Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-35526
Titel: DynaVenn: web-based computation of the most significant overlap between ordered sets
VerfasserIn: Amand, Jérémy
Fehlmann, Tobias
Backes, Christina
Keller, Andreas
Sprache: Englisch
Titel: BMC Bioinformatics
Bandnummer: 20
Heft: 1
Verlag/Plattform: BMC
Erscheinungsjahr: 2019
Freie Schlagwörter: Venn diagrams
Web server
Hypergeometric test
List overlap
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Background: In many research disciplines, ordered lists are compared. One example is to compare a subset of all significant genes or proteins in a primary study to those in a replication study. Often, the top of the lists are compared using Venn diagrams, ore more precisely Euler diagrams (set diagrams showing logical relations between a finite collection of different sets). If different cohort sizes, different techniques or algorithms for evaluation were applied, a direct comparison of significant genes with a fixed threshold can however be misleading and approaches comparing lists would be more appropriate. Results: We developed DynaVenn, a web-based tool that incrementally creates all possible subsets from two or three ordered lists and computes for each combination a p-value for the overlap. Respectively, dynamic Venn diagrams are generated as graphical representations. Additionally an animation is generated showing how the most significant overlap is reached by backtracking. We demonstrate the improved performance of DynaVenn over an arbitrary cut-off approach on an Alzheimer’s Disease biomarker set. Conclusion: DynaVenn combines the calculation of the most significant overlap of different cohorts with an intuitive visualization of the results. It is freely available as a web service at http://www.ccb.uni-saarland.de/dynavenn.
DOI der Erstveröffentlichung: 10.1186/s12859-019-3320-5
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-355263
hdl:20.500.11880/32425
http://dx.doi.org/10.22028/D291-35526
ISSN: 1471-2105
Datum des Eintrags: 22-Feb-2022
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Medizinische Biometrie, Epidemiologie und medizinische Informatik
Professur: M - Univ.-Prof. Dr. Andreas Keller
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
s12859-019-3320-5.pdf778,64 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons