow (blurry or bokeh
effect) or at other desired depth of field.

Moving the observer: Resampling particular light rays that travels through
different microlens or camera views, it is possible to generate multiple per-
spectives of the captured scene. Figure 2.18 shows the light field picture 2.5
from two different perspectives (the highlighted blue regions clearly show-
cases the shift). The perspective shift effect is similar to viewing the scene
from varied lines of sight and gives the user an immersive experience. Con-
sidering a movie theatre scenario, this parallax effect can give the viewers the
possibility to slightly move their head seated at their respective places and
get a sneak peak of the hidden protagonist or an object.

FIGURE 2.18: Perspective shifts - two different sub-aperture im-
ages from the same captured scene

Depth sensing: In general 3D depth camera systems, stereo vision, struc-
tured light, or time-of-flight cameras are used for depth sensing and requires
expensive processing. Instead of specialised equipment, from light field data
the relative depth of the objects in the scene can be used to precisely produce
the distance imaging.

Few other interesting applications with light fields are, recreating 3D scenes,
depth scaling, enhanced segmentation, reducing the glare in images from
the lens optics, vision based robot control, material classification and also
the use of light field microscopy in the medical field like analysing neural
activity. All the mentioned features are possible with both static (still images)
and dynamic (videos) light fields. The biggest challenge is on the processing
end, requiring high computing energy, sophisticated software and efficient
compression, storage and transmission techniques, to bring light fields fully
to the consumers.
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Chapter 3

Representation of Light Fields in
Existing Formats

Unlike conventional 2D images which only record the color information,
light fields record both the color intensity and angular information of the
scene and therefore it is essential to adapt the light field data to be handled by
file formats designed for 2D image assemblies. Adapting the light field data
to the current and widely used imaging file formats like PSD and OpenEXR,
allows asset re-usability and also interoperability between devices and imag-
ing applications. In this chapter, the techniques to extract and transcode high
resolution light field data to professional file formats are investigated and the
implication of the transcoding effects are evaluated by comparing different
data compression methods offered by these formats in contrast to the state-
of-the-art compression standards.

3.1 The Terminology: 4D, 4.5D and 5D Light Fields

4D light fields: A light field with four dimensions is an assembly of views
recorded from multiple perspectives. The most intuitive way of understand-
ing is with the intersection of a ray with two defined planes, introduced in
section 2.1, describing the two angular and two spatial coordinates respec-
tively. Conceptually, the difference between light fields and multi-view data
is the requirement of the camera extrinsic parameters. Using the metadata,
i.e., the viewing direction and position of the camera, the 4D coordinates
are mapped 1:1 to the captured rays respectively (taking into account the
direction and the position of the rays). Figure 3.1 shows a 4D light field im-
age captured using the Lytro Illum camera and processed with the MATLAB
light field toolbox. The corrected lenslet view where the hexagonal structure
of the lenslets is visible is shown in figure 3.1 a) and the assembly of 2D sub-
aperture images rendered from the corrected lenslet view is shown in figure
3.1 b).

4.5D light fields: In the case where all cameras are gen-locked, i.e., synchro-
nised at a matching temporal sampling frequency and sampling phase, 4.5D
light fields are captured. This is merely recording a light field video. Fig-
ure 3.2 illustrates two different frames from the Unfolding dataset recorded
using the 5DLF camera array (introduced in section 2.2.2.2). Since all the
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FIGURE 3.1: 4D light fields captured using the Lytro Illum and
processed with the Matlab light field toolbox

a) Corrected lenslet view; b) Sub-aperture views

camera phases are constant, it can observed there are no temporal change be-
tween the individual camera views but only perspective changes.

FIGURE 3.2: 4.5D light fields captured using the 5DLF camera
array. Unfolding 2.0 dataset - a) Frame 200; b) Frame 300

Dataset source [Unf]

5D light fields: Considering scenarios where the scene to be captured is
not static but has objects that are dynamic, recording the temporal informa-
tion becomes critical. While 4.5D light fields are a subset of 5D light fields,
the rays or the assemblies of rays when captured at varied time instances
(programming the individual cameras to trigger at specified time intervals)
records the 5th dimension. The scene can be captured with different spatio-
temporal configurations.

To simulate 5D light fields with a still image camera (Lytro Illum), we created
so called stop-motion movies. A scene with a predefined motion per frame is
created and the original full light fields are sub-sampled by the pattern. An
example of four motion phases and each phase sub-sampled by a factor of
four is shown in figure 3.3 a) and b) respectively and we have introduced it
in our research work [P9]. To record novel 5D light fields, we have created
the scene HaToy, shown in figure 3.4 a). The scene is built with numerous
static and moving objects of variable size and geometrical complexity and
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FIGURE 3.3: Stop-motion light field asset
a) Phases; b) View Assemblies

is captured with different spatio-temporal configurations, as shown in con-
figurations, as shown in figure 3.4 b). A closer look on the motion phases
and more intricate details about the dataset and the capturing configurations
[HLC19] will be discussed in chapter 4.

FIGURE 3.4: 5D light fields captured using the 5DLF camera
array; a) A camera view; b) Sub-frame views

3.2 Light Field Formats

As pioneers in handheld plenoptic cameras, Lytro developed novel file for-
mats for processing and storing light fields. Light Field Raw (LFR) format
is a Light Field Picture (LFP) containing the raw image data that has to be
processed to decode the light fields. The RAW LFR contains both the sensor
data i.e., the pixel values and the frame metadata. The frame metadata is
very crucial for the reconstruction of the image and to maintain the underly-
ing properties of light fields while representing light fields as 2D assembly of
images. It includes essential information such as the calibration parameters,
sensor readings, hardware configurations, frame parameters. A sample of a
decoded light field structure using the LF toolbox is shown in figure 3.5, con-
taining both frame data and metadata. On the other hand, with multi-camera
array systems the raw sensor data is encoded and stored in the available
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state-of-the-art lossless image file formats and the accompanying metadata
(camera matrices) are coupled in external files in machine readable formats.

FIGURE 3.5: Sample of a decoded light field structure contain-
ing both image data and metadata

3.3 PSD Format

A Photoshop Document (PSD) is an advanced imaging file format native to
Adobe Photoshop. The PSD format is popular for professional graphics de-
signing and storing high quality data. It supports multiple image layers,
layer masks, file information, metadata, keywords, annotations, adjustment
layers and other imaging options. A PSD file can contain a maximum width
and height of 30.000 pixels and can store files upto 2 gigabytes in size. Using
the PSD format is ideal for creating 2D image layers, work on them individ-
ually and export them to other image file formats for distribution. The file
structure of the PSD format is illustrated in figure 3.6. The format consists
of five primary sections, file header, color mode data, image resources, layer
and mask information and, the image data. The file header has a fixed length
and stores the fundamental properties of the image. The color mode data
contains information whether the image data is color or dual-tone. Image
resources block stores the non-pixel information. The metadata associated
with the images are saved in the image resources section in Extensible Meta-
data Platform (XMP) format, which is built on Extensible Markup Language
(XML). The XMP format facilitates the use of metadata over cross-platform
applications. The fourth section of the format contains information about
the image layers, mask parameters, channels in the layers and the associated
values. The pixel data is stored in the final image data section in scan-line
order, arranged in respective color channels. More detailed description on
the specifications can be referred to [Kno19].
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FIGURE 3.6: Photoshop document file structure

3.4 OpenEXR Format

The OpenEXR format developed by the Industrial Light and Magic (ILM) is
an open source standard. It is a powerful file format used widely in sev-
eral computer imaging applications and the VFX industry. The format is
designed to support High Dynamic Range (HDR) imaging, multi-channel
raster and allows multiple pixel sizes such as 32-bit unsigned integer, 16-bit
and 32-bit floating point values. OpenEXR offers significant advantages over
conventional multiplexed images and video files in the media environment
and special effects. With the ability to store multiple layers, the standard
ensures maximum flexibility in high end 3D compositing programs. Multi-
ple channels of an image or 2D image assemblies can be stored as one entity
which makes the OpenEXR format speed efficient, as it is feasible to cram as
much information as required within one file. The standard also provides
several data compression options in both lossy and lossless formats. The file
structure consists of two primary sections, file header and the image data as
shown in figure 3.7. In OpenEXR format, an arbitrary number of additional
attributes can be stored along with the pixel data, which facilitates the consol-
idation of the accompanying metadata within a single file. The document on
OpenEXR file layout [Kai13], offers extensive information on the supported
data types and the file attributes.

FIGURE 3.7: OpenEXR file structure
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3.5 Transcoding Procedure

Transcoding is the process of digital-to-digital format conversion. The pro-
cedure is very frequently used in media and broadcasting sectors to increase
the compatibility of the data with multiple different target devices and work-
flows. Transcoding supports in overcoming the limitations over transmis-
sion, storage capacity, adapting to novel formats, asset re-usability and pro-
vides cost efficiency. As light fields are contemporary data and the commonly
used formats and production engines are made to be compatible with con-
ventional data, it is very essential to transcode light field data to be suitable
and deployed using the available professional and consumer applications.
In this section, our implementation for transcoding the light field data to
OpenEXR and PSD file formats, which are extensively used in several cur-
rent production workflows are discussed.

Light field data captured using both plenoptic handheld cameras and multi-
camera arrays are dealt with in our works. The captured light fields are
first analysed, to understand the fundamental data structure and to perform
transcoding without losing the underlying properties of light fields. Our file
format converts are programmed in Matlab and are very robust in terms
of handling huge datasets and performing the transcoding time efficiently.
The pipeline is fully automated, requiring only the file location of the im-
age data and the accompanying metadata. The file format conversions are
programmed with backward compatibility, i.e., our algorithms can both read
and write light field data to PSD and OpenEXR formats and vice versa seam-
lessly.

Matlab provides no implicit support to read or write PSD and OpenEXR file
formats. Both the standards have been extensively studied and programmed
to fully functional codes that can read and write data in Photoshop document
and OpenEXR file structure respectively. The core steps for transcoding to
advanced imaging file formats and inverse are illustrated in figure 3.8. The
block diagram represents an overview of the implementation and showcases
the common procedures performed in both PSD and OpenEXR conversions.
Light fields recorded using plenoptic cameras are decoded to 4D light field
structure, example shown in figure 3.5 (2D assembly of images + the meta-
data). The multi-camera array recorded light fields are structured in separate
sub-folders (respective cameras + associated metadata and the number of
recorded frames). Once the light field data are decoded, the process begins
with extracting the essential non-pixel information such as resolution, frame
count, color mode and mask parameters. This information is parsed sequen-
tially to the different sections and the process runs until all the image data are
fed in. The intermediate steps corresponding to the proposed two file format
conversions are discussed exclusively in the below sections.
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FIGURE 3.8: Transcoding procedure

3.5.1 Light Fields <–> PSD

As PSD file format supports image layering, the sub-aperture images or the
camera views are written as PSD layers, encapsulating the entire image data
as a single PSD file. Although PSD format supports image metadata, it comes
with default template fields which are incompatible with most of the light
field metadata fields. Hence, the associated metadata is written and exported
as a JSON file coupled with the corresponding PSD file. The transcoded light
field data is now suitable to be exploited by popular imaging tools such as



28 Chapter 3. Representation of Light Fields in Existing Formats

GIMP, Nuke and Adobe Photoshop. A light field transcoded to PSD file for-
mat and accessed using Adobe Photoshop is illustrated in figure 3.9. The dif-
ferent sub-aperture images can be viewed as individual layers in the side tab.

FIGURE 3.9: Light fields transcoded to PSD file format, viewed
in Adode Photoshop software

The inverse process reads the layer information from the PSD layer records
and forms an output file layout. The image layers are read correspondingly
forming the 4D light field structure or the individual camera view structure.
The implementation also gathers the relevant metadata from the JSON file
and tags it appropriately to the light field image data.

3.5.2 Light Fields <–> OpenEXR

The OpenEXR file format supports storing image layers in two different pos-
sibilities, multi-part and multi-view. In multi-part, the sub-aperture images
or the camera views can be stored individually, where each view is a stan-
dalone EXR file. While, in multi-view, the 2D image assemblies can be em-
bedded together as a single EXR file. As the contrary option is ideal in terms
of accessing the data, transmission, storage and also canonical to how the
data is dealt as image layers in PSD format, the multi-view option is im-
plemented. The process begins with extracting the non-pixel information
and writing the header attributes and its values. The image data are written
scan-line based, where the line order begins from top to bottom scan-line.
The scan-lines can be randomly accessed and read in different orders. Nev-
ertheless, reading and writing the scan-lines in the same order allows the file
to be sequentially read and is time saving.
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FIGURE 3.10: Light fields transcoded to OpenEXR file format,
opened in Nuke software

Unlike in PSD format, the OpenEXR format allows the user to store arbitrary
amount of customised metadata fields and of arbitrary type. This provides
the flexibility to access the metadata seamlessly within digital compositing
platforms like Nuke and GIMP. A light field transcoded to OpenEXR file for-
mat and accessed using the Nuke software is illustrated in figure 3.10. The
viewer window shows a selected main view in full frame and a list of sub-
aperture images as individual views in the side tab. The associated metadata
like principle information relating pixels to its corresponding rays and the
camera parameters can be effortlessly viewed and accessed from the meta-
data tab.

3.6 Implication on Post-Processing Algorithms

Both PSD and OpenEXR standards offer various compression options. While
PSD file format strictly allows only lossless compression, i.e., Run-Length En-
coding (RLE), the OpenEXR file format allows both lossy and lossless com-
pression. For testing and evaluations in this thesis work we will focus in on
the OpenEXR file format compression methods. For commonly used texture
map images, the lossless compression methods ZIP and ZIPS are preferable.
However, for grainy images, PIZ lossless compression is a better choice. For
image data containing large areas with similar colors, the RLE lossless com-
pression works efficiently. The lossy compression B44 stores pixel data in
HALF color depth, while B44A a variant of the prior mentioned method uses
fewer bytes for storing the same pixel data. DWAA and DWAB are power-
ful lossy compression techniques with adjustable compression levels. The
file size can be extremely reduced with higher levels but introduces several
artefacts and heavy loss in quality. The preferred and the default value is
45, providing a good trade-off between file size and image quality, with no
visible artefacts. The only difference between the two methods is, DWAB
compresses blocks of 256 rows at a given time instead of blocks of 32 like
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in DWAA. All the aforementioned compression schemes can be applied and
subjectively analysed using the imaging tools that support OpenEXR files.
Figure 3.11 shows the OpenEXR file format supported compression methods
directly offered by the Nuke software.

FIGURE 3.11: OpenEXR file format supported compression
methods offered via the Nuke software

A major reason for light fields to gain traction in VFX and media industry
is because of its varied post-processing capabilities. Hence it is essential
to evaluate the transcoded and compressed light fields, to investigate if the
underlying properties of light fields are intact. For this purpose we have
used the light field post-processing applications developed in the V-SENSE
1 project. The denoising [AS17] and super-resolution [AS18] techniques via
sparse coding of 4D light fields are tested on the compressed light fields. The
EPFL light field dataset [RE16] are deployed for evaluations. In this thesis
work the results for the light fields, bush and color chart1, shown in figure
3.12 respectively, are included and discussed.

In addition to the above discussed compression methods, a standard for-
mat that supports high bit depth images, JPEG XT is also evaluated on the
sub-aperture images of each light field. The state-of-the-art formats JPEG
XT [RAE16] and JPEG Pleno [Ebr+16] are designed for high bit depth im-
age data. JPEG XT is an extension to legacy JPEG standard with backward
compatibility feature, offering both lossless and lossy representation for HDR
images and a legacy text-based encoder for the metadata. JPEG Pleno is an
emerging compression standard for newer image modalities such as light

1https://v-sense.scss.tcd.ie
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FIGURE 3.12: Light field images used for testing - bush & color
chart1

fields, point clouds and holograms, providing comprehensive functionalities
to include metadata, allowing image manipulation and interaction [Ebr+16].
More information and our contributions to the JPEG Pleno standard will be
discussed in chapter 5.

TABLE 3.1: Comparison of the different compression methods
in terms of average PSNR of super-resolution and denoised

light field images

Compression Method
Super-Resolution

avg PSNR [dB]
Denoising

avg PSNR [dB]
Bush Color Chart 1 Bush Color Chart 1

None 24.6121 30.4077 34.9620 42.2948
ZIP 24.4785 30.3599 34.9659 42.2913

ZIPS 24.4785 30.3599 34.9696 42.2990
PIZ 24.4785 30.3599 30.4472 42.2966
RLE 24.4785 30.3599 30.4404 42.2858
B44 24.5963 30.2974 30.4027 42.1214

B44A 24.5963 30.2974 30.4024 42.1212
DWAA 24.5038 30.3862 30.4714 42.6126
DWAB 24.6384 30.3862 30.4734 42.6208

JPEG XT 26.7586 31.5601 35.3099 42.3816

Table 3.1 showcases the outcome of evaluating the light field data with super-
resolution and denoising techniques. The Peak signal-to-noise ratio (PSNR)
is estimated for the individual sub-aperture images of each light field and are
averaged respectively and tabulated for the different compression methods.
To maintain the synergy between the compression formats, default values
are chosen for the lossy methods. Table 3.2 illustrates the compression ratio
results. From the recorded values, it can be observed that JPEG XT com-
pression ratio is highly dependent on the image content, while an inverse
outcome is obtained in the case of DWAA/DWAB compression. For the
color chart1 light field, at a higher compression ratio with DWAA/DWAB
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methods, a comparable PSNR value with JPEG XT method is achieved for
both denoising and super-resolution. Overall the lossy and lossless methods
showcases analogous outcome with both the post-processing techniques and
demonstrates that the fundamental properties of the light fields are main-
tained through the transcoding pipeline and the applied compression meth-
ods. Based on the captured scene content and the end user application as a
prerequisite, a suitable compression format can be chosen for the light field
data.

TABLE 3.2: Comparison of the different compression methods
in terms of compression ratio

Compression Method Compression Ratio
Bush Color Chart 1

None 1.0000 1.0000
ZIP 1.3468 1.7278

ZIPS 1.3677 1.7533
PIZ 1.3461 1.7644
RLE 1.0150 1.2427
B44 2.2645 2.2860

B44A 2.2785 2.3697
DWAA 2.5913 5.3850
DWAB 2.5972 5.3715

JPEG XT 2.4864 1.6201

TABLE 3.3: Average PSNR and SSIM estimations of the differ-
ent compression methods

Compression Method avg PSNR [dB] avg SSIM
Bush Color Chart 1 Bush Color Chart 1

None 89.9006 89.2529 1.0000 1.0000
ZIP 89.9006 89.2529 1.0000 1.0000

ZIPS 89.9006 89.2529 1.0000 1.0000
PIZ 89.9006 89.2529 1.0000 1.0000
RLE 89.9006 89.2529 1.0000 1.0000
B44 49.4720 51.7088 0.9996 0.9997

B44A 49.4720 51.7088 0.9996 0.9997
DWAA 51.5992 52.3635 0.9989 0.9980
DWAB 51.5992 52.3635 0.9989 0.9980

JPEG XT 17.2074 17.9337 0.7686 0.7214

To further validate the compressed light fields the Peak signal-to-noise ratio
(PSNR) and the Structural Similarity Index Measure (SSIM) estimations are
given in table 3.3. PSNR is computed for each sub-aperture image using the
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formula:

10log10(
R2

MSE
)

where R = 65, 535, the maximum possible pixel value of an image and the
estimations are averaged over all the views. SSIM quantifies the degradation
caused in the image due to image processing steps such as data compression
or loss of data during transmission. The computed SSIM values are averaged
over the respective light fields. When observed, the evaluations are inter-
esting compared to the PSNR values from table 3.1 of super-resolution and
denoising. As described in [RAE16], the image encoding in JPEG XT stan-
dard is based on a RGBE two-layer image format. The data reduction is per-
formed by first transforming the image into a tone-mapped version and then
a reconstructive multiplier image is stored. Analyzing and viewing these im-
ages with conventional software can exclude the multiplier image, enabling
the viewer to see only the tone-mapped version represented in a standard
dynamic range. The post-processing techniques indeed produce competitive
results of the compressed light fields.

Figure 3.13 showcases the difference images for the bush light field image.
A reference view is compared with differently compressed images resulting
after super-resolution. The resulting images are amplified and cropped uni-
formly as shown in figure 3.13 a), b) and c) for no compression, DWAB com-
pression and JPEG XT compression respectively. The two post-processing
techniques used for evaluations from the V-SENSE project are patch based.
The algorithm applies a search window over the angular and spatial views to
reconstruct a 5D patch for each reference patch. As most compression meth-
ods employ a low-pass filter and because of the high frequencies, the de-
noising and super-resolution algorithms tend to use incorrect patches, intro-
ducing artefacts, reducing the PSNR. Once compression is performed, these
patches have lower frequencies and fit appropriately, thereby increasing the
overall PSNR estimations. We also verified and confirmed this from the patch
table generated by the post-processing algorithms on the sub-aperture im-
ages prior to and after compression. The no compression (i.e., using raw
sensor data) and lossless compression methods showcased analogous patch
selections in comparison to the lossy compression methods and the JPEG XT
format.



34 Chapter 3. Representation of Light Fields in Existing Formats

FIGURE 3.13: Image differencing between the given reference
frame and the respective super resolutioned frame for Bush

light field image (amplified and cropped uniformly)
a) no compression; b) DWAB; c) JPEG XT
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Chapter 4

Optimized Sequencing of Light
Field Data

Light fields are representations of light and its direction in three-dimensional
space. By capturing light fields, a large amount of data is recorded for char-
acterizing a scene in 3D compared to conventional imagery recording only
color intensities. The increasing amount of post-processing capabilities ac-
quired through light field imagery is accompanied by the demand for ad-
ditional memory and storage requirements. This in turn implies the need
for higher data rates on services and devices used in exchange, broadcast
and display of light fields. Hence, compression of light field imagery is a
fundamental step to facilitate the use of light field data with the current pro-
fessional and consumer applications. In this chapter, the approaches we have
implemented and evaluated to optimise light field data to be compatible with
the state-of-the-art image and video codecs are discussed in detail.

4.1 Pseudo-Temporal Reordering

This section deals with a low-complexity light field compression technique
by pre-processing the sub-aperture images pseudo-temporally and adapting
them to the state-of-the-art codecs. Our proceedings related to this work can
be referred to in [P8] and [P4]. In accordance with the literature, some of
the interesting research works include data compression of light fields by
disparity compensated prediction [MG00] and compression for rendering of
light fields [Cha+04]. Improved results have been proposed by reordering
the light field data prior to coding using H.264/AVC [FK05], using HEVC
[Vie+15], by slicing the lenslet array 2D image [PA16], by tiling the sequence
[PG17], with multi-view coding structure [Liu+16] and as well lossless com-
pression of light fields [Per15]. Nevertheless, most of the techniques fail to
fully exploit the correlation between the sub-aperture images efficiently. By
pseudo-sequencing the light field frames using our proposed idea, the re-
sults have consistently outperformed in comparison with still image codecs
and also other state-of-the-art reordering approaches.
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4.1.1 The Proposed Layout

The steps of the proposed encoding layout are shown in 4.1. The raw sen-
sor data are fed into the image decoding pipeline and we obtain the recti-
fied and color-corrected assemblies of 2D images, which represents a stack of
consecutive conventional images from different perspectives. As light fields
recorded using handheld plenoptic cameras have a restricted viewing an-
gle, the perspective change between the sub-aperture images is narrow and
consequently is well correlated. Hence, the redundancy among the different
views can be utilized for inter frame prediction with an optimal reordering
approach.

FIGURE 4.1: Encoding layout

From observing the individual sub-aperture images in figure 4.2 a) of the de-
coded light field introduced in chapter 2, it can be seen due to the interpola-
tion of the data from a hexagonal raster (the shape of the lenslets in the lenslet
array) to a rectangular layout, some of the corner views comprise of less or
almost no useful information of the scene. The objective of the re-reordering
technique in this context is to ensure grouping of the less competent views
consecutively, to avoid generating higher residuals while predicting the ad-
jacent views.

FIGURE 4.2: Concatenated frames
a) as generated by the Matlab light field toolbox;

b) circularly reordered

In general the well-known reordering techniques like linewise figure 4.3 a),
tiling figure 4.3 b), and zigzag figure 4.3 c) are widely used in data com-
pression. As, these approaches fail to match the requirement of resorting
the unusable corner views together, we have introduced the pixelated circu-
lar reordering technique, figure 4.3 d). With our technique we achieve both,
arranging the neighbouring views that exhibit high spatial redundancy to-
gether and the corner views are sorted consecutively towards the end, as
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illustrated in figure 4.2 b).

FIGURE 4.3: Reordering Approaches; From top left to bottom
right - a) linewise; b) tiling; c) zigzag; d) circular (proposed)

The pattern generated for pseudo-temporally reordering the light field sub-
aperture images recorded using the Illum camera can be seen in figure 4.4.
The matrix represents the frame numbering in which the views are sorted
and composed into a video stream to be compatible for compression with the
state-of-the-art video codecs. Our algorithm is scalable to generate pseudo-
temporal sequences for any desired number of sub-aperture images, i.e an-
gular views.

FIGURE 4.4: Proposed pseudo-temporal reordering matrix for
15 x 15 view layout (225 frames)

4.1.2 Analysis with Image and Video Codecs

The sub-aperture images are evaluated with both image and video com-
pression standards. The experiments are conducted for the bit rates 0.1bpp,
0.25bpp, 0.5bpp and 1bpp respectively. All the images are sampled at 4:2:0.
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For the still image compression standards, JPEG [Int88] and JPEG 2000 [ITU02],
the quality factor parameter is varied to yield the desired bit-rate. For the
HEVC [Sul+12] video coding standard, the Quantization Parameter (QP) is
adapted to achieve the desired bit-rate and the low-delay predictive main
configuration is used for encoding. We have also evaluated the HEVC intra
coding, by varying the quantization parameter.

Images from the EPFL light field dataset [RE16] are used for experiments. Six
different light field images, shown in figure 4.5 with diverse content are cho-
sen to showcase the efficiency of our approach. The compressed images are
evaluated in terms of objective quality using both Peak signal-to-noise ratio
(PSNR) and Structural Similarity Index Measure (SSIM).

FIGURE 4.5: Light field images used for analysis; From top left
to bottom right - a) Friends; b) Color Chart; c) Desktop; d) Dan-

ger de Mort; e) ISO Chart; f) Fountain & Vincent2

The results of encoding the light field images with JPEG in comparison to the
proposed pseudo-temporal sequencing with HEVC [Sul+12] is exhibited in
figure 4.6. At first glance, it can be observed that for all tested compression
ratios, the rate-distortion performance of the recommended approach out-
performs the JPEG compression. Primarily, as a result of pseudo-sequencing
the frames using the proposed technique re-sorts the light field content in
an efficient way, which supports in high coding performance. The pseudo-
temporal sequencing facilitates in exploiting the redundancies in both spa-
tial and angular domain by the HEVC codec, compared to only exploiting
the spatial redundancies by JPEG. An increase of up to 22 dB gain over JPEG
encoding is achieved.

Figure 4.7 illustrates the rate-distortion results between the well-known re-
ordering techniques such as linewise, tiling and zigzag against the proposed
pseudo-circular reordering. The improvements are steady across different
light field images and for all tested compression ratios. An increase of up to 1
dB gain is achieved with the proposed technique compared to other reorder-
ing approaches. This again substantiates that the proposed pseudo-temporal
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FIGURE 4.6: PSNR & SSIM vs bpp - comparing JPEG still im-
age compression to proposed pseudo-temporal reordering us-

ing HEVC compression

sequencing approach maximizes the correlation between the neighbouring
frames and the state-of-the-art video codecs are able to better exploit the data
redundancy by both intra and inter-frame prediction.

TABLE 4.1: PSNR values comparing JPEG, JPEG 2000, HEVC
Intra and HEVC for different bit rates

Friends Color Chart Danger de Mort
PSNR [dB] 0.1 bpp 0.25 bpp 0.5 bpp 1 bpp 0.1 bpp 0.25 bpp 0.5 bpp 1 bpp 0.1 bpp 0.25 bpp 0.5 bpp 1 bpp

JPEG 24.7147 34.9692 37.4815 39.6955 22.0048 28.8525 32.1829 36.5629 23.6042 30.8431 34.0714 37.3709
JPEG 2000 34.9570 37.9544 40.9406 44.2627 38.0949 41.6276 44.0908 46.8767 29.6621 32.5135 35.2525 38.8852

HEVC Intra 34.3110 37.5710 40.6801 43.3137 42.1788 43.7241 44.5103 45.1946 28.7790 31.5073 33.4346 36.8825
HEVC 42.0462 43.3121 44.2190 44.9146 43.8919 44.7161 45.2655 45.5961 36.0970 37.9440 38.9998 40.4753

TABLE 4.2: SSIM values comparing JPEG, JPEG 2000, HEVC
Intra and HEVC for different bit rates

Friends Color Chart Danger de Mort
SSIM 0.1 bpp 0.25 bpp 0.5 bpp 1 bpp 0.1 bpp 0.25 bpp 0.5 bpp 1 bpp 0.1 bpp 0.25 bpp 0.5 bpp 1 bpp
JPEG 0.8199 0.9330 0.9546 0.9662 0.8252 0.8591 0.8905 0.9295 0.6834 0.8572 0.9220 0.9499

JPEG 2000 0.9002 0.9322 0.9584 0.9791 0.9530 0.9705 0.9794 0.9871 0.7992 0.8691 0.9349 0.9640
HEVC Intra 0.9130 0.9445 0.9660 0.9804 0.9791 0.9827 0.9845 0.9869 0.7825 0.8563 0.8947 0.9428

HEVC 0.9741 0.9806 0.9847 0.9872 0.9830 0.9852 0.9872 0.9883 0.9342 0.9538 0.9629 0.9732

Table 4.1 and 4.2 showcases results comparing the different image and video
codec’s rate-distortion performance in terms of PSNR and SSIM at different
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FIGURE 4.7: PSNR & SSIM vs bpp - analysis of the different
reordering techniques (linewise, tiling and zigzag) in compari-
son to the proposed pseudo-temporal reordering using HEVC

compression

bit rates. The outcome demonstrates JPEG considerably under-performing
compared to other still image codecs, JPEG 2000 and HEVC intra prediction.
On the contrary, observing the curves in figure 4.8, JPEG 2000 and HEVC in-
tra competes closely and difference is performance is in the range of 0.0-1.0
dB for the different bit rates. Also, another interesting observation from the
rate-distortion curves is, HEVC exhibits a larger difference in performance
for higher compression ratio, i.e., 0.1bpp but the difference is considerably
reduced for lower compression ratio, i.e., 1bpp. It can be realised that the ad-
vantages of exploiting the spatial and angular correlation reduces for lower
compression ratios. For such lower compression ratios, utilizing only the
spatial redundancy would yield comparable coding efficiency than making
use of both spatial and angular dimensions. However, with our proposed
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pseudo-temporal reordering approach it is possible to fully exploit the in-
herent properties of the video encoders, obtaining higher compression ratio.
Another implicit advantage is, the recommended method do not introduce
changes to the codec. Hence, it can be applied to all standard video codecs
and seamlessly integrated to the available storage and broadcast services.

FIGURE 4.8: Rate Distortion curves comparing JPEG , JPEG
2000, HEVC Intra and HEVC for Friends; a) PSNR vs bpp and

b) SSIM vs bpp

4.2 Pre-processing with Adaptive Gaussian Filter-
ing based Superpixels

This section evolves on the integration of light fields into the state-of-the-
art image and video processing chains by pre-processing the light field data
with superpixel segmentation based adaptive Gaussian filtering and pseudo-
temporal sequencing. Pre-processing of video data is a widely-known ap-
proach to achieve bit rate reduction in compressed bit streams. Most of the
techniques exploit the temporal and spatial correlation. By filtering an image
within the Just Noticeable Distortion (JND) threshold [CL95], the human eye
fails to perceive the changes owing to the limitations in the human visual
system. A state-of-the-art research work on video pre-processing showcases
the reduction of bit rate by utilizing the perceptual redundancy in the video
data [Din+15]. This is achieved using superpixel based image segmentation,
along with JND based Gaussian filtering. A fundamental step in image pro-
cessing is to segment objects of interest in an image automatically. In su-
perpixel segmentation, pixels with similar attributes such as color, texture or
brightness are grouped into clusters segmenting the image into meaningful
parts. Gaussian filtering of images is a commonly employed technique in
image compression for reducing noise in the images and to produce smooth
transitions between pixel intensities.

The proposed layout is as shown in figure 4.9. The essential initial step is
to decode the raw sensor data and produce the 2D image assemblies. In the
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FIGURE 4.9: Proposed pre-processing layout

following steps, the sub-aperture images are independently segmented into
superpixels and the superpixels are Gaussian filtered with the JND threshold.
Finally the filtered frames are pseudo-temporally reordered before encoding.
The core implementation steps are explained in detail below.

4.2.1 Superpixel Segmentation

By perceptually grouping pixels in an image, superpixel clusters are formed,
resulting in over-segmentation of an image. Compared to rectangular patches,
superpixels align well with the edges and object boundaries in an image
and carry more information than single pixels. The superpixel segmenta-
tion algorithms can be categorised either as gradient ascent or graph based
methods. The gradient ascent algorithms are recursive, starting with a ran-
dom clustering of pixels then iteratively combining the clusters until a given
threshold is reached. Some of the techniques are, watershed in digital spaces
[VVS91], mean shift algorithm [CM02], quick shift kernel method [VS08], tur-
bopixels [Lev+09] and Simple Linear Iterative Clustering (SLIC) [Ach+10].
On the other hand graph based methods exploit the cost function between
the neighbouring pixels. The pixels are considered as nodes and the edges
connecting the pixel nodes have weights, which is used for clustering. Few of
the graph based algorithms are graphcut textures [Kwa+03], [FH04], super-
pixel lattices [Moo+08] and supervoxels [VBM10]. Each of the above men-
tioned algorithms perform both qualitatively and quantitatively different. In
general, a superpixel segmentation algorithm must function robust, consum-
ing less memory and the resulting superpixels must adhere well to the object
contours. We in our previous work have implemented an enhanced SLIC
algorithm [P1] and [P2] that outperforms in terms of both boundary recall
and compactness. The state-of-the-art SLIC algorithm is a k-means clustering
approach, segmenting an image based on color information. The enhanced
SLIC algorithm can employ additional information beyond color channels
to obtain more accurate and meaningful segmentation. A dynamic calcula-
tion of weights is introduced, which eliminates the complexity of deciding
the weighting parameters of the different channels. User input is reduced to
only the image to be segmented and the desired number of superpixel seg-
ments.

In the second step of the proposed layout, the sub-aperture images are seg-
mented into superpixels k. The size of each superpixel S is of dimension sxs
and in this research work we chose the size as 16x16 pixels, same as the size of
a macroblock. Considering the consecutive step, where the individual super-
pixels are adaptively Gaussian filtered, the recommended superpixel size is
propitious for intra-frame prediction. For a sub-aperture image of resolution
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(x, y), the number of superpixel clusters k = round( (x,y)
256 ). With the feature

of dynamic distance calculation, the distance D is measured as in equation
4.1. The weighting parameters m, n are calculated for the spatial proximity
DS and the color proximity DC respectively.

D =
√

m.D2
S + n.D2

C (4.1)

The weighting factors are determined with the function given in equation
4.2, which uses the number of edge pixels e in every superpixel S.

f (e, S) =
69(2.25ln(2200e

S2 + 1)− 2.25ln(2200
S2 + 1))

((2.25ln((2200∗106

S2 + 1)− 2.25ln(2200
S2 + 1))

+ 1 (4.2)

The function f (e, S) formulated to determine weighting values is a deriva-
tive of the µ-law [Skl88]. As the derivations and the background algorithm
details are beyond the scope of this dissertation, check our works [P1] and
[P2] for an overview. The resulting superpixel segmentation of the light field
image Desktop (centre SAI) using the proposed technique is shown in figure
4.10.

FIGURE 4.10: Superpixel segmentation of Desktop light field
image using enhanced SLIC

4.2.2 JND based Gaussian Filtering

The third phase of the layout is filtering the superpixels with JND based
Gaussian parameters. The JND threshold is determined from the texture and
gradient around each pixel (xy) for each sub-aperture image.



46 Chapter 4. Optimized Sequencing of Light Field Data

G f (x, y) =
1

16

5

∑
i=1

5

∑
j=1

Img(x− 3 + i, y− 3 + j) ∗ g f (i, j) (4.3)

The weighted normal of luminance changes G f (x, y) around every pixel is
determined as demonstrated in equation 4.3, utilizing the four filters g1, g2, g3, g4
as illustrated in figure 4.11. Then, as in equation 4.4, the maximum weighted
average of gradients around every pixel (xy) is determined, with a maximum
of four g( f = 1, 2, 3, 4) filters. Figure 4.12 a) displays the corresponding re-
constructed image of the center view from the desktop scene.

FIGURE 4.11: The filters g1, g2, g3, g4 used for calculating the
weighted average of luminance changes

Gmax(x, y) = max
f=1,2,3,4

{|G f (x, y)|} (4.4)

FIGURE 4.12: Center view of the Desktop light field image; a)
Reconstructed view after maximum weighted average of lumi-

nance; b) JND based Gaussian filtered view

σ =


8.5− 0.5 ∗ avgGmax(S), avgGmax(S) < 15
1, 15 ≤ avgGmax(S) ≤ 30
0, avgGmax(S) > 30

(4.5)

Filtering an entire frame with the same Gaussian parameter often results is
a major loss of visual quality. Accordingly, each of the superpixel is filtered
with adaptive Gaussian parameters. Initially, the mean of the avgGmax(S)
maximum weighted gradient average of all pixels within each S superpixel is
determined. Then, as shown in equation 4.5, the σ standard deviation value
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for a Gaussian filter is determined. Figure 4.12 b) displays the JND depen-
dent Gaussian filtered image of the center view from the desktop scene.

4.2.3 Comparison and Results

The final pre-processing stage is reordering the JND based Gaussian filtered
sub-aperture images pseudo-temporally. As proposed in the previous sec-
tion 4.1, by circularly reordering the frames, the neighbouring frames exhibit
high correlation and the frames with least information are grouped sequen-
tially together. As in dense light fields, the perspective variations between
the adjacent views are very minimal the reordering facilitates the inter frame
prediction process where the redundancy between the frames are fully ex-
ploited.

FIGURE 4.13: Light field images used for analysis; From top
left to bottom right - a) Desktop; b) Friends; c) Color Chart; d)

Sophie & Vincent; e) ISO Chart

The proposed pre-processing technique is accessed in terms of both per-
ceived visual quality and bite-rate reduction. Images from the EPFL dataset
[RE16] are used for testing. We have chosen five different images, as shown
in figure 4.13 with versatile content to showcase the robustness in terms of
determining the filtering parameters and its outcome.

For evaluations, different quantization values over a range are considered,
QP - 20, 24, 28 and 32 respectively. The reduction in bit-rate of the proposed
pre-processing layout against only pseudo-temporally reordering the light
field data are compared. To maintain the synergy, in both cases HEVC codec
with the configuration of low delay predictive main is employed for coding.
The outcomes are classified in table 4.3 for the different light field images in
accordance with the quantization parameters. It is evident that for all the
light field images, the recommended pre-handling technique has surpassed
and a maximum average bit-rate reduction of 21.86% is achieved for the color
chart light field image. As the color chart contains several color blocks of
uniform intensity and less textures, the parameter selection and filtering has
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worked efficiently eliminating the high frequencies.

TABLE 4.3: Bit rate reduction using the proposed technique in
comparison to pseudo-temporally reordered data bit stream

Rate
Image I-01 I-02 I-03 I-04 I-05

QP 1 -19.94% -23.94% -13.80% -6.74% -19.26%
QP 2 -19.72% -16.37% -27.74% -4.98% -14.99%
QP 3 -13.58% -7.68% -27.15% -2.42% -7.93%
QP 4 -8.63% -2.19% -18.74% -0.49% -3.20%
Average -15.47% -12.55% -21.86% -3.66% -11.35%

The perceived visual quality of the compressed light fields are analysed in
figure 4.14 for the desktop image. The center sub-aperture image is show-
cased in three variants, uncompressed and compressed at QP values 20 and
32 respectively. Upon intently comparing the images (especially in a high res-
olution monitor), the loss in visual quality is almost negligible, while the re-
sulting light fields compressed with higher quantization values are relatively
smoother. Critically, as the most intriguing attributes of light fields are the
post-processing prospects, software refocusing of the compressed light fields
are as well investigated. As exhibited in figure 4.15, the center views are con-
sistently refocused at a given depth (precisely, at pixel position [323,417]).
From observing the images, it is evident that the refocusing results are as ex-
pected artefacts or loss in quality. Thereby, our approach is ideal for adapting
the light field data for the available state-of-the-art video codecs without im-
posing any changes to the reference implementation.
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FIGURE 4.14: All-in focus views - a) uncompressed; b) com-
pressed with QP-20; c) compressed with QP-32
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FIGURE 4.15: Refocused views - a) uncompressed; b) com-
pressed with QP-20; c) compressed with QP-32
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4.3 Proximity Maximizer

The number of dimensions representing light has once again increased, in-
cluding the time domain. 4D light fields captured with additional tempo-
ral information per ray or as assemblies of rays include the 5th dimension,
namely time and thus produce 5D light fields. The related research works,
including our works mentioned in the above sections have paved way to
ideas on efficient 4D light field compression. However, techniques for com-
pression and storage for higher dimensions is still an open challenge. In this
section we have introduced a predictive coding approach of 5D light fields
by automatic generation of per frame customized coding structure exploit-
ing both spatial and temporal neighbors. This is very crucial when we have
moving objects in the scene.

Apart from related works discussed in the previous sections, an important
group of research techniques reorders the light field sub-aperture images
in pseudo-temporal sequence and encodes them using the standard codecs
achieving high prediction efficiency [Con+18]. The works, LF-TSP [Ima+19]
and optimized reference picture selection [Mon+19] are similar to our pro-
posed idea, where the technique operate under the same methodology, re-
ordering the frames and adapting the reference lists. While these state-of-
the-art methods are optimized and tested on dense lenslet based 4D light
fields and have achieved good results, our proposed method includes the
additional temporal domain with novel 5D light field sub-framing patterns.
Our technique offers an efficient pre-processing technique to overcome the
challenges imposed by additional dimensions and adapt the light field data
for the available state-of-the-art codecs.

4.3.1 5D Light Fields

The 5D light field camera array [P9], introduced in section 2.2.2.2 consists
of 8x8 synchronized cameras arranged with constant distances both vertical
and horizontal. Images are generated at 40fps with a resolution of 1920x1200.
The rig is electronically controlled and the different cameras can be config-
ured to trigger at varied time instances enabling the temporal behavior. We
have recorded the HaToy dataset [HLC19] using the 5D light field camera
array.

The HaToy scene, shown in figure 3.4 incorporates several static and mov-
ing components of variable sizes and complex geometry. All the objects in
the scene are made visible in all the cameras and they fully capture the static
and moving parts of the scene. The dataset includes several spatio-temporal
capturing patterns as illustrated in figure 4.16 in addition to the uniform syn-
chronized capturing. These unique sub-framing patterns are derived using
two-dimensional bit reversal permutation procedure described in figure 4.17.
In figure 4.16, from the highlighted regions, it can be seen that neighboring
cameras have different phases and the phases are equidistantly distributed
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FIGURE 4.16: Bit reversal sub-framing

FIGURE 4.17: Bit reversal procedure

within the layout.

With respect to the 5DLF representation, we have t=0:1:N, whereby, 0..N-
1 belongs to one full frame and hence the spacing is 1/(N*40) seconds (or
25ms/N). a and b are the camera indices from 0..7, but for intuitive under-
standing we have the camera numbering, from top left (0) to bottom right
(63). Before predicting the HaToy sub-aperture images, the most interesting
objects to consider are the fast spinning ones like the CD drive and the spin
top. From figure 4.18, we can observe that only parts of these objects’ texture
are visible on each camera. For sub-framing by a factor of 4 the center cam-
eras #27,28,35,36 respectively stem from four different sub-frames #3,1,2,0
and hence have a high temporal resolution for moving and a high angular
resolution for static parts of the scene, while cameras #18,20,34,36 all stem
from the same sub-frame #0 and hence are angular neighbors for moving
parts of the scene. The temporal behavior is significant and has to be consid-
ered while predicting the sub-frames.

4.3.2 Processing Pipeline

The proposed mechanism for integration of light field data into standard
video coding chains is as shown in figure 4.19. The core of the processing
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FIGURE 4.18: Understanding the 5D HaToy dataset

pipeline is the proximity maximizer implementation, which generates the re-
ordering layout based on the camera array setup and the user desired start
position. The pseudo-code of the algorithm is as follows.

FIGURE 4.19: Processing Pipeline
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Algorithm 1: Proximity Maximizer
1 Algorithm proximity_maximizer(RowSize, ColSize, StartPosition)

Output: ReorderLayoutMatrix
Data: // Global variables initialised only once

2 BUFFER_SIZE← 15
3 Initialization:
4 bu f f er ← FIFOQueue(BUFFER_SIZE)
5 UnvisitedCells← {1 : RowSize ∗ ColSize}
6 ResultOrder = {}
7 CurrentPosition = StartPosition
8 while UnvisitedCells 6= {} do
9 UnvisitedCells← UnvisitedCells− {CurrentPosition}

10 ResultOrder ← ResultOrder ∪ {CurrentPosition}
11 bu f f er.Push(CurrentPosition)
12 CurrentPosition← GetNextPosition()

1 Procedure GetNextPosition()
2 NextPosition := −1
3 MaxNeighborCount := −1
4 foreach Cell ∈ UnvisitedCells do
5 NeightborCount← GetNeighborCount(Cell)
6 if NeightborCount > MaxNeighborCount then
7 NextPosition← Cell
8 MaxNeighborCount← NeightborCount

9 return NextPosition

1 Procedure GetNeighborCount(Cell)
2 r, c := GetRowCol(Cell) // Get the row and col of the cell
3 Rows← {r} ∪ {r− 1 ⇐⇒ r > 1} ∪ {r + 1 ⇐⇒ r < RowSize}
4 Cols← {c} ∪ {c− 1 ⇐⇒ c > 1} ∪ {c + 1 ⇐⇒ c < ColSize}
5 NeighbourCount := 0
6 foreach r_ind ∈ Rows do
7 foreach c_ind ∈ Cols do
8 CellVal := CellValueAt(r_ind, c_ind)
9 if CellVal ∈ bu f f er then

10 NeighbourCount := NeighbourCount + 1

11 return NeighbourCount

Predicting a sequence of images works ideal when the image to be predicted
has immediate neighbors that are already coded and are available for predic-
tion in the picture buffer. Hence, a sequence which maximizes the availability
of processed cells (aka. image from a camera position) during prediction of a
new cell is desirable. This forms the motivation of the proximity maximizer
algorithm. The algorithm tries to maximize the neighbor count by greedily
selecting the next optimal cell location to be predicted in the sequence having
the maximum neighbors. The process starts with a cell position selected by
the user as the key SAI, hence the user has the possibility to decide which
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parts of the scene would be covered by the key frames. Then the algorithm
finds the next cell in traversal path by searching through all unvisited cells,
for the one with the maximum number of neighbors. If multiple cells are
found with the same number of maximum neighbors, the first position is
considered. This functionality is achieved by the GetNextPosition procedure
which in turn calls the GetNeighbourCount to compute the number of cells
available with in the immediate proximity. Then the best found candidate is
positioned in the reordering layout. The process continues until all cells are
optimally repositioned. The state-of-the-art video codecs imposes an upper
bound over the size of the Decoded Picture Buffer (MaxDpbSize) to a maxi-
mum of 16 frames (in our case sub-aperture images), which includes 15 pre-
viously coded SAIs, available as references + the current SAI, to be predicted.
However, most of the decoders and media players operate appropriately on
a much lower number of active reference frames, with maximum of 8 as the
limitation. Taking these scenarios into consideration we have also included
the degree of freedom in the algorithm to decide the queue size for potential
neighbours, to not to overflow the buffer limit of the reference pictures for
prediction.

The reordering layout is then utilized for reordering the SAIs. Once the SAIs
are reordered, they are combined into a video stream which forms the input
for the codec. The picture reference lists for the coding structure are gener-
ated with the last eight frames for prediction. This also aids in overcoming
the downside in few cases where the algorithm looks only at its immediate
neighbors and suffers from the local maxima problem while finding the best
path. Then the complete coding structure is generated for the desired Group
of Pictures (GOP). The coding structure is integrated into the overall config-
uration file which is used for coding the input video stream. The streams are
predictively coded with the HEVC reference implementation.

4.3.3 Evaluation

The reordering layout exhibited in table 4.4 is generated for a 8x8 camera
setup configuration, used in capturing the HaToy dataset and one of the
center positions is chosen as the desired starting cell. The resulting pseudo-
temporal sequence exhibits high correlation between consecutive frames and
maximizes the proximity of immediately available neighbors for prediction,
thereby exploiting utmost redundancy. One of the advantage of this pro-
posed algorithmic reordering technique, compared to the previous works
with fixed prior reordering, is the flexibility of building the layout depending
on the camera grid and also selecting the desired key frame to construct the
pseudo reordering sequence around it. This ensures that the algorithm can
be adapted to the different camera grid layouts, depending on the capturing
setup and the user has the possibility to select the key frames with the most
scene content for prediction.
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TABLE 4.4: Sample reordering layout for an 8x8 camera setup

13 10 9 11 45 44 46 48
12 8 5 6 42 41 43 47
14 7 2 3 39 38 40 49
15 16 4 1 34 35 37 50
17 18 19 27 30 33 36 51
21 20 22 26 29 32 52 53
24 23 25 28 31 56 54 55
64 63 62 61 60 58 57 59

Table 4.5, summarizes the experimental results in which the scanning order
used in the previous research methods and our proposed method are com-
pared for the different sub-framing. Several intermediate quantization pa-
rameter values from the available range [0-51] are tested to analyze finer to
coarser levels of quantization. Mean YUV-PSNR is calculated for the pro-
posed technique against row-wise default scanning and pseudo-temporally
re-ordered scanning. It can be observed that for all compression ratios, the
proposed pre-processing technique has outperformed the other sortings and
for higher QP values, a gain of more than 2dB PSNR is achieved. As men-
tioned in the literature work on Data Compression [Sal07], with just an in-
crease of 0.5dB PSNR, the magnitude of improvement is already visible to
the human eye. From the results it can be observed for coarser quantiza-
tion the differences are more or less quantized towards zero and hence large
quantization parameters directly reflect the quality of prediction. By algo-
rithmically resorting the candidates based on the scene we directly influence
the prediction and achieve maximum prediction gain.

Additional experimental results comparing our technique with the most cur-
rently deployed state-of-the-art image codec HEIC are exhibited in table 4.6.
Evaluations are carried out with HEVC in intra-mode, where the SAIs are
coded independently of each other. For fairness in the comparison, qual-
ity analysis are performed on similar datarates for both the codecs. As we
observe the Rate Distortion (R-D) performance illustrated in figure 4.20, the
increase in gain is prominent for the proposed method over HEIC for all com-
pression ratios. The fact that by pseudo-video reordering using the proposed
mechanism organizes the 5D light field data in an optimal sequence exploit-
ing the redundancies between SAIs, resulting in higher coding efficiency. For
further validation, examining the compressed SAIs show evident distortions
in the scene parts with the fast moving objects like the CD drive and the
spin top. Figure 4.21 shows an original SAI and the same SAI predicted at
0.1bpp using HEIC and HEVC. It can be seen that the prints on the spin top
are highly distorted when the SAI is intra predicted using HEIC compared to
HEVC which uses the neighboring SAIs as references, maximizing the pre-
diction gain.
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TABLE 4.5: YUV - PSNR for the different capturing patterns

Uniform FramesYUV –PSNR
[dB] Default Circular

Scanning
Proposed
Method

Gain
c4 – c2

QP 40 35.3060 36.6862 37.7064 2.4004
QP 36 37.5960 38.8210 39.9239 2.3279
QP 32 40.1016 41.0969 42.1196 2.0180
QP 28 42.4384 43.0640 43.9549 1.5165
QP 24 44.6091 44.9291 45.6846 1.0755
QP 20 46.5197 46.7158 47.3315 0.8118
QP 16 48.5068 48.5947 49.0751 0.5683

4 SubframesYUV –PSNR
[dB] Default Circular

Scanning Proposed Gain
c4 – c2

QP 40 35.3907 36.5640 37.7034 2.3127
QP 36 37.6798 38.8994 39.9076 2.2278
QP 32 40.1841 41.0912 42.1035 1.9194
QP 28 42.5257 43.0597 43.9409 1.4152
QP 24 44.6540 44.9547 45.6977 1.0437
QP 20 46.5249 46.7423 47.3325 0.8076
QP 16 48.5407 48.5989 49.0793 0.5386

8 SubframesYUV –PSNR
[dB] Default Circular

Sacnning Proposed Gain
c4 – c2

QP 40 35.4092 36.5638 37.7121 2.3029
QP 36 37.6826 38.8109 39.9199 2.2373
QP 32 40.2046 41.0906 42.1089 1.9043
QP 28 42.5274 43.0623 43.9490 1.4216
QP 24 44.6892 44.9528 45.7038 1.0146
QP 20 46.5331 46.7225 47.3352 0.8021
QP 16 48.5479 48.6010 49.0801 0.5322

TABLE 4.6: YUV – PSNR for HEIC vs HEVC proposed

Uniform Frames 4 Subframes 4 SubframesYUV - PSNR [dB] 0.1 bpp 0.25 bpp 0.5 bpp 1 bpp 0.1bpp 0.25 bpp 0.5 bpp 1 bpp 0.1 bpp 0.25 bpp 0.5 bpp 1 bpp
HEIC 41.1043 46.2101 48.8097 51.2331 41.1067 46.2114 48.8119 51.2358 41.1056 46.2153 48.8127 51.2352
HEVC 46.1337 48.2014 49.5731 51.7140 46.1252 48.2017 49.5708 51.7147 46.1303 48.2043 49.5665 51.7117
Gain 5.0294 1.9913 0.7634 0.4809 5.0185 1.9903 0.7589 0.4789 5.0247 1.9890 0.7538 0.4765

Hence our proposed approach facilitates the integration of light fields into
standard video processing chains by algorithmically re-ordering the image
data to maximize the prediction gain. A PSNR gain of more than 2dB is
achieved with the HEVC codec, purely from the prediction technique.
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FIGURE 4.20: Rate distortion results of HEIC and the proposed
technique with HEVC

FIGURE 4.21: A sample SAI (zoomed and cropped uniformly)
a) original; b) HEIC predicted; c) proposed HEVC predicted
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Chapter 5

Light Field Coding Framework

With the advent of different plenoptic modalities, the challenges towards in-
teroperability between devices and applications has increased, furthermore
at a cross-modality level. In consideration to these challenges the JPEG and
the MPEG standardization committees have initiated new standards, JPEG
Pleno and MPEG-I respectively. JPEG Pleno [Ast+20] supports the plenop-
tic modalities such as light fields, point clouds and holographic representa-
tions. MPEG-I [Dom+17] is a collection of specifications to digitally represent
immersive media, both multi-dimensional audio and video representations.
With respect to the timeline of this thesis write-up, both the standards are
still under-development.

The contributions in this chapter are focused and limited towards supporting
the standardization committees with a novel light field dataset. The available
light field datasets are limited to 4D and 4.5D assets, offering only still images
and synchronous videos. As members of the JPEG committee and based on
the interests from the Pleno sub-group, we designed the HaToy scene. The
HaToy scene consists objects of various sizes and complex geometry, incorpo-
rating multiple static and independently moving components. The scene is
captured using our 5D light field camera array. The RAW data is adapted to
the test requirements and is shared with the community to extend and evalu-
ate light field coding solutions to not only synchronous light field assets but
also to sub-framed light field assets.

5.1 JPEG Pleno

JPEG Pleno is an emerging standard that aims to support newer light rep-
resentations such as point clouds [Sch+18], light fields [Ebr+16] and holo-
graphic imaging [Sch+19]. The standard is being exclusively designed to
code all modalities of plenoptic functions and provide full functionality to in-
clude metadata, image manipulation and interaction. As an appointed mem-
ber of the JPEG group (the national representative – DIN 1), we had the op-
portunity to participate and contribute in several group meetings. Although
the international standard is yet to be published, as members of the commit-
tee, we could access and actively experiment with the Pleno VM (Verification
Model). Based on the interests from the JPEG Pleno group, we designed and

1https://www.din.de/de
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captured the HaToy dataset, introduced in figure 4.18, captured using the 5D
light field camera array 2.2.2.2.

For coding light fields, Pleno offers two independent and conceptually dif-
ferent codecs [Per+19]. The MULE codec performs transform coding and
works efficiently only on lenslet light fields [de +20]. The WaSP codec uses
prediction coding and is an option for both lenslet and camera array im-
ages (dense and sparse light fields) [AT19b]. It is a depth based/disparity
compensated prediction, which uses occlusion-aware depth estimation. The
codec utilizes normalized disparity for warping the reference SAIs to the tar-
get SAIs and the prediction works efficiently for planar camera configura-
tions. For very dense datasets the warping is performed hierarchically based
on least-squares method.

FIGURE 5.1: Block diagram of the WaSP encoder
Figure illustrated from [AT18]

Astola et al in their works [AT19a], [AT19b] have described the functional
blocks of the codec as following. The primary operation of the WaSP codec
is to predict each target view based on the reference views, as illustrated in
the block diagram 5.1. The codec requires high quality depth estimation as
it is necessary to efficiently reconstruct the side views. For each reference, its
corresponding disparities, both horizontal and vertical, anchored at the side
view is obtained by warping its reciprocal depth. Then a disparity refine-
ment process using motion vectors is performed to overcome scaling issues
regarding vertical and horizontal baselines. To merge the warped reference
views, the least-squares view merging is performed, thereby minimizing the
sum of residuals for every pixel. The last prediction stage is used to find
which of the regressors are required in a prediction template to perform final
convolution of the merged warped image with a sparse predictor.

As WaSP encoder requires both texture and disparity information of the SAIs
for prediction, we adapted the HaToy texture maps in PPM format and gen-
erated the disparity maps compatible to the Pleno specification. Due to Ha-
Toy’s complex scene geometry, the state-of-the-art depth/disparity map al-
gorithms [Hon+17], [RSM20] and [CAS20] failed to produce quality disparity
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FIGURE 5.2: a) Frame pairs (orange camera positions - target
frames; blue camera positions - reference frames);

b) Objects tags

maps. Following which, a human-assisted semi-automatic technique for dis-
parity map generation was implemented. Adjacent camera pair images, as
illustrated in figure 5.2 a) (orange camera positions - target frames; blue cam-
era positions - reference frames) were annotated manually to obtain charac-
teristic feature points, as recorded and showcased in figure 5.3 (for the target
frame 007, using the adjacent frames 006, 015 respectively) at varied depths
over several objects, indicated using the different object tags, shown in 5.2
b). These characteristic points are used to determine the depth map via lo-
calized triangular interpolation and then the reciprocal of the depth map is
calculated. The generated four corner disparity maps, shown in figure 5.4
are adapted to JPEG Pleno syntax and stored in PGM format. Configuration
files for the HaToy dataset are generated to test our assets in the Pleno VM.
The view prediction and reconstruction results are very promising, and the
Pleno community will host the HaToy assets as a light field test dataset in the
JPEG image database.
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FIGURE 5.3: Adjacent camera image pairs annotated at charac-
teristic points for the target frame 007 (top), using the adjacent

frames 006 (middle), 015 (bottom) respectively
(zoom in to view the marked characteristic points)
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FIGURE 5.4: HaToy dataset disparity maps for four corner
views - 000, 007, 056 & 063; from top to bottom respectively
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5.2 MPEG-I

MPEG-I is the new era under-development standard for augmented and vir-
tual reality applications, where "I" attributes to the "Immersive" features. The
standard aims in providing natural and realistic immersive experiences for
both the eyes and the ears. For instance, envision the possibility of moving
freely in a concert hall during a music session or the opportunity to virtually
walk around in a stadium while a sport event is happening. With MPEG-I,
all this can be realised at six degrees of freedom (6DoF), either by using head
mounted gears for 360◦ video, light field displays or free navigation in three-
dimensional space. MPEG-I supports two types of coding approaches, Mul-
tiView + Depth (MVD) video coding for three-dimensional film, production
and Point Cloud Coding (PCC) for three-dimensional graphic and gaming
production.

FIGURE 5.5: MPEG-I generic coding and processing pipeline
Figure illustrated from [Laf+19]

The generic coding and processing pipeline of MPEG-I standard used in an
immersive application is shown in figure 5.5. The pipeline illustrates the in-
tegration of both graphic and video based approaches. Depending on the
type of the input data, either multi-camera array views with the associated
depth information or point clouds with color intensity values and related
depth information, the coding scheme is chosen. As an initial step, the input
data are pre-processed for distortion removal, color correction, depth estima-
tion, rectification and point cloud extraction. The pre-processed input data
is then compressed using the state-of-the-art video compression approaches
such as, AVC, HEVC, VVC or point cloud encoder. The accompanying meta-
data which is essential for view interpolation and reconstruction are as well
transmitted with the compressed bit streams. On the decoder side, the com-
pressed bit streams are unpacked, decoded and extracted in the graphics
and video based representation formats. As a final step, the renderer per-
forms several post-processing approaches to render an augmented or vir-
tual reality supported data sequence which is suitable for light field displays
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or head mounted devices. Unlike the conventional two-dimensional video
codecs, in MPEG-I video codec, the images extracted from the decoded bit
streams are interpolated using a view synthesis approach creating virtual
views, engaging the users in a 6DoF immersive experience. On the other
hand, with the MPEG-I graphics codec, the information extracted from the
decoded bit streams are used to create a point cloud of colored points in
a three-dimensional space. These points are then projected onto the display
using a standard OpenGL pipeline used for three-dimensional graphics. Due
to several missing points that create gaps during the rendering process, the
point clouds are amplified, for instance with splatting [Yif+19] approaches.
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Chapter 6

Conclusion and Outlook

Plenoptics and light fields are a revived and evolving research topic. Be-
cause of the technical constraints of its acquisition, as well as the complexity
and trade-offs it presents, several challenges must be resolved before light
fields can be widely adopted into traditional imaging and video processing
pipelines.

This thesis work presents, discusses and explores multiple approaches that
facilitates the use of light field data and its capabilities in current applica-
tions. Although, several open problems have been answered, there are much
more stimulating challenges to be dealt with in the future. In this chapter the
formerly discussed research findings are summarised and concluded, and
some of the interesting and potential future opportunities are presented.

We first focused on the basis for understanding computational imaging and
its processing. The novel ideas and the different capturing devices for light
fields showcased the versatility in data acquisition and the need for different
tools to process the RAW data. It was made evident that light field technol-
ogy is progressing rapidly and as well offers several post-processing oppor-
tunities which are welcomed in the current media community. Owing to that
fact, in chapter 3 we targeted on the problem of adapting the light field data
to be handled by advanced imaging file formats. PSD and OpenEXR, allows
asset re-usability and also interoperability between devices and imaging ap-
plications. We developed techniques to extract and transcode high resolution
light field data to professional file formats. Additionally, both the image data
and metadata can be consolidated within a single container to ensure the
properties of light fields be derived backwards compatible. The proposed
file format conversion schemes on light light data were analyzed with post-
processing approaches. Results exhibit the possibility of utilising the conver-
sion formats without losing the underlying properties of light fields. We also
laid focus on the coding performance of the different lossy and lossless com-
pression methods and its effect on the post-process performance.

In chapter 4, we proposed techniques to optimise light field data to be com-
patible with state-of-the-art image and video codecs. As light field data con-
tains multiple viewpoints captured within a restricted viewing angle, the
views are highly correlated exhibiting strong redundancies. Our techniques
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were optimised to utilise view redundancies to achieve a better compres-
sion ratio at an optimal coding cost. The first approach was based on low-
complexity re-ordering of data by pseudo-temporally sequencing the frames.
In comparison to the widely used re-ordering techniques like zigzag, tiling
or linewise, the proposed circular scanning outperformed consistently, as it
maximised the redundancy between the frames. Experimental results showed
increase in rate-distortion performance in terms of PSNR and SSIM at differ-
ent bit rates for several light fields using HEVC predictive coding compared
to still image codecs JPEG, JPEG 2000 and HEVC intra. We then presented a
second approach where the light field views are adaptively Gaussian filtered
based on superpixel segmentation and just noticeable difference threshold
and then pseudo-temporally sequenced. The outcome showcased significant
average bit rate reductions with almost negligible loss in the visual quality
for both all-in focus and refocused light fields.

In our next approach, we introduced a predictive coding scheme for 5D light
field data. Our proximity maximizer implementation generates an optimised
re-ordering layout based on the camera array setup and the user desired start
position. The reference lists are as well customized per frame based on the
re-ordering layout to maximize the prediction gain. The results showcased
that by pseudo-video re-ordering using the proposed mechanism organizes
the 5D light field data in an optimal sequence exploiting the redundancies
between SAIs, resulting in higher coding efficiency compared to our own
previously proposed re-ordering ideas and also in comparison to coding us-
ing advanced still image codecs such as, HEIC. Overall, the core essence of
all these proposed data pre-processing approaches is that, they do not intro-
duce any changes to the codecs. Hence, the techniques can be applied to all
standard video codecs and seamlessly integrated into the present and future
storage and transmission services for both professional and consumer needs.

We then focused our attention towards the light field standards, JPEG Pleno
and MPEG-I. As members of the JPEG committee and based on the interests
from the Pleno sub-group, we designed and captured the HaToy dataset, us-
ing our 5D light field camera array. Following which, we adapted the RAW
data to generate texture and disparity maps compatible to the Pleno syntax,
as discussed in chapter 5. Our user-assisted semi-automatic implementation
for disparity map generation produces an accurate construction of the dis-
parity maps in comparison to the state-of-the-art depth and disparity map
generation algorithms.

A prospective future work in representation of light field data will be the
development of a new file format that standardises light field content. The
file format needs to be robust to handle light fields captured or generated
using the different data acquisition techniques. Indeed, the standard should
facilitate backward compatibility feature, so the light field data can be eas-
ily adapted to traditional image and video processing pipelines. In terms of
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optimised reference list generation, it is still possible to achieve a better com-
pression ratio by enlarging the group of pictures list to include sub-aperture
images from consecutive frames and enabling bi-directional prediction.

As for the depth and disparity map estimation algorithms for light field data,
it is still a challenging topic that requires further investigation. In addition
to the commonly addressed issues such as reflectivity, transparency, occlu-
sion and specular surfaces, light field data captured using handheld devices
presents a narrow baseline with small perspective changes between views.
This reduces the overall disparity range, for example, in Lytro first genera-
tion cameras (discussed in section 2.2.1.1) the disparity range is between -1
to 1 pixels. In the case of light field images captured using multi-camera ar-
ray, apart from the above described issues, the implementations suffer from
complex parameter selection as different views of the scene can be used as
reference images. Another important aspect the available algorithms lack, is
the possibility to choose the best patches/blocks from different neighbour-
ing views to build the complete disparity map of a given image. Addition-
ally, the complexity of the scene geometry as well adds another degree of
challenge. Overall, as depth and disparity maps are an important element
that is broadly used for decreasing the volume of light field texture that is
coded, stored and transmitted in the processing pipeline, it is essential to de-
velop robust algorithms to overcome inaccuracies caused by baselines, scene
geometry and parameter selection for combining the best suited blocks. Fur-
thermore, conducting research for finding solutions based on deep learning
approaches could enhance the process.

To conclude, we believe that the proposed solutions in this thesis work will
certainly facilitate the use of light fields in image and video processing pipelines.
Moreover, it is significant to report that standardizing light field data repre-
sentation and coding solutions are in the prime stage of development and we
can soon expect further advancements in this domain of research.
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