Please use this identifier to cite or link to this item: doi:10.22028/D291-35635
Title: Some Geometric Properties of Nonparametric $$\mu $$-Surfaces in $$\pmb {{\mathbb {R}}}^3$$
Author(s): Bildhauer, Michael
Fuchs, Martin
Language: English
Title: The Journal of Geometric Analysis
Volume: 32
Issue: 4
Publisher/Platform: Springer Nature
Year of Publication: 2022
Free key words: Generalized minimal surfaces
μ-Ellipticity
Nonparametric surfaces
Variational problems from geometry
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: Smooth solutions of the equation div g |∇u| |∇u| ∇u = 0 are considered generating nonparametric μ-surfaces in R3, whenever g is a function of linear growth satisfying in addition ∞ 0 sg (s)ds < ∞. Particular examples are μ-elliptic energy densities g with exponent μ > 2 (see Bild hauer and Fuchs in Rend Mat Appl 22(7):249–274, 2003) and the minimal surfaces belong to the class of 3-surfaces. Generalizing the minimal surface case we prove the closedness of a suitable differential form Nˆ ∧dX. As a corollary we find an asymptotic conformal parametrization generated by this differential form.
DOI of the first publication: 10.1007/s12220-021-00819-6
Link to this record: urn:nbn:de:bsz:291--ds-356359
hdl:20.500.11880/32510
http://dx.doi.org/10.22028/D291-35635
ISSN: 1559-002X
1050-6926
Date of registration: 2-Mar-2022
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Martin Fuchs
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
Bildhauer-Fuchs2022_Article_SomeGeometricPropertiesOfNonpa.pdf337,95 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons