Please use this identifier to cite or link to this item: doi:10.22028/D291-35583
Title: Boundary element methods for the wave equation based on hierarchical matrices and adaptive cross approximation
Author(s): Seibel, Daniel
Language: English
Title: Numerische Mathematik
Volume: 150
Issue: 2
Publisher/Platform: Springer Nature
Year of Publication: 2021
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: Time-domain Boundary Element Methods (BEM) have been successfully used in acoustics, optics and elastodynamics to solve transient problems numerically. How ever, the storage requirements are immense, since the fully populated system matrices have to be computed for a large number of time steps or frequencies. In this article, we propose a new approximation scheme for the Convolution Quadrature Method powered BEM, which we apply to scattering problems governed by the wave equa tion. We use H 2-matrix compression in the spatial domain and employ an adaptive cross approximation algorithm in the frequency domain. In this way, the storage and computational costs are reduced significantly, while the accuracy of the method is preserved.
DOI of the first publication: 10.1007/s00211-021-01259-8
Link to this record: urn:nbn:de:bsz:291--ds-355833
hdl:20.500.11880/32460
http://dx.doi.org/10.22028/D291-35583
ISSN: 0945-3245
0029-599X
Date of registration: 24-Feb-2022
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
Seibel2022_Article_BoundaryElementMethodsForTheWa.pdf2,84 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons