Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-35716
Volltext verfügbar? / Dokumentlieferung
Titel: Assessing the heterogeneity of in silico plasmid predictions based on whole-genome-sequenced clinical isolates
VerfasserIn: Laczny, Cedric C.
Galata, Valentina
Plum, Achim
Posch, Andreas E.
Keller, Andreas
Sprache: Englisch
Titel: Briefings in Bioinformatics
Bandnummer: 20
Heft: 3
Seiten: 857–865
Verlag/Plattform: Oxford University Press
Erscheinungsjahr: 2017
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: High-throughput next-generation shotgun sequencing of pathogenic bacteria is growing in clinical relevance, especially for chromosomal DNA-based taxonomic identification and for antibiotic resistance prediction. Genetic exchange is facilitated for extrachromosomal DNA, e.g. plasmid-borne antibiotic resistance genes. Consequently, accurate identification of plasmids from whole-genome sequencing (WGS) data remains one of the major challenges for sequencing-based precision medicine in infec tious diseases. Here, we assess the heterogeneity of four state-of-the-art tools (cBar, PlasmidFinder, plasmidSPAdes and Recycler) for the in silico prediction of plasmid-derived sequences from WGS data. Heterogeneity, sensitivity and precision were evaluated by reference-independent and reference-dependent benchmarking using 846 Gram-negative clinical isolates. Interestingly, the majority of predicted sequences were tool-specific, resulting in a pronounced heterogeneity across tools for the reference independent assessment. In the reference-dependent assessment, sensitivity and precision values were found to substantially vary between tools and across taxa, with cBar exhibiting the highest median sensitivity (87.45%) but a low median precision (27.05%). Furthermore, integrating the individual tools into an ensemble approach showed increased sensitivity (95.55%) while reducing the precision (25.62%). CBar and plasmidSPAdes exhibited the strongest concordance with respect to identified antibiotic resistance factors. Moreover, false-positive plasmid predictions typically contained only few antibiotic resistance factors. In con clusion, while high degrees of heterogeneity and variation in sensitivity and precision were observed across the different tools and taxa, existing tools are valuable for investigating the plasmid-borne resistome. Nevertheless, additional studies on represen tative clinical data sets will be necessary to translate in silico plasmid prediction approaches from research to clinical application.
DOI der Erstveröffentlichung: 10.1093/bib/bbx162
URL der Erstveröffentlichung: https://academic.oup.com/bib/article/20/3/857/4696344
Link zu diesem Datensatz: hdl:20.500.11880/32580
http://dx.doi.org/10.22028/D291-35716
ISSN: 1477-4054
Datum des Eintrags: 11-Mär-2022
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Medizinische Biometrie, Epidemiologie und medizinische Informatik
Professur: M - Univ.-Prof. Dr. Andreas Keller
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.