Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-34651
Titel: | Adversarial content manipulation for analyzing and improving model robustness |
VerfasserIn: | Shetty, Rakshith Ramesh |
Sprache: | Englisch |
Erscheinungsjahr: | 2021 |
Freie Schlagwörter: | computer vision generative models |
DDC-Sachgruppe: | 600 Technik 004 Informatik |
Dokumenttyp: | Dissertation |
Abstract: | The recent rapid progress in machine learning systems has opened up many real-world applications --- from recommendation engines on web platforms to safety critical systems like autonomous vehicles. A model deployed in the real-world will often encounter inputs far from its training distribution. For example, a self-driving car might come across a black stop sign in the wild. To ensure safe operation, it is vital to quantify the robustness of machine learning models to such out-of-distribution data before releasing them into the real-world. However, the standard paradigm of benchmarking machine learning models with fixed size test sets drawn from the same distribution as the training data is insufficient to identify these corner cases efficiently. In principle, if we could generate all valid variations of an input and measure the model response, we could quantify and guarantee model robustness locally. Yet, doing this with real world data is not scalable. In this thesis, we propose an alternative, using generative models to create synthetic data variations at scale and test robustness of target models to these variations. We explore methods to generate semantic data variations in a controlled fashion across visual and text modalities. We build generative models capable of performing controlled manipulation of data like changing visual context, editing appearance of an object in images or changing writing style of text. Leveraging these generative models we propose tools to study robustness of computer vision systems to input variations and systematically identify failure modes. In the text domain, we deploy these generative models to improve diversity of image captioning systems and perform writing style manipulation to obfuscate private attributes of the user. Our studies quantifying model robustness explore two kinds of input manipulations, model-agnostic and model-targeted. The model-agnostic manipulations leverage human knowledge to choose the kinds of changes without considering the target model being tested. This includes automatically editing images to remove objects not directly relevant to the task and create variations in visual context. Alternatively, in the model-targeted approach the input variations performed are directly adversarially guided by the target model. For example, we adversarially manipulate the appearance of an object in the image to fool an object detector, guided by the gradients of the detector. Using these methods, we measure and improve the robustness of various computer vision systems -- specifically image classification, segmentation, object detection and visual question answering systems -- to semantic input variations. Der schnelle Fortschritt von Methoden des maschinellen Lernens hat viele neue Anwendungen ermöglicht – von Recommender-Systemen bis hin zu sicherheitskritischen Systemen wie autonomen Fahrzeugen. In der realen Welt werden diese Systeme oft mit Eingaben außerhalb der Verteilung der Trainingsdaten konfrontiert. Zum Beispiel könnte ein autonomes Fahrzeug einem schwarzen Stoppschild begegnen. Um sicheren Betrieb zu gewährleisten, ist es entscheidend, die Robustheit dieser Systeme zu quantifizieren, bevor sie in der Praxis eingesetzt werden. Aktuell werden diese Modelle auf festen Eingaben von derselben Verteilung wie die Trainingsdaten evaluiert. Allerdings ist diese Strategie unzureichend, um solche Ausnahmefälle zu identifizieren. Prinzipiell könnte die Robustheit “lokal” bestimmt werden, indem wir alle zulässigen Variationen einer Eingabe generieren und die Ausgabe des Systems überprüfen. Jedoch skaliert dieser Ansatz schlecht zu echten Daten. In dieser Arbeit benutzen wir generative Modelle, um synthetische Variationen von Eingaben zu erstellen und so die Robustheit eines Modells zu überprüfen. Wir erforschen Methoden, die es uns erlauben, kontrolliert semantische Änderungen an Bild- und Textdaten vorzunehmen. Wir lernen generative Modelle, die kontrollierte Manipulation von Daten ermöglichen, zum Beispiel den visuellen Kontext zu ändern, die Erscheinung eines Objekts zu bearbeiten oder den Schreibstil von Text zu ändern. Basierend auf diesen Modellen entwickeln wir neue Methoden, um die Robustheit von Bilderkennungssystemen bezüglich Variationen in den Eingaben zu untersuchen und Fehlverhalten zu identifizieren. Im Gebiet von Textdaten verwenden wir diese Modelle, um die Diversität von sogenannten Automatische Bildbeschriftung-Modellen zu verbessern und Schreibtstil-Manipulation zu erlauben, um private Attribute des Benutzers zu verschleiern. Um die Robustheit von Modellen zu quantifizieren, werden zwei Arten von Eingabemanipulationen untersucht: Modell-agnostische und Modell-spezifische Manipulationen. Modell-agnostische Manipulationen basieren auf menschlichem Wissen, um bestimmte Änderungen auszuwählen, ohne das entsprechende Modell miteinzubeziehen. Dies beinhaltet das Entfernen von für die Aufgabe irrelevanten Objekten aus Bildern oder Variationen des visuellen Kontextes. In dem alternativen Modell-spezifischen Ansatz werden Änderungen vorgenommen, die für das Modell möglichst ungünstig sind. Zum Beispiel ändern wir die Erscheinung eines Objekts um ein Modell der Objekterkennung täuschen. Dies ist durch den Gradienten des Modells möglich. Mithilfe dieser Werkzeuge können wir die Robustheit von Systemen zur Bildklassifizierung oder -segmentierung, Objekterkennung und Visuelle Fragenbeantwortung quantifizieren und verbessern. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-346515 hdl:20.500.11880/31874 http://dx.doi.org/10.22028/D291-34651 |
Erstgutachter: | Schiele, Bernt |
Tag der mündlichen Prüfung: | 27-Jul-2021 |
Datum des Eintrags: | 20-Okt-2021 |
Bemerkung/Hinweis: | Co-supervised by Prof. Mario Fritz |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Professur: | MI - Keiner Professur zugeordnet |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
thesis.pdf | thesis pdf file | 46,26 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons