Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-35689
Titel: Machine Learning to Detect Alzheimer's Disease from Circulating Non-coding RNAs
VerfasserIn: Ludwig, Nicole
Fehlmann, Tobias
Kern, Fabian
Gogol, Manfred
Maetzler, Walter
Deutscher, Stephanie
Gurlit, Simone
Schulte, Claudia
von Thaler, Anna-Katharina
Deuschle, Christian
Metzger, Florian
Berg, Daniela
Suenkel, Ulrike
Keller, Verena
Backes, Christina
Lenhof, Hans-Peter
Meese, Eckart
Keller, Andreas
Sprache: Englisch
Titel: Genomics, Proteomics & Bioinformatics
Bandnummer: 17
Heft: 4
Seiten: 430-440
Verlag/Plattform: Elsevier
Erscheinungsjahr: 2019
Freie Schlagwörter: miRNAs
Neurodegeneration
Alzheimer’s disease
Biomarker
Non-coding RNAs
Gene regulation
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Blood-borne small non-coding (sncRNAs) are among the prominent candidates for blood-based diagnostic tests. Often, high-throughput approaches are applied to discover biomarker signatures. These have to be validated in larger cohorts and evaluated by adequate statistical learning approaches. Previously, we published high-throughput sequencing based microRNA (miRNA) signatures in Alzheimer’s disease (AD) patients in the United States (US) and Germany. Here, we determined abundance levels of 21 known circulating miRNAs in 465 individuals encompassing AD patients and controls by RT-qPCR. We computed models to assess the relation between miRNA expression and phenotypes, gender, age, or disease severity (Mini-Mental State Examination; MMSE). Of the 21 miRNAs, expression levels of 20 miRNAs were consistently de-regulated in the US and German cohorts. 18 miRNAs were significantly correlated with neurodegeneration (Benjamini-Hochberg adjusted P < 0.05) with highest significance for miR-532-5p (Benjamini-Hochberg adjusted P = 4.8 × 10−30). Machine learning models reached an area under the curve (AUC) value of 87.6% in differentiating AD patients from controls. Further, ten miRNAs were significantly correlated with MMSE, in particular miR-26a/26b-5p (adjusted P = 0.0002). Interestingly, the miRNAs with lower abundance in AD were enriched in monocytes and T-helper cells, while those up-regulated in AD were enriched in serum, exosomes, cytotoxic t-cells, and B-cells. Our study represents the next important step in translational research for a miRNA-based AD test.
DOI der Erstveröffentlichung: 10.1016/j.gpb.2019.09.004
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-356899
hdl:20.500.11880/32549
http://dx.doi.org/10.22028/D291-35689
ISSN: 1672-0229
Datum des Eintrags: 8-Mär-2022
Bezeichnung des in Beziehung stehenden Objekts: Supplementary material
In Beziehung stehendes Objekt: https://ars.els-cdn.com/content/image/1-s2.0-S1672022919301573-mmc1.pptx
https://ars.els-cdn.com/content/image/1-s2.0-S1672022919301573-mmc2.xls
https://ars.els-cdn.com/content/image/1-s2.0-S1672022919301573-mmc3.xls
https://ars.els-cdn.com/content/image/1-s2.0-S1672022919301573-mmc4.xlsx
https://ars.els-cdn.com/content/image/1-s2.0-S1672022919301573-mmc5.xls
Fakultät: M - Medizinische Fakultät
MI - Fakultät für Mathematik und Informatik
Fachrichtung: M - Humangenetik
M - Medizinische Biometrie, Epidemiologie und medizinische Informatik
MI - Informatik
Professur: M - Univ.-Prof. Dr. Andreas Keller
M - Prof. Dr. Eckhart Meese
MI - Prof. Dr. Hans-Peter Lenhof
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
1-s2.0-S1672022919301573-main.pdf1,63 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons