Please use this identifier to cite or link to this item:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-35950
Title: | Deep-learning based detection of gastric precancerous conditions |
Author(s): | Guimarães, Pedro Keller, Andreas Fehlmann, Tobias Lammert, Frank Casper, Markus |
Language: | English |
Title: | Gut |
Volume: | 69 |
Issue: | 1 |
Pages: | 4–6 |
Publisher/Platform: | BMJ |
Year of Publication: | 2019 |
Publikation type: | Journal Article |
Abstract: | Conventional white-light endoscopy has high interobserver variability for the diagnosis of gastric precancerous conditions. Here we present a deep learning (DL) approach for the diagnosis of atrophic gastritis developed and trained using real-world endoscopic images from the proximal stomach. The model achieved an accuracy of 93% (area under the curve (AUC): 0.98; F-score 0.93) in an inde pendent data set, outperforming expert endosco pists. DL may overcome conventional appraisal of white-light endoscopy and support human decision making. The algorithm is available free of charge via a web-based interface (https://www.ccb.uni saarland.de/atrophy). |
DOI of the first publication: | 10.1136/gutjnl-2019-319347 |
URL of the first publication: | https://gut.bmj.com/content/69/1/4 |
Link to this record: | hdl:20.500.11880/32766 http://dx.doi.org/10.22028/D291-35950 |
ISSN: | 1468-3288 0017-5749 |
Date of registration: | 11-Apr-2022 |
Faculty: | M - Medizinische Fakultät |
Department: | M - Innere Medizin M - Medizinische Biometrie, Epidemiologie und medizinische Informatik |
Professorship: | M - Univ.-Prof. Dr. Andreas Keller M - Prof. Dr. Frank Lammert |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
There are no files associated with this item.
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.