Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-35689
Titel: | Machine Learning to Detect Alzheimer's Disease from Circulating Non-coding RNAs |
VerfasserIn: | Ludwig, Nicole Fehlmann, Tobias Kern, Fabian Gogol, Manfred Maetzler, Walter Deutscher, Stephanie Gurlit, Simone Schulte, Claudia von Thaler, Anna-Katharina Deuschle, Christian Metzger, Florian Berg, Daniela Suenkel, Ulrike Keller, Verena Backes, Christina Lenhof, Hans-Peter Meese, Eckart Keller, Andreas |
Sprache: | Englisch |
Titel: | Genomics, Proteomics & Bioinformatics |
Bandnummer: | 17 |
Heft: | 4 |
Seiten: | 430-440 |
Verlag/Plattform: | Elsevier |
Erscheinungsjahr: | 2019 |
Freie Schlagwörter: | miRNAs Neurodegeneration Alzheimer’s disease Biomarker Non-coding RNAs Gene regulation |
DDC-Sachgruppe: | 610 Medizin, Gesundheit |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | Blood-borne small non-coding (sncRNAs) are among the prominent candidates for blood-based diagnostic tests. Often, high-throughput approaches are applied to discover biomarker signatures. These have to be validated in larger cohorts and evaluated by adequate statistical learning approaches. Previously, we published high-throughput sequencing based microRNA (miRNA) signatures in Alzheimer’s disease (AD) patients in the United States (US) and Germany. Here, we determined abundance levels of 21 known circulating miRNAs in 465 individuals encompassing AD patients and controls by RT-qPCR. We computed models to assess the relation between miRNA expression and phenotypes, gender, age, or disease severity (Mini-Mental State Examination; MMSE). Of the 21 miRNAs, expression levels of 20 miRNAs were consistently de-regulated in the US and German cohorts. 18 miRNAs were significantly correlated with neurodegeneration (Benjamini-Hochberg adjusted P < 0.05) with highest significance for miR-532-5p (Benjamini-Hochberg adjusted P = 4.8 × 10−30). Machine learning models reached an area under the curve (AUC) value of 87.6% in differentiating AD patients from controls. Further, ten miRNAs were significantly correlated with MMSE, in particular miR-26a/26b-5p (adjusted P = 0.0002). Interestingly, the miRNAs with lower abundance in AD were enriched in monocytes and T-helper cells, while those up-regulated in AD were enriched in serum, exosomes, cytotoxic t-cells, and B-cells. Our study represents the next important step in translational research for a miRNA-based AD test. |
DOI der Erstveröffentlichung: | 10.1016/j.gpb.2019.09.004 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-356899 hdl:20.500.11880/32549 http://dx.doi.org/10.22028/D291-35689 |
ISSN: | 1672-0229 |
Datum des Eintrags: | 8-Mär-2022 |
Bezeichnung des in Beziehung stehenden Objekts: | Supplementary material |
In Beziehung stehendes Objekt: | https://ars.els-cdn.com/content/image/1-s2.0-S1672022919301573-mmc1.pptx https://ars.els-cdn.com/content/image/1-s2.0-S1672022919301573-mmc2.xls https://ars.els-cdn.com/content/image/1-s2.0-S1672022919301573-mmc3.xls https://ars.els-cdn.com/content/image/1-s2.0-S1672022919301573-mmc4.xlsx https://ars.els-cdn.com/content/image/1-s2.0-S1672022919301573-mmc5.xls |
Fakultät: | M - Medizinische Fakultät MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | M - Humangenetik M - Medizinische Biometrie, Epidemiologie und medizinische Informatik MI - Informatik |
Professur: | M - Univ.-Prof. Dr. Andreas Keller M - Prof. Dr. Eckhart Meese MI - Prof. Dr. Hans-Peter Lenhof |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
1-s2.0-S1672022919301573-main.pdf | 1,63 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons