Please use this identifier to cite or link to this item: doi:10.22028/D291-35801
Title: Computational design and optimization of electro-physiological sensors
Author(s): Nittala, Aditya Shekhar
Karrenbauer, Andreas
Khan, Arshad
Kraus, Tobias
Steimle, Jürgen
Language: English
Title: Nature Communications
Volume: 12
Issue: 1
Publisher/Platform: Springer Nature
Year of Publication: 2021
Free key words: Biomedical engineering
Computer science
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: Electro-physiological sensing devices are becoming increasingly common in diverse applications. However, designing such sensors in compact form factors and for high-quality signal acquisition is a challenging task even for experts, is typically done using heuristics, and requires extensive training. Our work proposes a computational approach for designing multi-modal electro-physiological sensors. By employing an optimization-based approach alongside an integrated predictive model for multiple modalities, compact sensors can be created which offer an optimal trade-off between high signal quality and small device size. The task is assisted by a graphical tool that allows to easily specify design preferences and to visually analyze the generated designs in real-time, enabling designer-in-the-loop optimization. Experimental results show high quantitative agreement between the prediction of the optimizer and experimentally collected physiological data. They demonstrate that generated designs can achieve an optimal balance between the size of the sensor and its signal acquisition capability, outperforming expert generated solutions.
DOI of the first publication: 10.1038/s41467-021-26442-1
Link to this record: urn:nbn:de:bsz:291--ds-358015
hdl:20.500.11880/32644
http://dx.doi.org/10.22028/D291-35801
ISSN: 2041-1723
Date of registration: 18-Mar-2022
Description of the related object: Supplementary information
Related object: https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-26442-1/MediaObjects/41467_2021_26442_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-26442-1/MediaObjects/41467_2021_26442_MOESM2_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-26442-1/MediaObjects/41467_2021_26442_MOESM3_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-26442-1/MediaObjects/41467_2021_26442_MOESM4_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-26442-1/MediaObjects/41467_2021_26442_MOESM5_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-26442-1/MediaObjects/41467_2021_26442_MOESM6_ESM.mp4
Faculty: MI - Fakultät für Mathematik und Informatik
NT - Naturwissenschaftlich- Technische Fakultät
Department: MI - Informatik
NT - Chemie
Professorship: MI - Prof. Dr. Jürgen Steimle
NT - Prof. Dr. Tobias Kraus
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s41467-021-26442-1.pdf1,89 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons