Please use this identifier to cite or link to this item:
doi:10.22028/D291-36002
Title: | Cigarette smoke and electronic cigarettes differentially activate bronchial epithelial cells |
Author(s): | Herr, Christian Tsitouras, Konstantinos Niederstraßer, Julia Backes, Christina Beisswenger, Christoph Dong, Li Guillot, Loïc Keller, Andreas Bals, Robert |
Language: | English |
Title: | Respiratory Research |
Volume: | 21 |
Issue: | 1 |
Publisher/Platform: | BMC |
Year of Publication: | 2020 |
DDC notations: | 610 Medicine and health |
Publikation type: | Journal Article |
Abstract: | Background: The use of electronic cigarettes (ECIGs) is increasing, but the impact of ECIG-vapor on cellular processes like inflammation or host defense are less understood. The aim of the present study was to compare the acute effects of traditional cigarettes (TCIGs) and ECIG-exposure on host defense, inflammation, and cellular activation of cell lines and primary differentiated human airway epithelial cells (pHBE). Methods: We exposed pHBEs and several cell lines to TCIG-smoke or ECIG-vapor. Epithelial host defense and barrier integrity were determined. The transcriptome of airway epithelial cells was compared by gene expression array analysis. Gene interaction networks were constructed and differential gene expression over all groups analyzed. The expression of several candidate genes was validated by qRT-PCR. Results: Bacterial killing, barrier integrity and the expression of antimicrobial peptides were not affected by ECIG-vapor compared to control samples. In contrast, TCIGs negatively affected host defense and reduced barrier integrity in a significant way. Furthermore ECIG-exposure significantly induced IL-8 secretion from Calu-3 cells but had no effect on NCI-H292 or primary cells. The gene expression based on array analysis distinguished TCIG-exposed cells from ECIG and room air-exposed samples. Conclusion: The transcriptome patterns of host defense and inflammatory genes are significantly distinct between ECIG-exposed and TCIG-treated cells. The overall effects of ECIGs on epithelial cells are less in comparison to TCIG, and ECIG-vapor does not affect host defense. Nevertheless, although acute exposure to ECIG-vapor induces inflammation, and the expression of S100 proteins, long term in vivo data is needed to evaluate the chronic effects of ECIG use. |
DOI of the first publication: | 10.1186/s12931-020-1317-2 |
Link to this record: | urn:nbn:de:bsz:291--ds-360023 hdl:20.500.11880/32800 http://dx.doi.org/10.22028/D291-36002 |
ISSN: | 1465-993X |
Date of registration: | 13-Apr-2022 |
Description of the related object: | Supplementary information |
Related object: | https://static-content.springer.com/esm/art%3A10.1186%2Fs12931-020-1317-2/MediaObjects/12931_2020_1317_MOESM1_ESM.docx https://static-content.springer.com/esm/art%3A10.1186%2Fs12931-020-1317-2/MediaObjects/12931_2020_1317_MOESM2_ESM.xls https://static-content.springer.com/esm/art%3A10.1186%2Fs12931-020-1317-2/MediaObjects/12931_2020_1317_MOESM3_ESM.xls https://static-content.springer.com/esm/art%3A10.1186%2Fs12931-020-1317-2/MediaObjects/12931_2020_1317_MOESM4_ESM.xls |
Faculty: | M - Medizinische Fakultät |
Department: | M - Innere Medizin M - Medizinische Biometrie, Epidemiologie und medizinische Informatik |
Professorship: | M - Prof. Dr. Robert Bals M - Univ.-Prof. Dr. Andreas Keller |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
Herr2020_Article_CigaretteSmokeAndElectronicCig.pdf | 1,82 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License