Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-35043
Titel: | Investigation of MALDI-TOF Mass Spectrometry for Assessing the Molecular Diversity of Campylobacter jejuni and Comparison with MLST and cgMLST: A Luxembourg One-Health Study |
VerfasserIn: | Feucherolles, Maureen Nennig, Morgane Becker, Sören L. Martiny, Delphine Losch, Serge Penny, Christian Cauchie, Henry-Michel Ragimbeau, Catherine |
Sprache: | Englisch |
Titel: | Diagnostics |
Bandnummer: | 11 |
Heft: | 11 |
Verlag/Plattform: | MDPI |
Erscheinungsjahr: | 2021 |
Freie Schlagwörter: | Campylobacter MALDI-TOF MS subtyping MLST cgMLST machine learning |
DDC-Sachgruppe: | 610 Medizin, Gesundheit |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | There is a need for active molecular surveillance of human and veterinary Campylobacter infections. However, sequencing of all isolates is associated with high costs and a considerable workload. Thus, there is a need for a straightforward complementary tool to prioritize isolates to sequence. In this study, we proposed to investigate the ability of MALDI-TOF MS to pre-screen C. jejuni genetic diversity in comparison to MLST and cgMLST. A panel of 126 isolates, with 10 clonal complexes (CC), 21 sequence types (ST) and 42 different complex types (CT) determined by the SeqSphere+ cgMLST, were analysed by a MALDI Biotyper, resulting into one average spectra per isolate. Concordance and discriminating ability were evaluated based on protein profiles and different cut-offs. A random forest algorithm was trained to predict STs. With a 94% similarity cut-off, an AWC of 1.000, 0.933 and 0.851 was obtained for MLSTCC, MLSTST and cgMLST profile, respectively. The random forest classifier showed a sensitivity and specificity up to 97.5% to predict four different STs. Protein profiles allowed to predict C. jejuni CCs, STs and CTs at 100%, 93% and 85%, respectively. Machine learning and MALDI-TOF MS could be a fast and inexpensive complementary tool to give an early signal of recurrent C. jejuni on a routine basis. |
DOI der Erstveröffentlichung: | 10.3390/diagnostics11111949 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-350436 hdl:20.500.11880/32052 http://dx.doi.org/10.22028/D291-35043 |
ISSN: | 2075-4418 |
Datum des Eintrags: | 16-Dez-2021 |
Bezeichnung des in Beziehung stehenden Objekts: | Supplementary Material |
In Beziehung stehendes Objekt: | https://www.mdpi.com/2075-4418/11/11/1949/s1 |
Fakultät: | M - Medizinische Fakultät |
Fachrichtung: | M - Infektionsmedizin |
Professur: | M - Prof. Dr. Sören Becker |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
diagnostics-11-01949-v3.pdf | 2,14 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons