Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-35801
Titel: Computational design and optimization of electro-physiological sensors
VerfasserIn: Nittala, Aditya Shekhar
Karrenbauer, Andreas
Khan, Arshad
Kraus, Tobias
Steimle, Jürgen
Sprache: Englisch
Titel: Nature Communications
Bandnummer: 12
Heft: 1
Verlag/Plattform: Springer Nature
Erscheinungsjahr: 2021
Freie Schlagwörter: Biomedical engineering
Computer science
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Electro-physiological sensing devices are becoming increasingly common in diverse applications. However, designing such sensors in compact form factors and for high-quality signal acquisition is a challenging task even for experts, is typically done using heuristics, and requires extensive training. Our work proposes a computational approach for designing multi-modal electro-physiological sensors. By employing an optimization-based approach alongside an integrated predictive model for multiple modalities, compact sensors can be created which offer an optimal trade-off between high signal quality and small device size. The task is assisted by a graphical tool that allows to easily specify design preferences and to visually analyze the generated designs in real-time, enabling designer-in-the-loop optimization. Experimental results show high quantitative agreement between the prediction of the optimizer and experimentally collected physiological data. They demonstrate that generated designs can achieve an optimal balance between the size of the sensor and its signal acquisition capability, outperforming expert generated solutions.
DOI der Erstveröffentlichung: 10.1038/s41467-021-26442-1
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-358015
hdl:20.500.11880/32644
http://dx.doi.org/10.22028/D291-35801
ISSN: 2041-1723
Datum des Eintrags: 18-Mär-2022
Bezeichnung des in Beziehung stehenden Objekts: Supplementary information
In Beziehung stehendes Objekt: https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-26442-1/MediaObjects/41467_2021_26442_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-26442-1/MediaObjects/41467_2021_26442_MOESM2_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-26442-1/MediaObjects/41467_2021_26442_MOESM3_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-26442-1/MediaObjects/41467_2021_26442_MOESM4_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-26442-1/MediaObjects/41467_2021_26442_MOESM5_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-26442-1/MediaObjects/41467_2021_26442_MOESM6_ESM.mp4
Fakultät: MI - Fakultät für Mathematik und Informatik
NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: MI - Informatik
NT - Chemie
Professur: MI - Prof. Dr. Jürgen Steimle
NT - Prof. Dr. Tobias Kraus
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
s41467-021-26442-1.pdf1,89 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons