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ABSTRACT
The recent rapid progress in machine learning systems has opened up many real-world
applications — from recommendation engines on web platforms to safety critical systems
like autonomous vehicles. A model deployed in the real-world will often encounter inputs
far from its training distribution. For example, a self-driving car might come across a
black stop sign in the wild. To ensure safe operation, it is vital to quantify the robustness
of machine learning models to such out-of-distribution data before releasing them into
the real-world. However, the standard paradigm of benchmarking machine learning
models with fixed size test sets drawn from the same distribution as the training data is
insufficient to identify these corner cases efficiently. In principle, if we could generate
all valid variations of an input and measure the model response, we could quantify and
guarantee model robustness locally. Yet, doing this with real world data is not scalable.

In this thesis, we propose an alternative, using generative models to create synthetic
data variations at scale and test robustness of target models to these variations. We
explore methods to generate semantic data variations in a controlled fashion across
visual and text modalities. We build generative models capable of performing controlled
manipulation of data like changing visual context, editing appearance of an object
in images or changing writing style of text. Leveraging these generative models we
propose tools to study robustness of computer vision systems to input variations and
systematically identify failure modes. In the text domain, we deploy these generative
models to improve diversity of image captioning systems and perform writing style
manipulation to obfuscate private attributes of the user.

Our studies quantifying model robustness explore two kinds of input manipulations,
model-agnostic and model-targeted. The model-agnostic manipulations leverage human
knowledge to choose the kinds of changes without considering the target model being
tested. This includes automatically editing images to remove objects not directly relevant
to the task and create variations in visual context. Alternatively, in the model-targeted
approach the input variations performed are directly adversarially guided by the target
model. For example, we adversarially manipulate the appearance of an object in the
image to fool an object detector, guided by the gradients of the detector. Using these
methods, we measure and improve the robustness of various computer vision systems
– specifically image classification, segmentation, object detection and visual question
answering systems – to semantic input variations.
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ZUSAMMENFASSUNG
Der schnelle Fortschritt von Methoden des maschinellen Lernens hat viele neue An-
wendungen ermöglicht – von Recommender-Systemen bis hin zu sicherheitskritischen
Systemen wie autonomen Fahrzeugen. In der realen Welt werden diese Systeme oft mit
Eingaben außerhalb der Verteilung der Trainingsdaten konfrontiert. Zum Beispiel könnte
ein autonomes Fahrzeug einem schwarzen Stoppschild begegnen. Um sicheren Betrieb
zu gewährleisten, ist es entscheidend, die Robustheit dieser Systeme zu quantifizieren,
bevor sie in der Praxis eingesetzt werden. Aktuell werden diese Modelle auf festen
Eingaben von derselben Verteilung wie die Trainingsdaten evaluiert. Allerdings ist diese
Strategie unzureichend, um solche Ausnahmefälle zu identifizieren. Prinzipiell könnte
die Robustheit “lokal” bestimmt werden, indem wir alle zulässigen Variationen einer
Eingabe generieren und die Ausgabe des Systems überprüfen. Jedoch skaliert dieser
Ansatz schlecht zu echten Daten.

In dieser Arbeit benutzen wir generative Modelle, um synthetische Variationen
von Eingaben zu erstellen und so die Robustheit eines Modells zu überprüfen. Wir
erforschen Methoden, die es uns erlauben, kontrolliert semantische Änderungen an
Bild- und Textdaten vorzunehmen. Wir lernen generative Modelle, die kontrollierte
Manipulation von Daten ermöglichen, zum Beispiel den visuellen Kontext zu ändern,
die Erscheinung eines Objekts zu bearbeiten oder den Schreibstil von Text zu ändern.
Basierend auf diesen Modellen entwickeln wir neue Methoden, um die Robustheit
von Bilderkennungssystemen bezüglich Variationen in den Eingaben zu untersuchen
und Fehlverhalten zu identifizieren. Im Gebiet von Textdaten verwenden wir diese
Modelle, um die Diversität von sogenannten Automatische Bildbeschriftung-Modellen
zu verbessern und Schreibtstil-Manipulation zu erlauben, um private Attribute des
Benutzers zu verschleiern.

Um die Robustheit von Modellen zu quantifizieren, werden zwei Arten von Eingabe-
manipulationen untersucht: Modell-agnostische und Modell-spezifische Manipulationen.
Modell-agnostische Manipulationen basieren auf menschlichem Wissen, um bestimmte
Änderungen auszuwählen, ohne das entsprechende Modell miteinzubeziehen. Dies
beinhaltet das Entfernen von für die Aufgabe irrelevanten Objekten aus Bildern oder
Variationen des visuellen Kontextes. In dem alternativen Modell-spezifischen Ansatz
werden Änderungen vorgenommen, die für das Modell möglichst ungünstig sind. Zum
Beispiel ändern wir die Erscheinung eines Objekts um ein Modell der Objekterkennung
täuschen. Dies ist durch den Gradienten des Modells möglich. Mithilfe dieser Werkzeuge
können wir die Robustheit von Systemen zur Bildklassifizierung oder -segmentierung,
Objekterkennung und Visuelle Fragenbeantwortung quantifizieren und verbessern.
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1INTRODUCTION
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1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

What I cannot create, I do not understand

Richard Feynman

Imagination plays an important role in human intelligence. It enables us to simulate
new scenarios in our mind and plan how we can act in these scenarios. It is the
key driver of the human ability to innovate. But it also serves an introspective

function. Through imagination, we can relive previous experiences and examine the
effect of the action we took. This kind of testing within our imagined scenarios helps us
to identify how we could improve our behavior to get a better outcome. Visualization is
an important component of imagination, where we can picture a scene/object in various
configurations, including previously unseen ones. This enables us to be unfazed when
encountering a novel object in the real world. For example, our vision system does not
break down and is easily able to recognize the blue stop sign in Figure 1.1, although we
might not have seen it before.

Generative models are the counterpart of human imagination in the field of machine
learning. They aim to learn the data distribution and allow us to sample new data points
from this distribution. Recent years have seen great progress in generative modeling in
both image and text domains. This includes the rise of training frameworks like generative
adversarial networks (GAN) and variational auto-encoders (VAE), and architectures
improvements like instance normalization (Ulyanov et al., 2016; Huang and Belongie,
2017) and transformers Vaswani et al. (2017). With these improvements, machine
learning models are able to generate highly realistic looking images of structured domains
like human faces1 (Karras et al., 2019) and coherent text paragraphs (Brown et al., 2020).
They have been widely used in creative applications like photo colorization (Nazeri et al.,
2018), animating humans (Chan et al., 2019) and even generating art (Klingemann,
2018). Can we also use these generative models to build an introspective function similar
to human imagination and use it to improve our machine learning models? We explore
this question in the thesis and present works which positively answer this question in

1https://thispersondoesnotexist.com/, created by Phil Wang, last accessed 22.05.2021
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2 chapter 1. introduction

A typical stop-sign Unsual stop-signs found in the wild A synthetic stop-sign cre-
ated by our model

Figure 1.1: Atypical data points often cause failures in machine learning models. These
failures are not often caught they often underrepresented in i.i.d. test sets.

different settings.
We study controlled content editing models in the thesis – i.e. generative models

which edit the input data to create different variants of the input. This includes a
model which edits the style of the input text in Chapter 4, a model which edits input
images to remove a desired object class in Chapter 5 and a model which changes the
appearance of an object in Chapter 8 (rightmost stop-sign in Figure 1.1 is created by
this model). By focusing on editing inputs, rather than creating whole new samples,
these models can create realistic synthetic variations in domains where unconditional
generative models often struggle (e.g. crowded scenes). As a result, we can leverage
these models to tackle problems where sample quality is important. There is however a
critical challenge in building these content editing models – the lack of paired training
data. Often it is not possible to find datasets with two variants of a sample which can
supervise these models. Throughout the thesis we show that with a combination of
generative adversarial network training and the right domain specific constraints we can
tackle this challenge and train content editing models with unpaired data.

The thesis is divided into two parts. In Part I we study generative models for text.
Our first work presented in Chapter 3 aims to improve diversity of image captioning
systems. We propose a GAN based training framework to better leverage multiple
human captions available for each image and show that it can significantly improve the
diversity of caption generators. This work lays the technical foundations for our next
work in Chapter 4, which builds a text style transfer model with the aim to edit the
input sentence to obfuscate private attributes of the author, like age and gender. To
learn this style transfer from unpaired data, we adversarially train our model against
private attribute classifiers, and impose language smoothness and semantic consistency
constraints on the output.

Part II of the thesis explores the broad theme of using image editing models to test
and improve robustness of computer vision systems. Modern computer vision models
have seen rapid improvement in performance over the last decade powered by deep
learning and large annotated datasets. Benchmarks like ImageNet (Deng et al., 2009)
which helped drive this progress are nearly saturated (Beyer et al., 2020). However
this performance improvement has largely been on test sets which are independent and
identically distributed (i.i.d.) to the training data. I.I.D testing is the dominant paradigm
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in computer vision, with most benchmarks following this setup — e.g. ImageNet for
classification, COCO (Lin et al., 2014a) dataset for image captioning, object detection,
Cityscapes (Cordts et al., 2016) for semantic segmentation. When this i.i.d. assumption
is broken – either by small changes like addition of noise, adversarial perturbation or by
semantic changes like changes in context, unusual object appearances like in Figure 1.1 –
computer vision models show significant drop in performance. This is a major bottleneck
for real-world deployment of vision models. The problem is exacerbated by the fact
that the standard i.i.d. benchmarks do not capture this problem and we do not have
systematic methods to quantify the robustness of our vision models to such input
distribution shifts.

In Part II, we propose creating controlled image variants through synthesis and use
them to test robustness of computer vision systems. We start by building an object
removal model in Chapter 5. In Chapters 6 and 7 this model is used to create context
variations by removing co-occurring objects and test the robustness of image classification,
semantic segmentation and visual question answering models. By comparing the target
model’s responses on both original and edited images, we can measure how much it
relies on spurious context correlations to make its predictions. In Chapter 8, we build a
generative model which edits the appearance of an object while keeping its pose intact.
This model is then used to create tailored hard test samples for an object detector model,
by finding adversarial appearances. Finally, in Chapter 9, we aim to find worst-case
weather configurations for a scene which break the semantic segmentation model, by
adversarially optimizing simulator parameters.

The chapter is organized as follows. In Section 1.1 we will detail the contributions
of the thesis, discussing the challenges and our solutions to overcome them. Then,
Section 1.2 provides an outline of each chapter in the thesis.

1.1 contributions of the thesis

This thesis makes contributions in two main directions: generative models for content
manipulation and measuring and improving robustness of computer vision systems. We
develop generative models of text and image content, focusing on controlled automatic
editing. We apply the text generative models to improve diversity of image captioning
systems and build a privacy preserving text editing tool. The image generative models
are leveraged to automatically generate hard test samples to stress-test computer vision
systems and find failure cases. In the course of our studies we make contributions
in both generative modelling and measuring as well as improving model robustness.
The following subsections will detail the challenges in the two above directions and
the contributions we make to address these challenges. Summary of the chapter-wise
contributions can be found in Section 1.2.



4 chapter 1. introduction

1.1.1 Automatic content manipulation

Content manipulation models are a particular class of generative models where the aim
is to synthesize variations of an input data point. This problem has been studied for a
long-time in the context of interactive image editing with the user in the loop to provide
critical inputs (Oh et al., 2001). These systems power many real-world applications
with the most popular being the Photoshop tool2, enabling creative uses of interactive
image editing. If similar content editing could be performed without the need of human
interaction, it could potentially enable a wider array of applications. For example a
model which can remove all occurrences of an object category from the input image
can be used to create automatic filters for removing privacy violating (Orekondy et al.,
2018), copyright infringing or inappropriate content. This can also enable automatic
testing suites, which systematically cover different variations in the input image and
test downstream models for robustness to these variations. In this thesis we explore
two such applications, privacy preserving text editing (Chapter 4) and large-scale
testing of computer vision systems (Chapters 6 to 9), by developing automatic content
manipulation systems. Generally, these systems start from an input data point, and
automatically edit one desired attribute of this input while retaining the rest intact.
Specifically, we target three different kinds of content manipulation. In Chapter 4, we
build models to edit input text to change the writing style to mask private attributes
of the author while retaining the semantic content. In Chapters 5 and 8, we focus on
local image editing where we learn to remove an object and change appearance of an
object respectively, without affecting the rest of the image. And finally in Chapter 9,
we manipulate the weather in a scene while the objects are retained identical.

1.1.1.1 Learning content editing models

Challenges. Generally, building machine-learning based content editing models is
challenging due to the lack of paired training data. This is true for all content editing
models discussed in this thesis (Chapters 4, 5 & 8). Specifically, we do not have access
to two versions of the input where only the desired attribute changes. For example, we
do not have different variants of the same street scene image with only the cars removed.
Such paired data is prohibitively expensive to obtain, requiring significant manual effort.
Hence, simple supervised training cannot be applied to train these generative models.
Contributions. Despite lack of paired data, we have another source of supervisory
signal available. There is a lot of data showing the presence or absence of an attribute
(e.g. different street scenes with and without cars). We can use this data to train
attribute classifiers, which can in-turn supervise our generator via adversarial training.
Specifically, we can adversarially train the generator to modify an attribute by training it
to “fool” the corresponding attribute classifier. We exploit this same underlying principle,
with necessary domain specific modifications, to build our text style transfer model in
Chapter 4, object removal model in Chapter 5 and object appearance editor in Chapter 8.
Exploiting adversarial training to overcome lack of supervision is not a new idea in itself.

2https://www.adobe.com/products/photoshop.html, Adobe Inc., last accessed 22.05.2021

https://www.adobe.com/products/photoshop.html
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In particular, it has been applied in tasks like in domain adaptation (Ganin et al., 2016;
Shrivastava et al., 2017) to align representations between source and target domains, and
in semi-supervised learning (Dong and Lin, 2019). In this thesis, we demonstrate the
usefulness and versatility of this approach for content editing, by building adversarially
trained models for text and visual modalities. However, adversarial supervision is often
under-constrained and alone is not sufficient to arrive at the right solution. In the
following subsections we will discuss how combining adversarial losses with the additional
task-specific constraints enables us to reach the desired solutions.

1.1.1.2 Adversarially trained text generators

Challenges. While adversarial training lets us learn from unpaired data, it is not
straightforward to apply it on text generators due to the discrete output space. The
output of text generators are discrete words which are sampled from a distribution over
the vocabulary. This sampling process is not differentiable and therefore we cannot
directly apply backpropagation to compute gradients of the generator weights w.r.t. the
discriminator/attribute classifier output. While Yu et al. (2016) attempt to address this
by using the REINFORCE rule (Williams, 1992) to approximate the gradients, it was
only demonstrated on simple synthetic sequences.
Contributions. Our first work in this direction is the image captioning model in
Chapter 3, aimed at improving caption diversity by using generative adversarial net-
work (GAN) based training. Human written captions in image captioning datasets
like COCO exhibit significant diversity in terms of sentence structure, vocabulary and
topics referred to. However, most state-of-the-art image captioning systems tend to use
generic language, overusing frequent words and n-grams. We address this by utilizing
the multiple human-captions available for each image, and training our caption genera-
tor to better match the distribution of this caption set, by using adversarial training.
Our discriminator network is designed to collectively score a set of generated captions,
considering both similarity to the input image and mutual similarity of the captions in
the set. This allows the discriminator to easily detect lack of diversity, and penalize it if
it deviates from the human captions. Unlike prior work, we use the Gumbel-Softmax
approximation (Jang et al., 2016) to estimate the gradients for the discrete output. We
demonstrate that our model significantly improves the diversity of generated captions,
while maintaining the accuracy as judged by humans.

Next, using similar adversarial training techniques, in Chapter 4 we build a translation
model (A4NT) which edits the input text to obfuscate the private attributes of the
author. The goal of the obfuscation is to prevent authorship attribution methods
from inferring private attributes like age, gender or identity of the author from the
writing style. Our A4NT model learns to perform this style transformation using only
unpaired data, by adversarially training to fool private attribute classifiers. Using just
an adversarial loss to train the generator leads to the model outputting incoherent
sentences which fool attribute classifiers. To address this, we propose two additional
losses to measure unconditional language coherence and semantic consistency with the
original input sentence. Combined, these losses teach our A4NT model to make small
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changes which fool private attribute classifiers, while mostly preserving the semantics of
the input text, as verified by automatic metrics and human evaluation.

1.1.1.3 Controlled image manipulation

Challenges. While there has been great progress in generative modelling of images,
often the focus is on building models capable of sampling new data points either
unconditionally (Goodfellow et al., 2014; Karras et al., 2019) or conditioned on certain
attributes (Choi et al., 2018; Chen and Koltun, 2017). This works well in structured
domains like human faces or street scenes, but generating images of general crowded
scenes is still very challenging (Johnson et al., 2018; Ashual and Wolf, 2019). The
complexity of the task increases greatly with unstructured scenes due to diversity in
camera viewpoint, object location, poses and free-form interactions between objects.
As a result, current state-of-the-art generative models still have low fidelity on general
image datasets like COCO (Chen et al., 2015), exhibiting artifact-filled image outputs
with objects lacking clearly defined parts (e.g. see figure 4 in Hinz et al. (2020)). This
is especially of concern in our target application, where we are trying to synthesize
hard test samples. We do not want image quality to be a confounder when drawing
conclusions from testing on generated data.
Contributions. Controlled image manipulation gets around this complexity problem,
by focusing on editing only one aspect of the input image. Our approach enables us to
generate realistic variations of complex scenes found in large datasets like COCO and
ADE20k (Zhou et al., 2017). This allows us to conduct our image manipulation based
robustness analysis on the same standard benchmarks, instead of on a toy subset. Our
first contribution in controlled image manipulation is the object removal model presented
in Chapter 5. We develop a weakly-supervised image editor which, using only image-level
labels, learns to remove all instances of the desired object class from the input image.
We train the object removal model using unpaired data by adversarially training it to
fool object classifiers. To avoid degenerate solutions where the generator uses adversarial
patterns to fool the classifiers, we propose a two-staged generator architecture. It
consists of a mask generator and an in-painter network which jointly learn to mask-out
objects and fill in the background to produce realistic image respectively. To incorporate
knowledge about object shapes, we encourage the mask generator to match a prior
distribution by using a second unconditional mask discriminator. Our experiments
show that this adversarial prior makes the masks more compact and improves the
removal quality. We also show that our model achieves good removal performance
without using any location annotations, matching the performance of a fully-supervised
Mask-RCNN (He et al., 2017) based solution.

Our second contribution in this direction is the object appearance editing model we
discuss in Chapter 8. Our model learns to disentangle shape and appearance of an object,
allowing it to synthesize new object appearance while maintaining the original pose.
This disentanglement is achieved by deploying two image encoders, one to represent
shape and other to represent appearance, while a decoder learns to reconstruct the
object using these latent codes. A binary part-segmentation layer acts as a bottleneck
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→ →

Original image Image with car removed Initial Weather Adversarial Weather

→ →

Segmentation on original Segmentation breaks down Segmentation on original Segmentation breaks down

Chapter 6: Context sensitivity Chapter 9: Adversarial weather synthesis

→ →

Question: How many zebras are there ? Detector: Fire hydrant Detector: No object
Original Answer: 2 Answer on edited: 2

Chapter 7: Spurious correlations in VQA Chapter 8: Adversarial weather synthesis

Figure 1.2: Overview of the different types of visual variations which are created in the
thesis. We study the robustness of different computer vision systems to these variations.

at the shape encoder’s output, forcing it to focus only on representing the objects
geometry. Qualitative results show that our model is able to smoothly interpolate object
appearance without affecting the pose. Our model enables us to synthesize targeted
corner cases for an object detector as discussed in the next section.

1.1.2 Measuring model robustness

To confidently deploy computer vision systems in the real world, especially in safety-
critical applications like autonomous driving, we need methods to measure their robust-
ness to expected input variations w.r.t. the training data. These variations can be surface
level, such as from the camera noise, changes in lighting or adversarial perturbations. It
can also be semantic, such as uncommon appearance of an object instance, or changes
in visual context. Current fixed dataset driven model development and evaluation
has drawbacks when it comes to measuring and improving model robustness to input
variations. In the next subsections we will discuss the challenges and our contributions
in this direction. Note that, when we refer to model robustness or robustness in rest of
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the thesis, we mean robustness to input variations.
Challenges. The common approach to test machine learning models is to use shared
fixed test sets, drawn from independent and identically distribution (i.i.d.) as the training
data. Often, when benchmarking models on finite i.i.d. test-sets, input variations can
be hard to capture and control for. For example, while our test set might contain a
black car in day-light setting, it might not have a black car in night-setting. Using this
finite test set, we will not capture the failure mode where our object detector fails to
find black cars in the night, due to low-contrast. While this particular example can be
addressed by collecting more data, it becomes infeasible to identify such failure cases
at-scale through data collection. Possible test-cases explode combinatorially with the
number of objects in the scene and their attributes.

We can categorize the efforts to study robustness into two main directions: a) dataset-
level and b) surface-level variations. In dataset-level robustness, we study how well a
model trained on dataset A works on a related dataset B or a set of related datasets,
which contain some changes of the input distribution. Domain adaptation (Ben-David
et al., 2010; Wang and Deng, 2018) and domain generalization (Muandet et al., 2013)
can be classified under this umbrella. Works like Zendel et al. (2018) also fall under
this category where a curated test-set for semantic segmentation is created to measure
robustness to a specific set of hazard criteria. They often study semantic variations like
context (Beery et al., 2018), or appearance distribution changes (e.g. MNIST to SVHN).
While dataset-level approaches allow us to obtain average estimates for performance
variations under input shifts, it is hard to measure sample-level robustness; i.e. will my
detector recognize this black car in the night.

The second class of works look at sample-level robustness to surface-level variations.
Commonly studied are adversarial robustness (Carlini and Wagner, 2017) and robustness
to a set of noise patterns (Hendrycks and Dietterich, 2019). They allow us to test
robustness for every sample, but they are often restricted to easy-to-implement surface-
level changes. Robustness to semantic variations like context or appearance is not
explored at a sample-level.

Contributions We explore employing image editing models to automatically create
test samples and find weaknesses in computer vision systems. The key idea here is to
automatically create multiple variants of test samples using the controlled image editing
models and measure the sensitivity of the target vision system to these variations. We
explore two approaches to create these edits – first being model-agnostic which relies on
human knowledge to decide what to change, and second being model-specific where the
editing is guided by the particular model being tested. We study three variations in
particular: 1) visual context (Chapters 6 and 7), 2) object appearance (Chapter 8) and
3) scene-level variations caused by weather (Chapter 9). See Figure 1.2 for a preview
of these variations. Visual context editing is performed in a model-agnostic manner,
by removing selected objects from the images. On the other hand, object appearance
and weather variations are tailored to the target models by adversarially optimizing the
synthesis.

Our first contribution in Chapter 6 studies the robustness of image classification and
semantic segmentation models to changes in context created by co-occurring objects.
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We employ the object removal model from Chapter 5 to remove one category at a time
from an image, and measure the effect on the recognition/segmentation performance on
other objects. Examples of this object removal based test-cases are shown in Figure 1.2.
This analysis helps discover several undesirable associations learned by the model. For
example, performance of road and sidewalk segmentation drops significantly when cars
are absent. We extend this analysis to visual-question answering systems in Chapter 7.
In addition to removing objects which are unrelated to the question-answer pair, we
also explore removing objects which are referred to in the question-answer pair. First
case is simple to measure, we expect the model’s answer to remain unchanged when we
remove unrelated objects. However, the second case is only applied to specific question
categories where we can use simple rules to determine how a model’s answer should
change when a critical object is removed. For example, this applies to questions involving
counting objects or inquiring of presence of an object. Applying this object removal
based analysis to three state-of-the-art VQA approaches with different architectures,
we show that modular architectures are more robust to contextual changes. In both
Chapters 6 and 7 we show that robustness can be improved by augmenting the training
data with edited samples.

In Chapter 8, we build an object appearance editing model, and use this to synthesize
objects with rare appearance targeted to fool the object detector being tested. The
targeting is achieved by adversarially optimizing the appearance latent code in the
generator to minimize the detector’s confidence. In order to avoid degenerate solutions
and keep the appearance plausible to a human observer, we propose to constrain the
latent code optimization to the stay within the convex-hull spanned by guiding object
instances. Our experiments show that this approach can create hard test samples which
cause significant drop in detector performance, while still looking realistic to the human
eye. An example of such a test case is shown in Figure 1.2. Adding these semantic
adversarial examples to training, helps improve robustness and generalization to related
datasets.

In Chapter 9, we study the robustness of semantic segmentation models to global
visual changes caused by weather variations. Due to the lack of large datasets with
good coverage of weather variations, we explore synthesizing these using the CARLA
simulator (Dosovitskiy et al., 2017). We find the worst-case weather setting for a given
scene targeted to the segmentation model being tested, by adversarially optimizing the
weather parameters. Since we cannot backpropagate through the simulator, we study
effectiveness of finite-differences based gradient estimation and gradient-free black-box
optimization techniques, to perform the adversarial optimization. Our experiments
show that semantic segmentation models show a significant drop in performance on
adversarially crafted weather conditions, compared to those seen in standard fixed test
sets.

1.2 outline of the thesis

We now summarize each chapter of the thesis, noting the publications to which each
chapter corresponds. The thesis is divided into two parts. Part I (Chapters 3 - 4)
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discusses two generative models in the text domain, focusing on diversity and privacy.
Part II (Chapters 5 - 9) deals with generative models of images and leveraging them to
study robustness of various computer vision systems.
Chapter 2: Related work. This chapter reviews the prior works relating to different
topics covered in this thesis. In particular, we review related works on generative
modeling for images and text, studies examining the bias and robustness issues in
machine learning models and research utilizing data manipulation as a mechanism to
improve model robustness and protect author privacy.
Chapter 3: Improving Diversity in Image Captioning. In this chapter we propose
a GAN based training framework to improve the diversity of image captioning systems.
Learning from a discriminator designed to operate on sets of captions, our caption
generator learns to better match the statistics of human written captions. This approach
leads to marked improvement in diversity metrics while maintaining the accuracy of
captions.

The content in this chapter was published in ICCV 2017 with the title Speaking the
Same Language: Matching Machine to Human Captions by Adversarial Training (Shetty
et al., 2017). Rakshith Shetty was the lead author of this publication. Marcus Rohrbach
contributed with extracting visual features and running the human evaluation.
Chapter 4: Author Anonymization via Text Style Transfer. This chapter
presents a model to protect privacy sensitive attributes of the author from automatic
authorship attribution methods. Our model regenerates the input text in a different
style, thereby hiding authors identity, while preserving the semantics. By training this
model in a GAN framework we overcome the need for paired training of the same text
in different styles.

The content in this chapter was published in USENIX 2018 with the title A4NT : Au-
thor Attribute Anonymity by Adversarial Training of Neural Machine Translation (Shetty
et al., 2018b). Rakshith Shetty was the lead author of this publication.
Chapter 5: Adversarial Editing for Object Removal. In this chapter we discuss
a method for automatically removing objects from the input image with using only
image-level supervision. Our main contributions here are a two-staged architecture with
a mask generator and an inpainter, which avoids degenerate solutions and an adversarial
mask prior which enables the model to learn object shapes. We demonstrate that our
weakly-supervised model is able to achieve same levels of removal accuracy as a model
fully supervised with pixel-level segmentation.

The content in this chapter was published in NeurIPS 2018 with the title Adversarial
Scene Editing: Automatic Object Removal from Weak Supervision (Shetty et al., 2018a).
Rakshith Shetty was the lead author of this publication.
Chapter 6: Measuring Context Sensitivity with Scene Editing. We study the
robustness of image classification and semantic segmentation systems to changes in
context in this chapter. We use the model developed in Chapter 5 to remove selected
objects by image editing and measure the response of target computer vision system.
Our analysis reveals that vision systems sometimes exploit spurious co-occurrence
relationship found in the data and fail when these co-occurring objects are removed. We
demonstrate data augmentation with our generated data can be used to alleviate this
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problem to an extent.
The content in this chapter was published in CVPR 2020 with the title Not Using

the Car to See the Sidewalk–Quantifying and Controlling the Effects of Context in
Classification and Segmentation (Shetty et al., 2019). Rakshith Shetty was the lead
author of this publication.
Chapter 7: Studying spurious correlations in VQA. Similar to the previous
chapter, we study the robustness of visual question answering models to changes in
context through object removal. But going beyond Chapter 6, we also explore how
consistent VQA models are under image editing which changes the answer. This analysis
is conducted on three VQA variants and reveal that modular architectures are more
robust to such contextual changes.

The content in this chapter was published in CVPR 2020 with the title Towards
Causal VQA: Revealing and Reducing Spurious Correlations by Invariant and Covariant
Semantic Editing (Agarwal et al., 2020). Rakshith Shetty was the second author of this
work and contributed the image editing model, planning the experiments and writing
the paper. The work was carried out as part of the Master’s Thesis of Vedika Agarwal,
under the instruction of Rakshith Shetty and Mario Fritz.
Chapter 8: Semantic Adversarial Attacks on Appearance. In this chapter, we
quantify the robustness of object detectors to variations in object appearance. First we
design a generative model capable of altering appearance of an object without affecting
its pose. This model is used to adversarially edit the appearance of an object to fool
the target detector, thereby synthesizing unusual appearances. We devise constraints to
keep the generated appearance plausible to the human eye. This gives us a method to
automatically mine difficult samples for testing and training the detector.

The content in this chapter was published in ECCV 2020 with the title Towards
Automated Testing and Robustification by Semantic Adversarial Data Generation (Shetty
et al., 2020). Rakshith Shetty was the lead author of this publication.
Chapter 9: Semantic Adversarial Attacks on Weather. In this chapter, we
study robustness of semantic segmentation models to global visual changes caused
by weather variations in a simulator setting. To find the worst-case weather setting
for a scene which breaks segmentation models, we adversarially optimize the weather
configuration parameters of the CARLA simulator against the target model. We
show that through gradient-free optimization we can find weather settings which cause
catastrophic segmentation failures, causing performance drop of 20-30 mIoU points on
different models.

Rakshith Shetty was the lead contributor of the work presented in this chapter.
Chapter 10: Conclusions. We summarize the key-takeaways from the thesis and
discuss future directions of research in automated testing through generative models.
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This thesis develops generative models for controlled editing of image and text data
modalities. We study the application of these generative models to measure and
improve robustness of computer vision systems, and build privacy preserving

tools. In this chapter we will discuss important prior works relating to each of these
aspects. Section 2.1 presents the work in generative model research, focusing on the
directions closely related to text and image editing models developed in this thesis.
Section 2.2 discusses prior works which highlight the sensitivity of machine learning
models to data distribution shifts. We will contrast prior works with our approach
of using generative models to simulate these distribution shifts and quantify model
robustness at scale Finally Section 2.3 will discuss the applications of data manipulation
through generative models to build privacy preserving tools for authorship obfuscation
and improving robustness of computer vision models.

2.1 models for controlled data manipulation

In machine learning, given a training data distribution, a generative model aims to
sample new data points from this distribution. Some approaches aim to explicitly model
the data likelihood, for example Boltzmann machines (Hinton et al., 1986), Variational
Autoencoders (VAE) (Kingma and Welling, 2013), PixelRNN (Van Den Oord et al., 2016),
PixelCNN (Van den Oord et al., 2016) and Normalizing Flows (Rezende and Mohamed,
2015). Another class of methods focuses only on sampling from the distribution and
model the data likelihood implicitly, for example Generative Adversarial Networks
(GAN) (Goodfellow et al., 2014). Until recently, GANs handily outperformed explicit
likelihood methods like VAEs on high dimensional image data in terms of sample fidelity.

13
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Since sample quality is more important than the explicit measure of likelihood for
the applications considered in this thesis, we utilize the GAN framework to build our
generative models.

2.1.1 Generative adversarial networks

Generative adversarial networks (GAN) (Goodfellow et al., 2014) are a framework
where a generator learns by competing in an adversarial game against a discriminator
network. The discriminator learns to distinguish between the real data samples and
the “fake” generated samples. The generator is optimized to fool the discriminator into
classifying generated samples as real. The generator can be conditioned on additional
information to learn conditional generative models (Mirza and Osindero, 2014). GANs
have been very effective for image generation with rapid progress in recent years. While
early works (Denton et al., 2015; Radford et al., 2016) were only able to generate low
resolution images, improvements in loss functions and architectures have led to models
which can generate very high resolution images. For example, the Wasserstein loss
proposed in Arjovsky and Bottou (2017) led to more stable training and the architectural
improvements like progressive growing (Karras et al., 2018) and style-based generators
(Karras et al., 2019, 2020) enabled scaling up to higher resolutions. This rapid progress
has enabled various applications of image generation including photo colorization (Nazeri
et al., 2018), facial attribute manipulation (Choi et al., 2018) and even contemporary
art (Klingemann, 2018). In this thesis, we develop GAN based generative models for
various tasks. In Chapters 3 and 4 we develop GAN based text generation models to
improve captioning diversity and perform privacy preserving editing respectively. In
Chapter 5, a GAN based editor model is trained to remove objects from images. Finally
in Chapter 8, a GAN based model is trained to edit appearance of objects without
affecting their pose.

2.1.2 Generative adversarial networks for discreet data

While GAN models are popular in image generation tasks, they are not often used in
text generation. In image generation the output domain is continuous and one can
backpropagate through the generator output in a straightforward manner. However,
when generating text, output is discrete and it is unclear how to best back-propagate
the loss through the sampling mechanism. A few works have looked at generating
discrete distributions using GANs. Luc et al. (2016) aim to generate a semantic image
segmentation with discrete semantic labels at each pixel by operating the discriminator
directly on the generator softmax probabilities. Yu et al. (2016) use the REINFORCE
trick to train an unconditional text generator using the GAN framework but diversity
of the generated text is not considered. Contemporarily to our work in Chapter 3, a
discrete GAN based model is used in dialogue generation in Li et al. (2017), achieving
good results in human evaluation compared to standard maximum likelihood based
training. Another contemporary work by Dai et al. (2017) applies this idea to image
caption generation, improving caption diversity. While Li et al. (2017); Yu et al. (2016);
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Dai et al. (2017) rely on the REINFORCE rule (Williams, 1992), our works in Chapters 3
and 4 use the Gumbel Softmax approximation (Jang et al., 2016; Maddison et al., 2016)
to enable backpropagation through the discrete samples. This idea was introduced by
Kusner and Hernández-Lobato (2016) for generating simple discrete sequences. However,
our work in Chapter 3 extends this idea to natural text in the form of human written
captions and shows that GAN training improves the diversity of captions generated
(see Section 3.2.1 for further discussion). Follow up work by Fedus et al. (2018) further
improves GAN based text generation by using actor-critic training and fill-in-the-blank
tasks.

Adversarial training also enables learning text manipulations like style or sentiment
transfer without the need for paired training data, by directly training to fool an attribute
classifier (Shen et al., 2017; Fu et al., 2018). We exploit this idea in Chapter 4 to build
a model to perform preserving transformations on input text, with minimal changes to
the semantics.

2.1.3 Image manipulation with unpaired data

Conditional GANs have led to significant recent progress in many image manipulation
tasks. Here, the generator takes an additional input apart from the noise distribution
and learns to sample from the conditional distribution of the data given the inputs. Early
works applied this idea to generate class conditional digits (Mirza and Osindero, 2014),
text conditioned images (Reed et al., 2016) and semi-supervised learning (Springenberg,
2016). A conditional GAN based image-to-image translation system was developed
by Isola et al. (2016) to manipulate images using paired supervision data. Zhu et al.
(2017) alleviate the need for paired supervision using cycle constraints and demonstrated
translation between two different domains of unpaired images including (horse↔zebras)
and (summer↔winter). Similar cyclic reconstruction constraints were extended to
multiple domains to achieve facial attributes manipulation without paired data (Choi
et al., 2018). Nevertheless, these image manipulation works have been limited to object
centric images like faces (Choi et al., 2018) or constrained images like street scenes from
a single point of view (Zhu et al., 2017).

In our work in we move towards general scene-level manipulation, focusing on
controlled editing to remove objects (Chapter 5) and edit appearance of an object (Chap-
ter 8). Many prior works on scene-level images have focused on synthesizing entire
images conditioned on text (Reed et al., 2016; Huang et al., 2017b; Xu et al., 2018) and
scene-graphs (Johnson et al., 2018). But, the generated image quality on scene-level
images (Johnson et al., 2018) is still significantly worse than on structured data like
faces (Karras et al., 2018, 2019). In contrast, we focus on the manipulation of only parts
of images rather than full image synthesis and achieve better image quality and control.
This approach has been followed up in recent works and extended to more general ma-
nipulations like adding objects (Ntavelis et al., 2020) and editing scene-graphs (Dhamo
et al., 2020).
Object removal. Our model proposed in Chapter 5 is a two-staged architecture
with a mask-generator and image in-painter which jointly learn to remove the target
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object class. Older works specifically targeting object removal focus on algorithmic
improvements to in-painting while assuming users provide the object mask (Criminisi
et al., 2004; Hays and Efros, 2007; Mirkamali and Nagabhushan, 2015). One could
argue that object segmentation masks can be obtained by a standalone segmenter like
Mask-RCNN (He et al., 2017) and just in-paint this masked region to achieve removal.
However, this needs expensive mask annotation to supervise the segmentation networks
for every category of image entity one wishes to remove for example objects or brand
logos. Additionally, as we show in our experiments, even perfect segmentation masks
are not sufficient for perfect removal. They tend to trace the object shapes too closely
and leave object silhouettes giving away the object class. In contrast, our model learns
to perform removal by jointly optimizing the mask generator and the in-painter for the
removal task with only weak supervision from image-level labels. This joint optimization
allows the two components to cooperate and achieve removal performance on par with a
fully supervised segmenter based removal.

Unsupervised disentangling of appearance and pose. The architecture of our
appearance editing synthesizer network in Chapter 8 is based on unsupervised generative
models for disentangling object appearance and pose (Jakab et al., 2018; Lorenz et al.,
2019; Siarohin et al., 2019; Li et al., 2019). These works aim to manipulate pose and
appearance of objects independently by designing appropriate bottlenecks in representa-
tion to induce this disentanglement. However, they have so far been limited to single
object categories like persons or birds. Most similar to our design is the model by Lorenz
et al. (2019). Lorenz et al. (2019) use two separate encoders to create latent vectors of
pose and appearance, with a Gaussian keypoint bottleneck regulating the pose encoding
to carry only spatial information. The key difference in our work is that we propose
binary segmentation maps as the bottleneck, which scales better to a larger number of
diverse object classes seen in our experiments on COCO dataset.

2.2 bias and robustness in machine learning models

In this thesis we leverage generative models to study robustness of various machine
learning systems under data variations. This line of enquiry stems from prior works
which have highlighted sensitivity of machine learning models to different perturbations
to data, including addition of noise, simple transformations etc. This sensitivity arises
from models overfitting to the biases found in the finite datasets they are trained on.
In the following subsections, we will review prior works discussing robustness issues
in machine learning models. Starting from general machine learning systems, we will
narrow down on issues relating to the computer vision models that we deal with in the
thesis, including image classifiers, object detectors, image captioning and visual question
answering models.
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2.2.1 Robustness of machine learning models

While generalization to new data has always been the primary concern in machine
learning, often this new data is assumed to be drawn from the same distribution as
the training data (i.i.d.). I.I.D assumption is at the heart of generalization guarantees
provided by the Probably Approximately Correct (PAC) learning framework (Valiant,
1984). However, with the advent of deep learning, generalization to i.i.d. test sets has
seen rapid progress in many computer vision tasks (He et al., 2015). This has led to a
growing interest in understanding and improving the performance of these models under
data distribution shifts.

This problem has been studied from various perspectives, differing in the kind of
distribution shifts considered. In domain adaptation (Ben-David et al., 2010), the focus
is on transferring a model learned from a source domain to a target data collected from
a different domain (e.g. adapting an MNIST digit classifier to SVHN data). While
domain adaptation often focusses on overt changes (Wang and Deng, 2018), machine
learning models are also susceptible to more subtle changes like addition of a small
amount of noise, geometric transformations in images or test set resampling (Recht
et al., 2019, 2018). This is the focus of robustness literature and it is closely related to
our work. We refer the reader to Geirhos et al. (2020) for a comprehensive overview of
robustness related problems in deep learning from the perspective of short-cut learning.
Next we will discuss three categories of robustness — robustness to small noise patterns,
to changes in context and to semantic variations in data.

2.2.1.1 Robustness to corruptions and adversarial noise

Performance on different image corruptions has been proposed as a benchmark to quantify
robustness of image classifiers by Hendrycks and Dietterich (2019). This benchmark was
extended to include object detectors by Michaelis et al. (2019). These works demonstrate
that models which perform well on standard i.i.d. benchmarks like ImageNet (Deng
et al., 2009) and COCO (Lin et al., 2014a), show a large drop in performance under
different input corruptions like additive gaussian noise, shot noise, changes in brightness
etc. While these benchmarks consider fixed noise distributions, independent of the
model being tested, model specific adversarial noise can also cause failures in machine
learning models (Szegedy et al., 2014). By directly optimizing against the target model,
an adversary can craft a small additive noise pattern which is imperceptible to human
eye, but causes catastrophic failures in state-of-the art image classifiers (Szegedy et al.,
2014; Goodfellow et al., 2015; Carlini and Wagner, 2017). Adversarial attacks have
also shown to be effective against a wide variety of machine learning models including
object detectors (Xie et al., 2017), image segmenters (Hendrik Metzen et al., 2017)
and even text classifiers (Liang et al., 2018). In majority of adversarial attacks, the
patterns are designed to be small and invisible to humans. In our work in Chapter 8,
we show that the adversarial framework combined with a generative model can be used
to craft semantic adversarial examples, where large and visible changes are made to the
appearance of an object to fool an object detector while still remaining plausible to a
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human observer.

2.2.1.2 Robustness to semantic variations

Apart from small noise patterns, computer vision models have been shown to be sensitive
to geometric transformations of the input like translation and scaling (Azulay and Weiss,
2019) and rotations (Hamdi and Ghanem, 2019). Engstrom et al. (2019); Dumont et al.
(2018) show that these translations and rotations can also be crafted adversarially to fool
image classifiers. This is generalized to adversarial spatial deformations by Xiao et al.
(2018a); Alaifari et al. (2019). With simulated data and 3D rendering, models can also
be fooled by unusual object poses (Alcorn et al., 2019) and lighting (Liu et al., 2019).
Difficult natural “adversarial” examples where ImageNet classifiers fail was collected by
Hendrycks et al. (2021); Shankar et al. (2019). While Hendrycks et al. (2021) utilize
model confidence to mine failure cases through image search on the web, Shankar
et al. (2019) look for failure cases in long video frames. Both these approaches require
manual curation and verification, and hence are expensive. In an effort to create a
unified benchmark to measure robustness to semantic variations like rotations, viewpoint
and background, Barbu et al. (2019) propose a new test set called Objectnet which
controls for these attributes. Attempts to find failures by semantically changing object
appearance have been limited to parametric color distortions (Hosseini and Poovendran,
2018) and using a generative model for faces (Song et al., 2018) and digits (Stutz et al.,
2019).

Our work in Chapter 8, we go beyond these prior works in both scale and scope. We
target real data and propose a method to adversarially manipulate object appearances
to fool object detectors. Our approach leverages a generative model trained on the same
datasets and is fully automatic, allowing us to efficiently synthesize failure cases across
entire datasets. This gives us a method to quantify the robustness of an object detector
to appearance variations. Additionally, we demonstrate the effectiveness of our approach
on three large datasets with diverse object classes.

2.2.1.3 Overfitting to context

The importance of semantic context in visual recognition is well established with studies
showing that context can help humans recognize objects faster e.g. when dealing with
difficult low resolution images (Parikh et al., 2012; Barenholtz, 2014). In computer vision,
incorporating context information has been shown to improve performance in various
tasks including object recognition (Marszalek and Schmid, 2007; Torralba et al., 2010;
Rabinovich et al., 2007) and action recognition (Jain et al., 2015), object detection (Bell
et al., 2016) and segmentation (Zhang et al., 2018a). Early approaches built explicit
context models by incorporating co-occurrences (Rabinovich et al., 2007) and spatial
location statistics (Desai et al., 2011). Recently, explicit context modeling has been
replaced by deep convolutional neural network (CNN) encoders which summarize the
whole image into compact features. Classification and segmentation models, built on top
of these deep features, can exploit information about object and context to achieve good
performance (Long et al., 2015; Durand et al., 2016; Oquab et al., 2015). Approaches
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to improve the use of context in CNNs have been explored including using spatial
pyramids (Zhao et al., 2017a), atrous convolutions (Chen et al., 2018) and learning
context encoding with a separate neural network (Zhang et al., 2018a). While this
implicit context encoding with deep CNNs improves performance, it is less interpretable,
and it is hard to know if the models’ decisions are based on object or contextual evidence.

To understand the decision process in CNNs and the role of context, methods
have been proposed to inspect CNNs by visualizing salient regions for classification
decisions (Ribeiro et al., 2016; Zeiler and Fergus, 2014), and quantifying interpretability
of individual units (Bau et al., 2017). Petsiuk et al. (2018) propose erasing randomly
sampled pixels to visualize important regions for a black-box model’s decision. While
these visualization methods show salient regions, it is hard to reason about the importance
of individual context objects in models prediction. By adding out-of-context objects
into images Rosenfeld et al. (2018) show that object detection networks are brittle to
the presence of out-of-context objects. In Chapter 6, we propose a method to quantify
how much image classifiers and segmenters rely on context objects present in the image.
Our approach utilizes the object removal model we develop in Chapter 5, to edit input
images and remove objects. Comparing the network output under this change to its
prediction on original image enables us to quantify the sensitivity of classification and
segmentation models to context objects. Since it is an automated method, we perform
this analysis on entire datasets and discover interesting and undesirable dependencies
between classes. This approach has been extended to add more controls to the analysis
in recent work by Xiao et al. (2021).

2.2.2 Generic language production in image captioning

Image captioning is the task of generating a natural language description of an input
image. Early captioning models rely on first recognizing visual elements, such as objects,
attributes, and activities, and then generating a sentence using language models such
as a template model (Farhadi et al., 2010), n-gram model (Kulkarni et al., 2013), or
statistical machine translation (Rohrbach et al., 2013). Advances in deep learning have
led to end-to-end trainable models that combine deep convolutional networks to extract
visual features and recurrent networks to generate sentences (Donahue et al., 2015;
Vinyals et al., 2015; Karpathy and Fei-Fei, 2015). Though modern description models
are capable of producing coherent sentences which accurately describe an image, they
tend to produce generic sentences which are often replicated from the train set (Devlin
et al., 2015). Furthermore, an image can correspond to many valid descriptions and this
is reflected in the diversity of human written captions. However, at test time, sentences
generated with methods such as beam search are generally very similar. This lack of
diversity in language production partly occurs due to model amplifying the biases in the
dataset and overfitting to the most common words and phrases. This bias-amplification
can be dangerous, with models echoing and magnifying the gender biases present in the
current dataset (Hendricks et al., 2018; Zhao et al., 2017b).

Reviewing the training methods of image captioning models gives us a clue on
the source of this bias. The most common method is learning to predict a word wt
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conditioned on an image and all previous ground truth words. At test time, each word
is predicted conditioned on an image and previously predicted words. Consequently, at
test time predicted words may be conditioned on words that were incorrectly predicted
by the model. By only training on ground truth words, the model suffers from exposure
bias (Ranzato et al., 2016) and cannot effectively learn to recover when it predicts an
incorrect word during training. To avoid this, Bengio et al. (2015) propose a scheduled
sampling training scheme which begins by training with ground truth words, but then
slowly conditions generated words on words previously produced by the model. However,
Huszar (2015) shows that the scheduled sampling algorithm is inconsistent and the
optimal solution under this objective does not converge to the true data distribution.
Taking a different direction, Ranzato et al. (2016) propose to address the exposure bias
by gradually mixing a sequence level loss (BLEU score) using REINFORCE rule with the
standard maximum likelihood training. Several other works have followed this up with
using reinforcement learning based approaches to directly optimize the evaluation metrics
like BLEU, METEOR and CIDER (Rennie et al., 2016; Liu et al., 2017). However,
directly optimizing for the evaluation metrics further reduces diversity (Wang and Chan,
2019). Since all current evaluation metrics use n-gram matching to score the captions,
captions using more frequent n-grams are likely to achieve better scores than the ones
using rarer and more diverse n-grams.

We study this problem in Chapter 3 and focus on improving diversity of generated
captions. Our method achieves this by altering the training procedure and formulating
the caption generator as a generative adversarial network. We design a discriminator
that explicitly encourages generated captions to be diverse and indistinguishable from
human captions. The generator is trained with an adversarial loss with this discriminator.
Consequently, our model generates captions that better reflect the way humans describe
images while maintaining similar correctness as determined by human evaluation.

Some prior works by Vijayakumar et al. (2016); Li et al. (2016) attempt to increase
sentence diversity during inference, by integrating a diversity promoting heuristic into
beam search. Taking a different approach, Wang et al. (2016b) increase the diversity in
caption generation by training an ensemble of caption generators each specializing in
different portions of the training set. Most similar to our work are concurrent works
which use GANs for dialogue generation (Li et al., 2017) and image caption generation
(Dai et al., 2017). While Li et al. (2017); Yu et al. (2016); Dai et al. (2017) rely on the
reinforcement rule (Williams, 1992) to handle backpropagation through the discrete
samples, we use the Gumbel Softmax approximation (Jang et al., 2016). See Section 3.2.1
for further discussion. Li et al. (2017) aim to generate a diverse dialogue of multiple
sentences, while we aim to produce diverse sentences for a single image. Additionally,
Li et al. (2017) use both the adversarial and the maximum likelihood loss in each step
of the generator training. In contrast we train the generator with only adversarial loss
after pre-training. Concurrent work by Dai et al. (2017) also applies GANs to diversify
generated image captions. Apart from using the Gumbel Softmax as discussed above,
our work differs from Dai et al. (2017) in the discriminator design and quantitative
evaluation of the generator diversity.
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2.2.3 Overfitting in visual question answering

Amplification of data bias and lack of robustness to visual changes is also observed in the
popular Visual question answering (VQA) task. VQA task requires a model to answer a
question based on the input image. There has been a growing interest in VQA (Kafle
and Kanan, 2017; Wu et al., 2016a) recently, driven by the availability of large-scale
datasets (Goyal et al., 2017; Hudson and Manning, 2019; Antol et al., 2015; Malinowski
and Fritz, 2014; Deng et al., 2009) and deep learning based advances in both vision
and natural language processing. This interest has led to development of diverse model
architectures for VQA (Lu et al., 2015; Malinowski et al., 2015; Ma et al., 2016; Gao
et al., 2015), including simple models based on CNN+LSTMs (Lecun et al., 1998; He
et al., 2016; Hochreiter and Schmidhuber, 1997), models using attention networks (Lu
et al., 2016; Kazemi and Elqursh, 2017; Yang et al., 2016) and compositional module
networks (Andreas et al., 2016; Hu et al., 2017, 2018; Hudson and Manning, 2018). In
our work, we pick a representative model from each of these three design philosophies
and study their robustness to semantic visual variations.

Existing VQA models often exploit language and contextual priors to predict the
answers (Zhang et al., 2016; Manjunatha et al., 2019; Goyal et al., 2017; Agrawal et al.,
2018). To understand how much do these models actually see and understand, various
works have been proposed to study the robustness of models under different variations
in the input modalities. Agrawal et al. (2018) show that changing the prior distributions
for the answers across training and test sets significantly degrades models’ performance.
Ray et al. (2019); Shah et al. (2019) study the robustness of the VQA models towards
linguistic variations in the questions. They show how different re-phrasings of the
questions can cause the model to switch their answer predictions. In contrast, we study
the robustness of VQA models to semantic manipulations in the image and propose
a data augmentation technique to make the models robust. In order to counter the
language priors in the VQA v1 dataset, Goyal et al. (2017) balance every question by
collecting complementary images with a different answer. By construction, language
priors are significantly weaker in the VQA v2 dataset.

While the above works study sensitivity of VQA models to language variations,
sensitivity of these models to visual variations is not explored well. In Chapter 7 we
study this problem, with the aid of a generative image editing model. By removing
objects unrelated to the answer in a controlled fashion, we test if the VQA models
still correctly answer the question. Similarly, by removing objects which predictably
change the answer, we can test if a model’s answer is consistent with the new image.
This allows us to quantify model robustness and compare different architectures on
both performance and robustness metrics. A recent work (Gokhale et al., 2020) has
extended this idea to include color editing as well as question manipulation into the
testing arsenal.
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2.3 data manipulation for privacy and improving model
robustness

In this section we will discuss two applications of controlled data manipulations using
generative models. First we will look at the task of authorship obfuscation in Section 2.3.1,
where one tries to alter the writing style inorder to make it harder for an adversary to
identify the author. This relates to our work in Chapter 4. Then we look at how data
manipulation can be used to create useful training data and improve model robustness
in Section 2.3.2. This relates to our works in Chapters 6, 7 and 8.

2.3.1 Privacy preserving data manipulation

In Chapter 4, we develop an authorship obfuscation method A4NT, using a machine
translation network trained in a generative adversarial network framework. The model
performs controlled rewriting of the input text, altering its style to mask the authors
private attributes, while trying to preserve its meaning. In this subsection we will provide
the necessary context by reviewing related works for author attribute detection (our
adversaries), authorship obfuscation (prior work) and machine translation (basis of our
A4NT network).
Authorship and attribute detection. Authorship attribution methods use the
stylistic properties of input text (e.g. grammar, synonym preference etc.) to infer the
author’s identity or some private attributes of the author like age and gender (Mosteller
and Wallace, 1963). Machine learning based approaches, where a set of text features are
input to a classifier which learns to predict the author, have been popular in recent author
attribution works (Stamatatos, 2009). These methods have been shown to work well on
large datasets (Narayanan et al., 2012), for duplicate author detection (Afroz et al., 2014)
and even on non-textual data like code (Caliskan-Islam et al., 2015). Stylometric models
can also be applied to determine private author attributes like age or gender (Argamon
et al., 2009). Classical author attribution methods rely on a predefined set of features
extracted from the input text (Abbasi and Chen, 2008). Recently deep-learning methods
have been applied to learn to extract the features directly from data (Bagnall, 2015;
Ruder et al., 2016). Bagnall (2015) use a multi-headed recurrent neural network (RNN)
to train a generative language model on each author’s text and use the model’s perplexity
on the test document to predict the author. Alternatively, Ruder et al. (2016) use
convolutional neural network (CNN) to train author classifiers. To show generality
of our A4NT network, we test it against both RNN and CNN based author attribute
classifiers in Chapter 4.
Authorship obfuscation. Authorship obfuscation methods are adversarial in nature
to stylometric methods of author attribution; they try to change the style of the input
text so that the author identity is not discernible. The majority of prior works on
author attribution are semi-automatic (Kacmarcik and Gamon, 2006; McDonald et al.,
2012), where the system suggests authors to make changes to the document by analyzing
the stylometric features. The few available automatic obfuscation methods have relied
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on general rephrasing methods like generic machine translation (Keswani et al., 2016)
or on predefined text transformations (Karadzhov et al., 2017). Round-trip machine
translation, where input text is translated to multiple languages one after the other
until it is translated back to the source language, is proposed as an automatic method of
obfuscation in Keswani et al. (2016). In a recent work Karadzhov et al. (2017) obfuscate
text by moving the stylometric features towards the average values on the dataset by
applying pre-defined transformations on input text. In Chapter 4, we propose the first
method to achieve fully automatic obfuscation using text style transfer. This style
transfer is not pre-defined but learnt directly from data optimized for fooling attribute
classifiers. This allows us to apply our model across datasets without extra engineering
effort.

Machine translation. The task of style-transfer of text data shares similarities with
the machine translation problem. Both involve mapping an input text sequence onto an
output text sequence. Style transfer can be thought of as machine translation on the
same language.

Large end-to-end trainable neural networks have become a popular choice in machine
translation (Bahdanau et al., 2014; Wu et al., 2016b). These methods are generally
based on sequence-to-sequence recurrent models (Sutskever et al., 2014) consisting of
two networks, an encoder which encodes the input sentence into a fixed size vector
and a decoder which maps this encoding to a sentence in the target language. We
base our A4NT network architecture on the word-level sequence-to-sequence language
model (Sutskever et al., 2014). Neural machine translation systems are trained with
large amounts of paired training data. However, in our setting, obtaining paired data of
the same text in different writing styles is not viable. We overcome the lack of paired
data by casting the task as matching style distributions instead of matching individual
sentences. Specifically, our A4NT network takes an input text from a source distribution
and generates text whose style matches the target attribute distribution. This is learnt
without paired data using distribution matching methods. This reformulation allows us
to demonstrate the first successful application of the machine translation models to the
obfuscation task.

Adversarial attacks in text domain. Since we are training a network to fool
attribute classifiers, it is related to methods which perform adversarial attacks against
text classifiers. Recent works have shown that one can also fool NLP classifiers by
deleting, adding or replacing few salient words (Samanta and Mehta, 2017; Liang et al.,
2018) and by adding whole sentences unrelated to the topic of the document (Jia and
Liang, 2017). However, while the focus of these works is to fool the NLP classifiers
with producing realistic text, there is no consideration to whether the meaning of the
input text is preserved. Additionally the transformations performed are restricted to
the predefined classes like add, remove or replace, with independently tuned heuristics
for each of these transformations. In contrast, we propose a machine translation model
which automatically learns to transform the input text appropriately to fool the attribute
classifiers, while aiming to preserve the meaning of the input text.
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2.3.2 Improving robustness through data manipulation

Controlled data manipulation can also be used to improve model robustness to data
variations. A simple approach is to create hard examples through manipulation which
can be added to augment the training data and improve the model performance to these
variations. We apply this approach of generative model aided data augmentation in our
work in Chapters 6, 7, 8 and 9. This is similar in spirit to standard data augmentation
techniques, popular in deep learning since its early days (Krizhevsky et al., 2012). But,
transformations applied in standard data augmentations are usually global (applies
to entire image), assume label invariance (i.e. image label does not change with the
transformation) and are agnostic to the target model. In our work we break these
assumptions. Chapter 6 explores data augmentation with local editing by removing
objects. Chapter 7 breaks label-invariance assumption by removing objects to change
the answer in VQA. Finally, Chapter 8 performs model-specific data augmentation by
creating hard examples tailored to the target model. In the next subsections we review
some recent data augmentation methods which aim to improve model generalization
and robustness. We would like to note here that there are other paradigms to improve
robustness of machine learning models which focus on the model training and loss
functions used. This includes distributionally robust optimization (Sagawa et al.,
2020) where one tries to minimize the worst-case training error over a set of allowed
distributional shifts, invariant risk minimization (Arjovsky et al., 2019) which attempts
to learn data representations that are simultaneously optimal across different data
subsets and causal regularization (Heinze-Deml and Meinshausen, 2020) which penalizes
network variance across different data points that share the same label and identity.
Our work, in contrast, focusses on the data side; finding difficult variants of the data
and exposing the model to them through data augmentation.

2.3.2.1 Data augmentation for VQA

Data Augmentation has been used in VQA to improve a model’s performance either in
terms of accuracy (Kafle et al., 2017) or robustness against linguistic variations (Ray
et al., 2019; Shah et al., 2019). Kafle et al. (2017) generated new questions by using
existing semantic annotations and a generative approach via recurrent neural network.
They showed that augmenting these questions gave a boost of around 1.5% points in
accuracy. Shah et al. (2019) propose a cyclic-consistent training scheme where they
generate different rephrasing of the question (based on the answer predicted by the
model) and train the model such that answer predictions across the generated and the
original question remain consistent. Ray et al. (2019) propose a data augmentation
module that automatically generates entailed (or similar-intent) questions for a source
QA pair and fine-tunes the VQA model if the VQA’s answer to the entailed question is
consistent with the source QA pair.

In our work in Chapter 7, we augment the training data with images where context
objects are removed through automatic image editing. While some of these removals
are designed not to affect the answer, for specific question types like counting, we also
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remove objects which change the answer in a controllable way. There have been some
recent works which follow up and extend this idea. Gokhale et al. (2020) perform a
broader range of image editing to include color-based questions in the augmentation.
Teney et al. (2020) propose gradient supervision to better exploit the counterfactual
samples created by image editing. Liang et al. (2020) apply contrastive losses between
the original and counterfactual samples to learn better cross-modal embeddings and
improve VQA performance on the VQA-CP dataset (Agrawal et al., 2018).

2.3.2.2 Data augmentation for classification and object detection

Data augmentation techniques like random-flipping, cropping, affine transforms, bright-
ness and contrast variations have been part of computer vision toolbox for a long-
time (Lecun et al., 1998; Simard et al., 2003). While many of these transformations
are applied globally to the image, DeVries and Taylor (2017) propose cutting out ran-
dom boxes from the image to force the network to use all the available information.
Cubuk et al. (2019) develop a meta-learning framework to learn the best series of data
augmentation transformations directly from the data. Focus here is still improving the
model’s performance on i.i.d. test sets. Hendrycks et al. (2019) leverage the data trans-
formations learnt by AutoAugment (Cubuk et al., 2019) to improve model robustness.
By mixing different augmentations to create different versions of the same data point,
they regularize the network response on these image versions to build invariances. This
approach is shown to improve model robustness to common corruptions (Hendrycks and
Dietterich, 2019). Geirhos et al. (2019) apply generative model based data augmentation,
where style-transfer is applied on training data to improve robustness of the network.
Hendrycks et al. (2020); Taori et al. (2020) provide a critical analysis of these approaches
to improve model robustness. In Chapter 6 we apply our object removal tool to create
hard examples with changes in context, and augment the training data. We demonstrate
that this approach improves model generalization to a new dataset with objects in
unusual contexts.

A related research area is the data augmentation for object detection that focuses on
altering individual objects (Wang et al., 2017; Dwibedi et al., 2017; Dvornik et al., 2018;
Tripathi et al., 2019; Wang et al., 2019a). An early work by Wang et al. (2017) uses an
adversary to partially mask objects to create hard occlusions. Objects are transferred
onto new backgrounds for data augmentation with a cut-paste mechanism in the work
by Dwibedi et al. (2017). Dvornik et al. (2018) refine this by also heeding to the context
for picking a location to paste objects. Yet, this does not take the object pose into
account. Tripathi et al. (2019) take the cut and paste approach further by training a
network to predict the worst case position, rotation and scale of the added object to fool
the detector. In our work in Chapter 8, we utilize a generative model to resynthesize
the appearance of entire objects to fool the targeted detector, while preserving original
context and pose. Thus our synthesis process allows wider range of semantic changes
compared to occlusions, and better preserves realism and image context compared to
the cut-and-paste approaches. We compare our approach to a recent work on data
augmenting the object detector by switching instances of objects (Wang et al., 2019a).
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While Wang et al. (2019a) circumvent the context issue by switching instances in-place
through shape matching, it does not allow generating targeted hard examples. We also
find that our approach is complementary to global data augmentations learnt in Cubuk
et al. (2019).



Part I
Generative Language Models for Diversity

and Privacy

Generative modeling has seen great progress in recent years with the popularization
of models like Generative Adversarial Networks (GANs) and Variational Auto En-
coders (VAEs). Starting from blurry low-resolution images generated in the original
work by Goodfellow et al. (2014), models which can generate high fidelity two mega-
pixel images have been developed (Karras et al., 2019). However, these techniques
have not widely been used in the text domain due the output space being discreet,
making it difficult to backpropagate through sampling. In this part of the thesis, we
develop GAN-based text generation models, which overcome the discreetness problem by
adopting the gumbel-softmax reparameterization trick (Jang et al., 2016). We employ
these models for two applications which exploit the strengths of GAN-based training,
improving diversity of image captioning systems and learning to perform style editing
with unpaired data.

In Chapter 3, we develop an image captioning model trained in the GAN framework.
By designing the discriminator to score a set of generated captions, instead of a single
one, it learns penalize the lack of diversity or accuracy in the generator. The generator
learns to better match the diversity statistics of the human captions, leading to significant
improvement over the baseline. In Chapter 4, we use similar techniques to design a
text style translation network which is adversarially trained to rewrite input text to
mask private author attributes. By using the GAN framework we overcome the need for
paired data of the same text in different styles. Instead, our A4NT network learns to
perform the style transfer by fooling authorship attribution networks, and additional
loss functions designed to keep the output text natural and maintain the semantics of
the input text.
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In this chapter we see how language diversity of image captioning systems can be
improved through an adversarial training framework. While accuracy of image
captioning systems has improved greatly in recent years, machine and human

captions are still quite distinct. A closer look reveals that this is due to the deficiencies
in the generated word distribution, vocabulary size, and strong bias in the generators
towards frequent phrases. Furthermore, humans – rightfully so – generate multiple,
diverse captions, due to the inherent ambiguity in the captioning task which is not often
reflected in automatic captioning systems.

To address these challenges, we change the training objective of the caption gen-
erator from reproducing ground-truth captions to generating a set of captions that
is indistinguishable from human generated captions. Instead of handcrafting such a
learning target, we employ adversarial training in combination with an approximate
Gumbel-Softmax sampler to implicitly match the generated distribution to the human
one. While our method achieves comparable performance to the state-of-the-art in
terms of the correctness of the captions, we generate a set of diverse captions, that are
significantly less biased and match the word statistics better in several aspects.
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3.1 introduction

Image captioning systems have a variety of applications ranging from media retrieval
and tagging to assistance for the visually impaired. In particular, models which combine
state-of-the-art image representations based on deep convolutional networks and deep
recurrent language models have led to ever increasing performance on evaluation metrics
such as CIDEr (Vedantam et al., 2015) and METEOR (Denkowski and Lavie, 2014a) as
can be seen e.g. on the COCO image Caption challenge leaderboard (COCO, 2017).

Despite these advances, it is often easy for humans to differentiate between machine
and human captions – particularly when observing multiple captions for a single image.
As we analyze in this chapter, this is likely due to artifacts and deficiencies in the statistics
of the generated captions, which is more apparent when observing multiple samples.
Specifically, we observe that state-of-the-art systems frequently “reveal themselves” by
generating a different word distribution and using smaller vocabulary. Further scrutiny
reveals that generalization from the training set is still challenging and generation is
biased to frequent fragments and captions.

Also, today’s systems are evaluated to produce a single caption. Yet, multiple
potentially distinct captions are typically correct for a single image – a property that is
reflected in human ground-truth. This diversity is not equally reproduced by state-of-
the-art caption generators (Vijayakumar et al., 2016; Li et al., 2016).

Therefore, our goal is to make image captions less distinguishable from human ones –
similar in the spirit to a Turing Test. We also embrace the ambiguity of the task and
extend our investigation to predicting sets of captions for a single image and evaluating
their quality, particularly in terms of the diversity in the generated set. In contrast,
popular approaches to image captioning are trained with an objective to reproduce the
captions as provided by the ground-truth.

Instead of relying on handcrafting loss-functions to achieve our goal, we propose an
adversarial training mechanism for image captioning. For this we build on Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014), which have been successfully
used to generate mainly continuous data distributions such as images (Denton et al.,
2015; Radford et al., 2016), although exceptions exist (Luc et al., 2016). In contrast to
images, captions are discrete, which poses a challenge when trying to backpropagate
through the generation step. To overcome this obstacle, we use a Gumbel sampler (Jang
et al., 2016; Maddison et al., 2016) that allows for end-to-end training.

We address the problem of caption set generation for images and discuss metrics to
measure the caption diversity and compare it to human ground-truth. We contribute a
novel solution to this problem using an adversarial formulation. The evaluation of our
model shows that accuracy of generated captions is on par to the state-of-the-art, but
we greatly increase the diversity of the caption sets and better match the ground-truth
statistics in several measures. Qualitatively, our model produces more diverse captions
across images containing similar content (Figure 3.1) and when sampling multiple
captions for an image (Figure 3.2).
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Ours: a person on skis jumping over a ramp Ours: a skier is making a turn on a course

Ours: a cross country skier makes his way
through the snow

Ours: a skier is headed down a steep slope

Baseline: a man riding skis down a snow covered slope

Figure 3.1: Four images from the test set, all related to skiing, shown with captions from
our adversarial model and a baseline. Baseline model describes all four images with one
generic caption, whereas our model produces diverse and more image specific captions.

Ours a bus that has pulled into the side of the street a group of people standing outside in a old
museum

a bus is parked at the side of the road an airplane show where people stand around
a white bus is parked near a curb with people
walking by

a line of planes parked at an airport show

Base
line

• a bus is parked on the side of the road a group of people standing around a plane
•a bus that is parked in the street a group of people standing around a plane
a bus is parked in the street next to a bus a group of people standing around a plane

Figure 3.2: Two examples comparing multiple captions generated by our adversarial
model and the baseline. Bi-grams which are top-20 frequent bi-grams in the training set
are marked in red (e.g., “a group” and “group of”). Captions which are replicas from
training set are marked with • .
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3.2 adversarial caption generator

The image captioning task can be formulated as follows: given an input image x the
generator G produces a caption, G(x) = [w0, . . . ,wn−1], describing the contents of the
image. There is an inherent ambiguity in the task, with multiple possible correct captions
for an image, which is also reflected in diverse captions written by human annotators
(we quantify this in Table 3.4). However, most image captioning architectures ignore this
diversity during training. The standard approach to model G(x) is to use a recurrent
language model conditioned on the input image x (Donahue et al., 2015; Vinyals et al.,
2015), and train it using a maximum likelihood (ML) loss considering every image–
caption pair as an independent sample. This ignores the diversity in the human captions
and results in models that tend to produce generic and commonly occurring captions
from the training set, as we will show in Section 3.4.3.

We propose to address this by explicitly training the generator G to produce multiple
diverse captions for an input image using the adversarial framework (Goodfellow et al.,
2014). In adversarial frameworks, a generative model is trained by pairing it with
adversarial discriminator which tries to distinguish the generated samples from true data
samples. The generator is trained with the objective to fool the discriminator, which
is optimal when G exactly matches the data distribution. This is well-suited for our
goal because, with an appropriate discriminator network we could coax the generator to
capture the diversity in the human written captions, without having to explicitly design
a loss function for it.

To enable adversarial training, we introduce a second network, D(x, s), which takes
as input an image x and a caption set Sp = {s1, . . . , sp} and classifies it as either real
or fake. Providing a set of captions per image as input to the discriminator allows it to
factor in the diversity in the caption set during the classification. The discriminator
can penalize the generator for producing very similar or repeated captions and thus
encourage the diversity in the generator.

Specifically, the discriminator is trained to classify the captions drawn from the
reference captions set, R(x) = {r0, · · · , rk−1}, as real while classifying the captions
produced by the generator, G(x), as fake. The generator G can now be trained using an
adversarial objective, i.e. G is trained to fool the discriminator to classify G(x) as real.

3.2.1 Caption generator

We use a near state-of-the art caption generator model based on Shetty et al. (2016).
It uses the standard encoder-decoder framework with two stages: the encoder model
which extracts feature vectors from the input image and the decoder which translates
these features into a word sequence.
Image features. Images are encoded as activations from a pre-trained convolutional
neural network (CNN). Captionin models also benefit from augmenting the CNN features
with explicit object detection features (Shetty et al., 2016). Accordingly, we extract a
feature vector containing the probability of occurrence of an object and provide it as
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Figure 3.3: Caption generator model. Deep visual features are input to an LSTM to
generate a sentence. A Gumbel sampler is used to obtain soft samples from the softmax
distribution, allowing for backpropagation through the samples.

input to the generator.
Language Model. Our decoder shown in Figure 3.3, is adopted from a Long-Short
Term Memory (LSTM) based language model architecture presented in Shetty et al.
(2016) for image captioning. It consists of a three-layered LSTM network with residual
connections between the layers. The LSTM network takes two features as input. First
is the object detection feature, xo, which is input to the LSTM at only 0th time step
and shares the input matrix with the word vectors. Second is the global image CNN
feature, xc, and is input to the LSTM at all time-steps through its own input matrix.

The softmax layer at the output of the generator produces a probability distribution
over the vocabulary at each step.

yt = LSTM(wt−1,xc, yt−1, ct−1) (3.1)
p(wt|wt−1,x) = softmax [βWd ∗ yt] , (3.2)

where ct is the LSTM cell state at time t and β is a scalar parameter which controls the
peakyness of the distribution. Parameter β allows us to control how large a hypothesis
space the generator explores during adversarial training. An additional uniform random
noise vector z, is input to the LSTM in adversarial training to allow the generator to
use the noise to produce diversity.
Discreteness Problem. To produce captions from the generator we could simply
sample from this distribution p(wt|wt−1,x), recursively feeding back the previously
sampled word at each step, until we sample the END token. One can generate multiple
sentences by sampling and pick the sentence with the highest probability as done
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in Donahue et al. (2016). Alternatively we could also use greedy search approaches
like beam-search. However, directly providing these discrete samples as input to the
discriminator does not allow for backpropagation through them as they are discontinuous.
Alternatives to overcome this are the reinforce rule/trick (Williams, 1992), using the
softmax distribution, or using the Gumbel-Softmax approximation (Jang et al., 2016;
Maddison et al., 2016).

Using policy gradient algorithms with the reinforce rule/trick (Williams, 1992) allows
estimation of gradients through discrete samples (Hendricks et al., 2016; Andreas and
Klein, 2016; Yu et al., 2016; Li et al., 2017). However, learning using reinforce trick
can be unstable due to high variance (Sutton and Barto, 1998) and some mechanisms
to make learning more stable, like estimating the action-value for intermediate states
by generating multiple possible sentence completions (e.g used in Yu et al. (2016); Dai
et al. (2017)), can be computationally intensive.

Another option is to input the softmax distribution to the discriminator instead of
samples. We experimented with this, but found that the discriminator easily distinguishes
between the softmax distribution produced by the generator and the sharp reference
samples, and the GAN training fails.

The last option, which we rely on in this work, it to use a continuous relaxation
of the samples encoded as one-hot vectors using the Gumbel-Softmax approximation
proposed in Jang et al. (2016) and Maddison et al. (2016). This continuous relaxation
combined with the re-parametrization of the sampling process allows backpropagation
through samples from a categorical distribution. The main benefit of this approach is
that it plugs into the model as a differentiable node and does not need any additional
steps to estimate the gradients. Whereas most previous methods to applying GAN to
discrete output generators use policy gradient algorithms, we show that Gumbel-Softmax
approximation can also be used successfully in this setting. An empirical comparison
between the two approaches can be found in Jang et al. (2016).

The Gumbel-Softmax approximation consists of two steps. First Gumbel-Max trick
is used to re-parametrize sampling from a categorical distribution. Given a random
variable r drawn from a categorical distribution parametrized by Θ = θ0, · · · , θv−1, r
can be expressed as:

r = one_hot
[
argmax

i
(gi + log θi)

]
, (3.3)

where gi’s are i.i.d. random variables from the standard gumbel distribution. Next the
argmax in Equation (3.3) is replaced with softmax to obtain a continuous relaxation of
the discrete random variable r.

r′ = softmax
[
gi + log θi

τ

]
, (3.4)

where τ is the temperature parameter which controls how close r′ is to r, with r′ = r
when τ = 0.

We use straight-through variation of the Gumbel-Softmax approximation (Jang
et al., 2016) at the output of our generator to sample words during the adversarial
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Figure 3.4: Discriminator Network. Caption set sampled from the generator is used to
compute image to sentence (distx(Sp,x)) and sentence-to-sentence (dists(Sp)) distances.
They are used to score the set as real/fake.

training. In the straight-through variation, sample r is used in the forward path and
soft approximation r′ is used in the backward path to allow backpropogation.

3.2.2 Discriminator model

The discriminator network, D takes an image x, represented using CNN feature xc,
and a set of captions Sp = {s1, . . . , sp} as input and classifies Sp as either real or fake.
Ideally, we want D to base this decision on two criteria: a) do si ∈ Sp describe the image
correctly ? b) is the set Sp is diverse enough to match the diversity in human captions ?

To enable this, we use two separate distance measuring kernels in our discriminator
network as shown in Figure 3.4. The first kernel computes the distances between the
image x and each sentence in Sp. The second kernel computes the distances between the
sentences in Sp. The architecture of these distance measuring kernels is based on the
minibatch discriminator presented in Salimans et al. (2016). However, unlike Salimans
et al. (2016), we only compute distances between captions corresponding to the same
image and not over the entire minibatch.

Input captions are encoded into a fixed size sentence embedding vector using an
LSTM encoder to obtain vectors f(si) ∈ RM . The image feature, xc, is also embedded
into a smaller image embedding vector f(xc) ∈ RM . The distances between f(si), i ∈



3.2 adversarial caption generator 35

{1, . . . , p} are computed as

Ki = Ts · f(si) (3.5)
cl(si, sj) = exp (−‖Ki,l −Kj,l‖L1) (3.6)

dl(si) =
p∑

j=1
cl(si, sj) (3.7)

dists(Sp) = [d1(s1), ..., dO(s1), ..., dO(sp)] ∈ Rp×O (3.8)

where Ts is a M ×N ×O dimensional tensor and O is the number of different M ×N
distance kernels to use.

Distances between f(si), i ∈ 1, . . . , p and f(xc) are obtained with similar procedure
as above, but using a different tensor Tx of dimensionsM ×N ×O to yield distx(Sp,x) ∈
Rp×O. These two distance vectors capture the two aspects we want our discriminator
to focus on. distx(Sp,x) captures how well Sp matches the image x and dists(Sp)
captures the diversity in Sp. The two distance vectors are concatenated and multiplied
with a output matrix followed by softmax to yield the discriminator output probability,
D(Sp,x), for Sp to be drawn from reference captions.

3.2.3 Adversarial training

In adversarial training both the generator and the discriminator are trained alternatively
for ng and nd steps respectively. The discriminator tries to classify Sr

p ∈ R(x) as real
and Sg

p ∈ G(x) as fake. In addition to this, we found it important to also train the
discriminator to classify few reference captions drawn from a random image as fake, i.e.
Sf

p ∈ R(y), y 6= x. This forces the discriminator to learn to match images and captions,
and not just rely on diversity statistics of the caption set. The complete loss function of
the discriminator is defined by

L(D) = − log
(
D(Sr

p ,x)
)
− log

(
1−D(Sg

p ,x)
)
− log

(
1−D(Sf

p ,x)
)

(3.9)

The training objective of the generator is to fool the discriminator into classifying Sg
p ∈

G(x) as real. We found helpful to additionally use the feature matching loss (Salimans
et al., 2016). This loss trains the generator to match activations induced by the generated
and true data at some intermediate layer of the discriminator. In our case we use an l2
loss to match the expected value of distance vectors dists(Sp) and distx(Sp,x) between
real and generated data. The generator loss function is given by

L(G) = − log
(
D(Sg

p ,x)
)
+
∥∥∥E [

dists(S
g
p)
]
−E

[
dists(S

r
p)
]∥∥∥

2

+
∥∥∥E [

distx(S
g
p ,x)

]
−E

[
distx(S

r
p ,x)

]∥∥∥
2

,
(3.10)

where the expectation is over a training mini-batch.
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3.3 experimental setup

We conduct all our experiments on the MS-COCO dataset (Chen et al., 2015). The
training set consists of 83k images with five human captions each. We use the publicly
available test split of 5000 images (Karpathy and Fei-Fei, 2015) for all our experiments.
Section 3.4.4 uses a validation split of 5000 images.

For image feature extraction, we use activations from res5c layer of the 152-layered
ResNet (He et al., 2016) convolutional neural network (CNN) pre-trained on ImageNet.
The input images are scaled to 448× 448 dimensions for ResNet feature extraction.
Additionally we use features from the VGG network (Simonyan and Zisserman, 2015) in
our ablation study in Section 3.4.4. Following Shetty et al. (2016), we additionally extract
80-dimensional object detection features using a Faster Region-Based Convolutional
Neural Network (RCNN) (Ren et al., 2015) trained on the 80 object categories in the
COCO dataset. The CNN features are input to both the generator (at xp) and the
discriminator. Object detection features are input only to the generator at the xi input
and is used in all the generator models reported here.

3.3.1 Insights in training the GAN

As is well known (Arjovsky and Bottou, 2017), we found GAN training to be sensitive
to hyper-parameters. Here we discuss some settings which helped stabilize the training
of our models.

We found it necessary to pre-train the generator using standard maximum likelihood
training. Without pre-training, the generator gets stuck producing incoherent sentences
made of random word sequences. We also found pre-training the discriminator on
classifying correct image-caption pairs against random image-caption pairs helpful to
achieve stable GAN training. We train the discriminator for 5 iterations for every
generator update. We also periodically monitor the classification accuracy of the
discriminator and train it further if it drops below 75%. This prevents the generator
from updating using a bad discriminator.

Without the feature matching term in the generator loss, the GAN training was
found to be unstable and needed additional maximum likelihood update to stabilize
it. This was also reported in Li et al. (2017). However with the feature matching loss,
training is stable and the ML update is not needed.

A good range of values for the Gumbel temperature was found to be (0.1, 0.8).
Beyond this range training was unstable, but within this range the results were not
sensitive to it. We use a fixed temperature setting of 0.5 in the experiments reported
here. The softmax scaling factor, β in (3.2), is set to value 3.0 for training of all the
adversarial models reported here. The sampling results are also with β = 3.0.
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3.4 results

We conduct experiments to evaluate our adversarial caption generator w.r.t. two
aspects: how human-like the generated captions are and how accurately they describe
the contents of the image. Using diversity statistics and word usage statistics as a proxy
for measuring how closely the generated captions mirror the distribution of the human
reference captions, we show that the adversarial model is more human-like than the
baseline. Using human evaluation and automatic metrics we also show that the captions
generated by the adversarial model performs similar to the baseline model in terms of
correctness of the caption.

Henceforth, Base and Adv refer to the baseline and adversarial models, respectively.
Suffixes bs and samp indicate decoding using beamsearch and sampling respectively.

3.4.1 Measuring if captions are human-like

Diversity. We analyze n-gram usage statistics, compare vocabulary sizes and other
diversity metrics presented below to understand and measure the gaps between human
written captions and the automatic methods and show that the adversarial training
helps bridge some of these gaps. To measure the corpus level diversity of the generated
captions we use:

• Vocabulary Size - number of unique words used in all generated captions
• % Novel Sentences - percentage of generated captions not seen in the training set.

To measure diversity in a set of captions, Sp, corresponding to a single image we use:
• Div-1 - ratio of number of unique unigrams in Sp to number of words in Sp. Higher

is more diverse.
• Div-2 - ratio of number of unique bigrams in Sp to number of words in Sp. Higher

is more diverse.
• mBleu - Bleu score is computed between each caption in Sp against the rest. Mean

of these p Bleu scores is the mBleu score. Lower values indicate more diversity.
Correctness. Just generating diverse captions is not useful if they do not correctly
describe the content of an image. To measure the correctness of the generated captions
we use two automatic evaluation metrics Meteor (Denkowski and Lavie, 2014a) and
SPICE (Anderson et al., 2016). However since it is known that the automatic metrics do
not always correlate very well with human judgments of the correctness, we also report
results from human evaluations comparing the baseline model to our adversarial model.

3.4.2 Comparing caption accuracy

Table 3.1 presents the comparison of our adversarial model to the baseline model. Both
the baseline and the adversarial models use ResNet features. The beamsearch results
are with beam size 5 and sampling results are with taking the best of 5 samples. Here
the best caption is obtained by ranking the captions as per probability assigned by the
model.
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Method Meteor Spice

ATT-FCN (You et al., 2016) 0.243 –
MSM (Yao et al., 2017) 0.251 –
KWL (Lu et al., 2017) 0.266 0.194

Ours Base-bs 0.272 0.187
Ours Base-samp 0.265 0.186
Ours Adv-bs 0.239 0.167
Ours Adv-samp 0.236 0.166

Table 3.1: Comparing captioning correctness of baseline and adversarial models using
Meteor and Spice metrics.

Method Spice

Color Attribute Object Relation Count Size
Base-bs 0.101 0.085 0.345 0.049 0.025 0.034
Base-samp 0.059 0.069 0.352 0.052 0.032 0.033
Adv-bs 0.079 0.082 0.318 0.034 0.080 0.052
Adv-samp 0.078 0.082 0.316 0.033 0.076 0.053

Table 3.2: Detailed look at different categories of the Spice metric.

Table 3.1 also shows the metrics from some recent methods from the image captioning
literature. The purpose of this comparison is to illustrate that we use a strong baseline
and that our baseline model is competitive to recent published work, as seen from the
Meteor and Spice metrics.

Comparing baseline and adversarial models in Table 3.1 the adversarial model does
worse in-terms of Meteor scores and overall spice metrics. When we look at Spice scores
on individual categories shown in Table 3.2 we see that adversarial models excel at
counting relative to the baseline and describing the size of an object correctly.

However, it is well known that automatic metrics do not always correlate with human
judgments on correctness of a caption. A primary reason the adversarial models do
poorly on automatic metrics is that they produce significantly more unique sentences
using a much larger vocabulary and rarer n-grams, as shown in Section 3.4.3. Thus,
they are less likely to do well on metrics relying on n-gram matches.

To verify this claim, we conduct human evaluations comparing captions from the
baseline and the adversarial model. Human evaluators from Amazon Mechanical Turk
are shown an image and a caption each from the two models and are asked “Judge
which of the two sentences is a better description of the image (w.r.t. correctness and
relevance)!”. The choices were either of the two sentences or to report that they are
the same. Results from this evaluation are presented in Table 3.3. We can see that
both adversarial and baseline models perform similarly, with adversarial models doing
slightly better. This shows that despite the poor performance in automatic evaluation
metrics, the adversarial models produce captions that are similar, or even slightly better,
in accuracy to the baseline model.
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Comparison Adversarial - Better Adversarial - Worse
Beamsearch 36.9 34.8
Sampling 35.7 33.2

Table 3.3: Human evaluation on caption correctness comparing adversarial model vs the
baseline model on 482 random samples. With agreement of at least 3 out of 5 judges in
%. Humans agreed in 89.2% and 86.7% of images in beamsearch and sampling cases
respectively.

Vocab- % Novel
Method n Div-1 Div-2 mBleu-4 ulary Sentences

Base-bs 1 of 5 – – – 756 34.18
5 of 5 0.28 0.38 0.78 1085 44.27

Base-samp 1 of 5 – – – 839 52.04
5 of 5 0.31 0.44 0.68 1460 55.24

Adv-bs 1 of 5 – – – 1508 68.62
5 of 5 0.34 0.44 0.70 2176 72.53

Adv-samp 1 of 5 – – – 1616 73.92
5 of 5 0.41 0.55 0.51 2671 79.84

Human 1 of 5 – – – 3347 92.80
captions 5 of 5 0.53 0.74 0.20 7253 95.05

Table 3.4: Diversity Statistics described in Section 3.4.1. Higher values correspond to
more diversity in all except mBleu-4, where lower is better.

3.4.3 Comparing vocabulary statistics

To characterize how well the captions produced by the automatic methods match the
statistics of the human written captions, we look at n-gram usage statistics in the
generated captions. Specifically, we compute the ratio of the actual count of an n-gram
in the caption set produced by a model to the expected n-gram count based on the
training data.

Given that an n-gram occurred m times in the training set we can expect that it
occurs m ∗ |test-set|/|train-set| times in the test set. However actual counts may vary
depending on how different the test set is from the training set. We compute these
ratios for reference captions in the test set to get an estimate of the expected variance
of the count ratios. The left side of Figure 3.5 shows the mean count ratios for uni-, bi-
and tri-grams in the captions generated on test-set plotted against occurrence counts in
the training set. Histogram of these ratios are shown on the right side.

Count ratios for the reference captions from the test-set are shown in green. We see
that the n-gram counts match well between the training and test set human captions
and the count ratios are spread around 1.0 with a small variance.

The baseline model shows a clear bias towards more frequently occurring n-grams.
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Figure 3.5: Comparison of n-gram count ratios in generated test-set captions by different
models. Left side shows the mean n-gram count-ratios as a function of counts on training
set. Right side shows the histogram of the count-ratios.
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Adv-bs a group of friends enjoying
a dinner at the restauarant

several cows in their pen
at the farm

A dog is trying to get some-
thing out of the snow

Base-bs a group of people sitting
around a wooden table

a herd of cattle standing
next to each other

a couple of dogs that are
in the snow

Figure 3.6: Qualitative comparison of captions generated by our model and the baseline
model.

It consistently overuses more frequent n-grams (ratio>1.0) from the training set and
under-uses less frequent ones (ratio<1.0). This trend is seen in all the three plots, with
more frequent tri-grams particularly prone to overuse. It can also be observed in the
histogram plots of the count ratios, that the baseline model does a poor job of matching
the statistics of the test set.

Our adversarial model does a much better job in matching these statistics. The
histogram of the uni-gram count ratios are clearly closer to that of test reference captions.
It does not seem to be significantly overusing the popular words, but there is still a
trend of under utilizing some of the rarer words. It is however clearly better than the
baseline model in this aspect. The improvement is less pronounced with the bi- and
tri-grams, but still present.

Another clear benefit from using the adversarial training is observed in terms of
diversity in the captions produced by the model. The diversity in terms of both global
statistics and per image diversity statistics is much higher in captions produced by
the adversarial models compared to the baseline models. This result is presented in
Table 3.4. We can see that the vocabulary size approximately doubles from 1085 in
the baseline model to 2176 in the adversarial model using beamsearch. A similar trend
is also seen comparing the sampling variants. As expected more diversity is achieved
when sampling from the adversarial model instead of using beamsearch with vocabulary
size increasing to 2671 in Adv-samp. The effect of this increased diversity can be in the
qualitative examples shown in Figure 3.6.

We can also see that the adversarial model learns to construct significantly more
novel sentences compared to the baseline model with Adv-bs producing novel captions
72.53% of the time compared to just 44.27% by the beam-bs. All three per-image diversity
statistics also improve in the adversarial models indicating that they can produce a
more diverse set of captions for any input image.

Table 3.4 also shows the diversity statistics on the reference captions on the test set.
This shows that although adversarial models do considerably better than the baseline,
there is still a gap in diversity statistics when compared to the human written captions,
especially in vocabulary size.
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Figure 3.7: Vocabulary size as a function of word counts.

Finally, Figure 3.7 plots the vocabulary size as a function of word count threshold,
k. We see that the curve for the adversarial model better matches the human written
captions compared to the baseline for all values of k. This illustrates that the gains
in vocabulary size in adversarial models does not arise from using words with specific
frequency, but is instead distributed evenly across word frequencies.

3.4.4 Ablation study

We conducted experiments to understand the importance of different components of
our architecture. The results are presented in Table 3.5. The baseline model for this
experiment uses VGG (Simonyan and Zisserman, 2015) features as xp input and is
trained using maximum likelihood loss and is shown in the first row of Table 3.5. The
other four models use adversarial training.

Comparing rows 1 and 2 of Table 3.5, we see that adversarial training with a
discriminator evaluating a single caption does badly. Both the diversity and Meteor
score drop compared to the baseline. In this setting the generator can get away with
producing one good caption (mode collapse) for an image as the discriminator is unable
to penalize the lack of diversity in the generator.

However, comparing rows 1 and 3, we see that adversarial training using a discrim-
inator evaluating 5 captions simultaneously does much better in terms of Div-2 and
vocabulary size. Adding feature matching loss further improves the diversity and also
slightly improves accuracy in terms of Meteor score. Thus simultaneously evaluating
multiple captions and using feature matching loss allows us to alleviate mode collapse
generally observed in GANs.

Upgrading to the ResNet(He et al., 2016) increases the Meteor score greatly and
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Image Feature Evalset size (p) Feature Matching Meteor Div-2 Vocab. Size
VGG (baseline) 0.247 0.44 1367
VGG (adversarial) 1 No 0.179 0.40 812
VGG (adversarial) 5 No 0.197 0.52 1810
VGG (adversarial) 5 yes 0.207 0.59 2547
ResNet (adversarial) 5 yes 0.236 0.55 2671

Table 3.5: Performance comparison of various configurations of the adversarial caption
generator on the validation set.

slightly increases the vocabulary size. ResNet features provide richer visual information
which is used by the generator to produce diverse but still correct captions.

We also notice that the generator learns to ignore the input noise. This is because
there is sufficient stochasticity in the generation process due to sequential sampling of
words and thus the generator doesn’t need the additional noise input to increase output
diversity. Similar observation was reported in other conditional GAN architectures (Isola
et al., 2016; Mathieu et al., 2016)

3.5 conclusions

We have presented an adversarial caption generator model which is explicitly trained
to generate diverse captions for images. We achieve this by utilizing a discriminator
network designed to promote diversity and use the adversarial learning framework to
train our generator. Results show that our adversarial model produces captions which
are diverse and match the statistics of human generated captions significantly better
than the baseline model. The adversarial model also uses a larger vocabulary and is able
to produce significantly more novel captions. The increased diversity is achieved while
preserving accuracy of the generated captions, as shown through a human evaluation.





4AUTHOR ANONYMIZATION VIA TEXT STYLE
TRANSFER

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Author Attribute Anonymization . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Author attribute classifiers . . . . . . . . . . . . . . . . . . . 49
4.3.2 The A4NT network . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.3 Style loss with GAN . . . . . . . . . . . . . . . . . . . . . . 53
4.3.4 Preserving semantics . . . . . . . . . . . . . . . . . . . . . . 54
4.3.5 Smoothness with language loss . . . . . . . . . . . . . . . . 56

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 Evaluation methods . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.1 Quantitative evaluation . . . . . . . . . . . . . . . . . . . . . 60
4.5.2 Qualitative analysis . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

In this chapter, we extend the adversarial training for language models developed in
Chapter 3, to build a privacy preserving tool to mask authors identity. Text-based
analysis methods enable an adversary to reveal privacy relevant author attributes

such as gender, age and can identify the text’s author. Such methods can compromise the
privacy of an anonymous author even when the author tries to remove privacy sensitive
content. In this chapter, we propose an automatic method, called Adversarial Author
Attribute Anonymity Neural Translation (A4NT), to combat such text-based adversaries.
Unlike prior works on obfuscation, we propose a system that is fully automatic and
learns to perform obfuscation entirely from the data. This allows us to easily apply
the A4NT system to obfuscate different author attributes. Our A4NT is a sequence-
to-sequence language model and is trained in an adversarial framework, allowing it to
learn obfuscating text transforms without paired data. We also propose and evaluate
techniques to impose constraints on the A4NT model to preserve the semantics of the
input text. A4NT learns to make minimal changes to the input to successfully fool
author attribute classifiers, while preserving the meaning of the input text. We present
experiments on two datasets and three settings which show that the proposed method is
effective in fooling the attribute classifiers and thus improves the anonymity of authors.

45
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4.1 introduction

Natural language processing (NLP) methods including stylometric tools enable identifi-
cation of authors of anonymous texts by analyzing stylistic properties of the text (Juola
et al., 2008; Stamatatos, 2009; Ruder et al., 2016). NLP-based tools have also been
applied to profiling users by determining their private attributes like age and gen-
der (Argamon et al., 2009). These methods have been shown to be effective in various
settings like blogs, reddit comments, twitter text (Overdorf and Greenstadt, 2016) and
in large scale settings with up to 100,000 possible authors (Narayanan et al., 2012). In a
recent famous case, authorship attribution tools were used to help confirm J.K Rowling
as the real author of A Cuckoo’s Calling which was written by Ms. Rowling under
pseudonymity (Juola, 2013). This case highlights the privacy risks posed by these tools.

Apart from the threat of identification of an anonymous author, the NLP-based tools
also make authors susceptible to profiling. Text analysis has been shown to be effective
in predicting age group (Morgan-Lopez et al., 2017), gender (Ikeda et al., 2013) and to an
extent even political preferences (Makazhanov et al., 2014). By determining such private
attributes an adversary can build user profiles which have been used for manipulation
through targeted advertising, both for commercial and political goals (Grassegger and
Krogerus, 2017).

Since the NLP based profiling methods utilize the stylistic properties of the text to
break the authors anonymity, they are immune to defense measures like pseudonymity,
masking the IP addresses or obfuscating the posting patterns. The only way to com-
bat them is to modify the content of the text to hide stylistic attributes. Prior work
has shown that while people are capable of altering their writing styles to hide their
identity (Brennan et al., 2012), success rate depends on the authors skill and doing so
consistently is hard for even skilled authors (Afroz et al., 2012). Currently available
solutions to obfuscate authorship and defend against NLP-methods has been largely
restricted to semi-automatic solutions which suggest possible changes to the user (Mc-
Donald et al., 2012) or hand-crafted transformations to text (Castro et al., 2017) which
need re-engineering on different datasets. This however limits the applicability of these
defensive measures beyond the specific dataset it was designed on. To the best of our
knowledge, text rephrasing using generic machine translation tools (Keswani et al., 2016)
is the only prior work offering a fully automatic solution to author obfuscation which
can be applied across datasets. But as found in prior work Caliskan and Greenstadt
(2012) and further demonstrated with our experiments, generic machine translation
based obfuscation fails to sufficiently hide the identity and protect against attribute
classifiers.

Additionally the focus in prior research has been towards protecting author identity.
However, obfuscating identity does not guarantee protection of private attributes like age
and gender. Determining attributes is generally easier than predicting the exact identity
for NLP-based adversaries, mainly due to former being small closed-set prediction task
compared to later which is larger and potentially open-set prediction task. This makes
obfuscating attributes a difficult but an important problem.
Our work. We propose an unified automatic system (A4NT) to obfuscate authors
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text and defend against NLP adversaries. A4NT follows the imitation model of defense
discussed in Brennan et al. (2012) and protects against various attribute classifiers by
learning to imitate the writing style of a target class. For example, A4NT learns to hide
the gender of a female author by re-synthesizing the text in the style of the male class.
This imitation of writing style is learned by adversarially training (Goodfellow et al.,
2014) our style-transfer network against the attribute classifier. Our A4NT network
learns the target style by learning to fool the authorship classifiers into misclassifying
the text it generates as target class. This style transfer is accomplished while aiming to
retain the semantic content of the input text.

Unlike many prior works on authorship obfuscation (McDonald et al., 2012; Castro
et al., 2017), we propose an end-to-end learnable author anonymization solution, allowing
us to apply our method not only to authorship obfuscation but to the anonymization of
different author attributes including identity, gender and age with a unified approach. We
illustrate this by successfully applying our model on three different attribute anonymiza-
tion settings on two different datasets. Through empirical evaluation, we show that the
proposed approach is able to fool the author attribute classifiers in all three settings
effectively and better than the baselines. While there are still challenges to overcome
before applying the system to multiple attributes and situations with very little data, we
believe that A4NT offers a new data driven approach to authorship obfuscation which
can easily adapt to improving NLP-based adversaries.
Technical challenges. We design our A4NT network architecture based on the
sequence-to-sequence neural machine translation model (Sutskever et al., 2014). A
key challenge in learning to perform style transfer, compared to other sequence-to-
sequence mapping tasks like machine translation, is the lack of paired training data.
Here, paired data refers to datasets with both the input text and its corresponding
ground-truth output text. In obfuscation setting, this means having a large dataset with
semantically same sentences written in different styles corresponding to the attributes
we want to hide. Such paired data is infeasible to obtain and this has been a key hurdle
in developing automatic obfuscation methods. Some prior attempts to perform text style
transfer required paired training data (Xu et al., 2012) and hence were limited in their
applicability beyond toy-data settings. We overcome this by training our A4NT network
within a generative adversarial networks (GAN) (Goodfellow et al., 2014) framework.
GAN framework enables us to train the A4NT network to generate samples that match
the target distribution without need for paired data.

We characterize the performance of our A4NT network along two axes: privacy
effectiveness and semantic similarity. Using automatic metrics and human evaluation to
measure semantic similarity of the generated text to the input, we show that A4NT offers
a better trade-off between privacy effectiveness and semantic similarity. We also analyze
the effectiveness of A4NT for protecting anonymity for varying degrees of input text
“difficulty”.
Contributions. In summary, our main contributions are. (1): We propose a novel
approach to authorship obfuscation that uses a style-transfer network (A4NT) to au-
tomatically transform the input text to a target style and fool the attribute classifiers.
The network is trained without paired data by adversarial training. (2): The proposed
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obfuscation solution is end-to-end trainable, and hence can be applied to protect different
author attributes and on different datasets with no changes to the overall framework.
(3): Quantifying the performance of our system on privacy effectiveness and semantic
similarity to input, we show that it offers a better trade-off between the two metrics
compared to baselines.

4.2 threat model

In our target scenario, our user is faced with an adversary who can access the text
written by the user and the adversary wishes to determine the user’s private attributes
for identification or for profiling. We assume that the author has taken care to remove
obvious identifiable features from the text like name, zip code, IP address etc. The
adversary has to rely on stylistic properties of the text for the analysis. To aid with this
analysis, adversary can train NLP models on large amount of publicly available data, for
example blog dataset (Schler et al., 2006), twitter dataset (Morgan-Lopez et al., 2017).
In this scenario, the proposed A4NT system enables automatic obfuscation of user’s
writing style to hide any desired private attribute like age group, gender or identity.

4.3 author attribute anonymization

We propose an author adversarial attribute anonymizing neural translation (A4NT)
network to defend against NLP-based adversaries. The proposed solution includes the
A4NT Network , the adversarial training scheme, and semantic and language losses to
learn to protect private attributes. The A4NT network transforms the input text from
a source attribute class to mimic the style of a different attribute class, and thus fools
the attribute classifiers.

Technically, A4NT network is essentially solving a sequence to sequence mapping
problem — from text sequence in the source domain to text in the target domain —
similar to machine translation. Exploiting this similarity, we design our A4NT network
based on the sequence-to-sequence neural language models (Sutskever et al., 2014),
widely used in neural machine translation (Bahdanau et al., 2014). These models
have proven effective when trained with large amounts of paired data and are also
deployed commercially (Wu et al., 2016b). If there were paired data in source and target
attributes, we could train our A4NT network exactly like a machine translation model,
with standard supervised learning. However, such paired data is infeasible to obtain as
it would require the same text written in multiple styles.

To address the lack of paired data, we cast the anonymization task as learning
a generative model, Zxy(sx), which transforms an input text sample sx drawn from
source attribute distribution sx ∼ X, to look like samples from the target distribution
sy ∼ Y . This formulation enables us to train the A4NT network Zxy(sx) with the GAN
framework to produce samples close to the target distribution Y , using only unpaired
samples from X and Y . Figure 4.1 shows this overall framework.

The GAN framework consists of two models, a generator producing synthetic samples
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Figure 4.1: GAN framework to train our A4NT network. Input sentence is transformed
by A4NT to match the style of the target attribute. This output is evaluated using the
attribute classifier and semantic consistency loss. A4NT is trained by backpropagating
through these losses.

to mimic the target data distribution, and a discriminator which tries to distinguish real
data from the synthesized “fake” samples from the generator. The two models are trained
adversarially, i.e. the generator tries to fool the discriminator and the discriminator
tries to correctly identify the generated samples. We use an attribute classifier as the
discriminator and the A4NT network as the generator. The A4NT network, in trying to
fool the attribute classification network, learns to transform the input text to mimic the
style of the target attribute and protect the attribute anonymity.

For our A4NT network to be a practically useful defensive measure, the text output
by this network should be able to fool the attribute classifier while also preserving the
meaning of the input sentence. If we could measure the semantic difference between
the generated text and the input text it could be used to penalize deviations from the
input sentence semantics. Computing this semantic distance perfectly would need true
understanding of the meaning of input sentence, which is beyond the capabilities of
current natural language processing techniques. To address this aspect of style transfer,
we experiment with various proxies to measure and penalize changes to input semantics,
which will be discussed in Section 4.3.4. Following subsections will describe each module
in detail.

4.3.1 Author attribute classifiers

We build our attribute classifiers using neural networks that predict the attribute
label by directly operating on the text data. This is similar to recent approaches in
authorship recognition (Bagnall, 2015; Ruder et al., 2016) where, instead of hand-crafted
features used in classical stylometry, neural networks are used to directly predict author
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Figure 4.2: Block diagram of the attribute classifier network. The LSTM encoder
embeds the input sentence into a vector. Sentence encoding is passed to linear projection
followed by softmax layer to obtain class probabilities

identity from raw text data. However, unlike in these prior works, our focus is attribute
classification and obfuscation. We train our classifiers with recurrent networks operating
at word-level, as opposed to character-level models used in Bagnall (2015); Ruder et al.
(2016) for two reasons. We found that the word-level models give good performance on all
three attribute-classification tasks we experiment with (see Section 4.5.1). Additionally,
they are much faster than character-level models, making it feasible to use them in GAN
training described in Section 4.3.2.

Specifically, our attribute classifier Ax to detect attribute value x is shown in Fig-
ure 4.2. It consists of a Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) encoder network to compute an embedding of the input sentence into a fixed size
vector. It learns to encode the parts of the sentence most relevant to the classification
task into the embedding vector, which for attribute prediction is mainly the stylistic
properties of the text. This embedding is input to a linear layer and a softmax layer to
output the class probabilities.

Given an input sentence sx = {w0,w1, · · · ,wn−1}, the words are one-hot encoded
and then embedded into fixed size vectors using the word-embedding layer shown
in Figure 4.2 to obtain vectors {v0, v1, · · · , vn−1}. The word embedding layer is simply
a matrix of V × dwv containing the word vectors of dwv dimensions for each word in
the vocabulary of size V . This matrix is multiplied with the one-hot encoding of the
word to obtain the representation of the corresponding word. The learned word vectors
encode the similarities between words and can help deal with large vocabulary sizes.
The word vectors are randomly initialized and then learned from the data during the
training of the model. This approach works better than using pre-trained word vectors
like word2vec (Mikolov et al., 2013) or Glove (Pennington et al., 2014) since the learned
word-vectors can encode similarities most relevant to the attribute classification task at
hand.

This sequence of word vectors is recursively passed through an LSTM to obtain a
sequence of outputs {h0,h1, · · · ,hn−1}. We refer the reader to Hochreiter and Schmid-
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huber (1997) for the exact computations performed to get the LSTM output.
Sentence embeddings are obtained by concatenating the final LSTM output and the

mean of the LSTM outputs from other time-steps.

E(sx) =
[
hn−1; 1

n− 1
∑

hn−1

]
(4.1)

At the last time-step the LSTM network has seen all the words in the sentence and can
encode a summary of the sentence in its output. However, using LSTM outputs from
all time-steps, instead of just the final one, speeds up training due to improved flow of
gradients through the network. Finally, E(sx) is passed through linear and softmax
layers to obtain class probabilities, for each class ci. The network is then trained using
cross-entropy loss.

pauth(ci|sx) = softmax(W ·E(sx)) (4.2)
Loss(Ax) =

∑
i

ti(sx) log (pauth(ci|sx)) (4.3)

where t(sx) is the one-hot encoding of the true class of sx.
The same network architecture is applied for all our attribute prediction tasks

including identity, age and gender.

4.3.2 The A4NT network

A key design goal for the A4NT network is that it is trainable purely from data to
obfuscate the author attributes. This is a significant departure from prior works on
author obfuscation (McDonald et al., 2012; Karadzhov et al., 2017) that rely on hand-
crafted rules for text modification to achieve obfuscation. The methods relying on
hand-crafted rules are limited in applicability to specific datasets they were designed for.

To achieve this goal, we base our A4NT network Zxy, shown in Figure 4.3, on a
recurrent sequence-to-sequence neural translation model (Sutskever et al., 2014) (Seq2Seq)
popular in many sequence mapping tasks. As seen from the wide-range of applications
mapping text-to-text (Bahdanau et al., 2014), speech-to-text (Weiss et al., 2017), text-
to-part of speech (Ma and Hovy, 2016), the Seq2Seq models can effectively learn to
map input sequences to arbitrary output sequences, with appropriate training. They
operate on raw text data and alleviate the need for hand-crafted features or rules
to transform the style of input text, predominantly used in prior works on author
obfuscation (McDonald et al., 2012; Karadzhov et al., 2017). Instead, appropriate text
transformations can be learnt directly from data. This flexibility allows us to easily
apply the same A4NT network and training scheme to different datasets and settings.

The A4NT network Zxy consists of two components, an encoder and a decoder
modules, similar to standard sequence-to-sequence models. The encoder embeds the
variable length input sentence into a fixed size vector space. The decoder maps the
vectors in this embedding space to output text sequences in the target style. The encoder
is an LSTM network, sharing the architecture of the sentence encoder in Section 4.3.1.
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Figure 4.3: Block diagram of the A4NT network. First LSTM encoder embeds the
input sentence into a vector. The decoder maps this sentence encoding to the output
sequence. Gumbel sampler produces “soft” samples from the softmax distribution to
allow backpropagation.

The same architecture applies here as the task here is also to embed the input sentence
sx into a fixed size vector EG(sx). However, EG(sx) should learn to represent the
semantics of the input sentence allowing the decoder network to generate a sentence
with similar meaning but in a different style.

The sentence embedding from the encoder is input to the decoder LSTM which
generates the output sentence one word at a time. At each step t, the decoder LSTM
takes EG(sx) and the previous output word wo

t−1 to produce a probability distribution
over the vocabulary. Sampling from this distribution outputs the next word.

hdec
t (sx) = LSTM [EG(sx),Wemb(w̃t−1)] (4.4)
p(w̃t|sx) = softmaxV (Wdec · hdec

t (sx)) (4.5)
w̃t = sample(p(w̃t|sx)) (4.6)

where Wemb is the word embedding, Wdec matrix maps the LSTM output to vocabulary
size and V is the vocabulary.

In most applications of Seq2Seq models, the networks are trained using parallel
training data, consisting of input and ground-truth output sentence pairs. A sentence is
input to the encoder and propagated through the network and the network is trained to
maximize the likelihood of generating the paired ground-truth output sentence. However,
in our setting, we do not have access to such parallel training data of text in different
styles and the A4NT network Zxy is trained in an unsupervised setting.

We address the lack of parallel training data by using the GAN framework to train
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the A4NT network. In this framework, the A4NT network Zxy learns by generating text
samples and improving itself iteratively to produce text that the attribute classifier, Ay,
classifies as target attribute. A benefit of GANs is that the A4NT network is directly
optimized to fool the attribute classifiers. It can hence learn to make transformations to
the parts of the text which are most revealing of the attribute at hand, and so hide the
attribute with minimal changes.

However, to apply the GAN framework, we need to differentiate through the samples
generated by Zxy. The word samples from p(w̃t|sx) are discrete tokens and are not
differentiable. Following Shetty et al. (2017), we apply the Gumbel-Softmax approxi-
mation (Jang et al., 2016) to obtain differentiable soft samples and enable end-to-end
GAN training.
Splitting decoder. To transfer styles between attribute pairs, x and y, in both
directions, we found it ineffective to use the same network Zxy. A single network Zxy is
unable to sufficiently switch its output word distributions solely on a binary condition
of target attribute. Nonetheless, using a separate network for each ordered pair of
attributes is prohibitively expensive. A good compromise we found is to share the
encoder to embed the input sentence but use different decoders for style transfer between
each ordered pair of attributes. Sharing the encoder allows the two networks to share
a significant number of parameters and enables the attribute specific decoders to deal
with the words found only in the vocabulary of the other attribute group using shared
sentence and word embeddings.

4.3.3 Style loss with GAN

We train the two A4NT networks Zxy and Zyx in the GAN framework to produce
samples which are indistinguishable from samples from distributions of attributes y and
x respectively, without having paired sentences from x and y. Figure 4.4 shows this
training framework.

Given a sentence sx written by author with attribute x, the A4NT network outputs
a sentence s̃y = Zxy(sx). This is passed to the attribute classifier for attribute y,
Ay, to obtain probability pauth(y|s̃y). Zxy tries to fool the classifier Ay into assigning
high probability to its output, whereas Ay tries to assign low probability to sentences
produced by Zxy while assigning high probability to real sentences sy written by y. The
same process is followed to train the A4NT network from y to x, with x and y swapped.
The loss functions used to train the A4NT network and the attribute classifiers in this
setting is given by:

L(Ay) = − log (pauth(y|sy))− log (1− pauth(y|s̃y)) (4.7)
Lstyle(Zxy) = − log (pauth(y|s̃y)) (4.8)

The two networks Zxy and Ay are adversarially competing with each other when
minimizing the above loss functions. At optimum it is guaranteed that the distribution
of samples produced by Zxy is identical to the distribution of y (Goodfellow et al., 2014).
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Figure 4.4: Illustrating use of GAN framework and cyclic semantic loss to train a pair
of A4NT networks.

However, we want the A4NT network to only imitate the style of y, while keeping the
content from x. Thus, we explore methods to enforce the semantic consistency between
the the input sentence and the A4NT output.

4.3.4 Preserving semantics

We want the output sentence, s̃y, produced by Zxy(sx) to not only fool the attribute
classifier, but also to preserve the meaning of the input sentence sx. We propose a
semantic loss Lsem(s̃y, sx) to quantify the meaning changed during the anonymization
by A4NT . Simple approaches like matching words in s̃y and sx can severely limit the
effectiveness of anonymization, as it penalizes even synonyms or alternate phrasing. In
the following subsection we will discuss two approaches to define Lsem, and later in
Section 4.5 we compare these approaches quantitatively.

4.3.4.1 Cycle constraints

One could evaluate how semantically close is s̃y to sx by evaluating how easy it is
to reconstruct sx from s̃y. If s̃y means exactly the same as sx, there should be no
information loss and we should be able to perfectly reconstruct sx from s̃y. We could
use the A4NT network in the reverse direction to obtain a reconstruction, s̈x = Zyx(s̃y)
and compare it to input sentence sx. Such an approach, referred to as cycle constraint,
has been used in image style transfer (Zhu et al., 2017), where l1 distance is used to
compare the reconstructed image and the original image to impose semantic relatedness
penalty. However, in our case l1 distance is not meaningful to compare s̈x and sx, as
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Figure 4.5: Semantic consistency in A4NT networks is enforced by maximizing cyclic
reconstruction probability.

they are sequences of possibly different lengths. Even a single word insertion or deletion
in s̈x can cause the entire sequence to mismatch and be penalized by the l1 distance.

A simpler and more stable alternative we use is to forgo the reconstruction and just
computing the likelihood of reconstruction of sx when applying reverse style-transfer on
s̃y. This likelihood is simple to obtain from the reverse A4NT network Zyx using the
word distribution probabilities at the output. This cyclic loss computation is illustrated
in Figure 4.5. Duly, we compute reconstruction probability Pr(sx|s̃y) and define the
semantic loss as:

Pr(sx|s̃y) =
n−1∏
t=0

pzyx(wt|s̃y) (4.9)

Lsem(s̃y, sx) = − logPr(sx|s̃y) (4.10)

The lower the semantic loss Lsem, the higher the reconstruction probability and thus
more meaning of the input sentence sx is preserved in the style-transfer output s̃y.

4.3.4.2 Semantic embedding loss

An alternative approach to measuring the semantic loss is to embed the two sentences, s̃y

and sx, into a semantic space and compare the two embedding vectors using l1 distance.
The idea is that a semantic embedding method puts similar meaning sentences close
to each other in this vector space. This approach is used in many natural language
processing tasks, for example in semantic entailment (Conneau et al., 2017)

Since we do not have annotations of semantic relatedness on our datasets, it is not
possible to train a semantic embedding model but instead we have to rely on pre-trained
models known to have good transfer learning performance. Several such semantic
sentence embeddings are available in the literature (Kiros et al., 2015; Conneau et al.,
2017). We use the universal sentence embedding model from Conneau et al. (2017),
pre-trained on the Stanford natural language inference dataset (Bowman et al., 2015).

We embed the two sentences using this semantic embedding model F and use the l1
distance to compare the two embeddings and define the semantic loss as:

Lsem(s̃y, sx) =
∑
dim

|F (sx)− F (s̃y)| (4.11)
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4.3.5 Smoothness with language loss

The A4NT network can minimize the style and the semantic losses, while still producing
text which is broken and grammatically incorrect. To minimize the style loss the
A4NT network needs to add words typical of the target attribute style. While minimizing
the semantic loss, it needs to retain the semantically relevant words from the input text.
However neither of these two losses explicitly enforces correct grammar and word order
of s̃.

On the other hand, unconditional neural language models are good at producing
grammatically correct text. The likelihood of the sentence produced by our A4NT model
s̃ under an unconditional language model, My, trained on the text by target attribute
authors y, is a good indicator of the grammatical correctness of s̃. The higher the
likelihood, the more likely the generated text s̃ has syntactic properties seen in the real
data. Therefore, we add an additional language smoothness loss on s̃ in order to enforce
Z to produce syntactically correct text.

Llang(s̃) = − logMy(s̃) (4.12)

Overall loss function. The A4NT network is trained with a weighted combination of
the three losses: style loss, semantic consistency and language smoothing loss.

Ltot(Zxy) = wstyLstyle +wsemLsem +wlLlang (4.13)

We chose the above three weights so that the magnitude of the weighted loss terms are
approximately equal at the beginning of training. Model training was not sensitive to
exact values of the weights chosen that way.
Implementation details. We implement our model using the PyTorch framework (Paszke
et al., 2019). The networks are trained by optimizing the loss functions described with
stochastic gradient descent using the RMSprop algorithm (Tieleman and Hinton, 2012).
The A4NT network is pre-trained as an autoencoder, i.e to reconstruct the input sen-
tence, before being trained with the loss function described in (4.13). During the GAN
training, the A4NT network and the attribute classifiers are trained for one minibatch
each alternatively. We will open source our code, models and data at the time of
publication.

4.4 experimental setup

We test our A4NT network on obfuscation of three different attributes of authors on
two different datasets. The three attributes we experiment with include author’s age
(under 20 vs over 20), gender (male vs female authors), and author identities (setting
with two authors).
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4.4.1 Datasets

We use two real world datasets for our experiments: Blog Authorship corpus (Schler et al.,
2006) and Political Speech dataset. The datasets are from very different sources with
distinct language styles, the first being from mini blogs written by several anonymous
authors, and the second from political speeches of two US presidents Barack Obama
and Donald Trump. This allows us to show that our approach works well across very
different language corpora.

Blog dataset. The blog dataset is a large collection of micro blogs from blogger.com
collected by Schler et al. (2006). The dataset consists of 19,320 “documents” along
with annotation of author’s age, gender, occupation and star-sign. Each document is a
collection of all posts by a single author. We utilize this dataset in two different settings;
split by gender (referred to as blog-gender setting) and split by age annotation (blog-
age setting). In the blog-age setting, we group the age annotations into two groups,
teenagers (age between 13-18) and adults (age between 23-45) to obtain data with binary
age labels. Age-groups 19-22 are missing in the original dataset. Since the dataset
consists of free form text written while blogging with no proper sentence boundaries
markers, we use the Stanford CoreNLP tool to segment the documents into sentences.
All numbers are replaced with the NUM token. For training and evaluation, the whole
dataset is split into training set of 13,636 documents, validation set of 2,799 documents
and test set of 2,885 documents.

Political speech dataset. To test the limits of how far style imitation based anonymiza-
tion can help protect author identity, we also test our model on two well known political
figures with very different verbal styles. We collected the transcriptions of political
speeches of Barack Obama and Donald Trump made available by the The American
Presidency Project (Woolley and Peters, 1999). While the two authors talk about similar
topics they have highly distinctive styles and vocabularies, making it a challenging
dataset for our A4NT network. The dataset consists of 372 speeches, with about 65,000
sentences in total as shown in Table 4.1. We treat each speech as a separate document
when evaluating the classification results on the document-level. This dataset contains
a significant amount of references to named entities like people, organizations, etc. To
avoid that both attribute classifiers and the style transfer model rely on these references
to specific people, we use the Stanford Named Entity Recognizer tool (Finkel et al.,
2005) to identify and replace these entities with entity labels. The dataset is split into
training set of 250 speeches, validation set of 49 speeches and test set of 73 speeches.

The comparison of the two datasets can be found in Table 4.1. The blog dataset
is much larger and therefore we run most of our evaluation on it. Using these two
datasets, we evaluate our model in three different attribute obfuscation settings, namely
age (blog-age), gender (blog-gender) and identity obfuscation (speech dataset). Detailed
analysis of our model presented in Section 4.5.2 is done on the validation split of the
blog dataset, in the blog-age setting, containing 2,799 documents and 518,268 sentences.
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Dataset Attributes # Documents # Sentences # Vocabulary

Speech Identity 372 65k 5.6k
Blog Age, Gender 19320 3.38 Mil 22k

Table 4.1: Comparing statistics of the two datasets.

4.4.2 Evaluation methods

We evaluate our models with according to two different aspects: (a) Privacy effectiveness,
to measure how well the A4NT network can fool the attribute classifiers and (b) Semantic
similarity, quantifying how much of the input sentence semantics is preserved after style
transfer.

To quantify privacy effectiveness we compare the F1-score of the attribute classifiers
on the original data and the generated text. To mimic a real-world setting where we
will not have access to the parameters of the attribute-classifier used by the adversary
to train our A4NT network, we test it against attribute classifiers which have been
separately trained on real data.

The F1-score for the attribute classifiers is defined as:

F1 = 2 ∗ precision ∗ recall
precision+ recall (4.14)

With successful style transfer, the attribute classifier will misclassify generated text and
the F1-scores will drop. We consider the obfuscation to be successful if the F1-score
drops below that of a random guessing classifier. Note that since the datasets are
not perfectly balanced with respect to the binary attributes, the F1-score for random
classifier is not 0.5. The expected document-level F1-scores of random guessing are 0.54
for the blog-age setting, 0.5 for the blog-gender setting, and 0.61 for the speech data.

For achieving obfuscation, having the attribute classifier around random chance-level
is more desirable than pushing the classifier to 0% accuracy. Zero accuracy means the
classifier has perfectly misclassified every sample. In a binary classification setting like
age-group or gender, if the adversary detects there has been obfuscation he can fully
recover the original classes by just flipping the decisions of the classifier. However if the
obfuscation is to the random chance-level, even upon detection, the best the adversary can
do is to get the random chance accuracy. This also holds true for multi-class situation, as
can be seen from the information theoretic point of view. To achieve perfect obfuscation,
we want the attribute classifier output to contain minimum information about the true
class of the input text. When the classifier accuracy of the k-class attribute classifier
is at the random chance-level, it is guessing the class labels with uniform probability
p(y|c) ∼ Uniform(1, 2, · · · , k). In this case the mutual information between the classifier
predicted label y and true label c is zero, since the p(y|c) = p(y). However, the prediction
of classifier p(y|c) at 0% accuracy is not independent of the input class-label since it
cannot take the correct class value c, i.e p(y|c) ∼ Uniform(1, 2, · · · , c− 1, c+ 1, · · · , k).
This leads to non-zero mutual information between y and c. Hence, we use the random
chance-level as our success criteria for obfuscation instead of targeting 0% classifier
accuracy.
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To quantify semantic similarity, we use the meteor metric (Denkowski and Lavie,
2014b). It is used in machine translation and image captioning to evaluate the similarity
between the candidate text and a reference text. Meteor compares the candidate
text to one or more references by matching n-grams, while allowing for soft matches
using synonym and paraphrase tables. Meteor score lies between zero and one with
zero indicating no similarity and one indicating identical sentences. For a point of
reference, the state-of-the-art methods for paraphrase generation task achieve meteor
scores between 0.35-0.4 (Li et al., 2018) and for multimodal machine translation task
achieve meteor score in the range 0.5-0.55 (Elliott et al., 2017). We use the meteor
score between the generated and input text as the measure of semantic similarity.

However, the automatic evaluation for semantic similarity is not perfectly correlated
with human judgments, especially with few reference sentences. To address this, we
additionally conduct two user studies on a subset of the test data of 745 sentences, first
to compare the semantic similarity between different obfuscation methods relatively,
and second to measure the semantic similarity between the model output and input text
on an absolute scale. We ask human annotators on Amazon Mechanical Turk (AMT)
to judge the semantic similarity of the generated text from our models. No other
information was collected from the annotators, thereby keeping them anonymous. The
annotators were compensated for their work through the AMT system. We manually
screened the text shown to the annotators to make sure it contained no obvious offensive
content.

4.4.3 Baselines

We use the two baseline methods below to compare our model with. Both chosen
baselines are automatic obfuscation methods not relying on hand-crafted rules.

Autoencoder. We train our A4NT network Z as an autoencoder, where it takes as
input sx and tries to reproduce it from the encoding. The autoencoder is trained
similar to a standard neural language model with cross entropy loss. We train two such
auto-encoders Zxx and Zyy for the two attributes. Now simple style transfer can be
achieved from x to y by feeding the sentence sx to the autoencoder of the other attribute
class Zyy. Since Zyy is trained to output text in the y domain, the sentence Zyy(sx)
tends to look similar to sentences in y. This model sets the baseline for style transfer
that can be achieved without cross domain training using GANs, with the same network
architecture and the same number of parameters.

Google machine translation. A simple and accessible approach to change writing
style of a piece of text without hand designed rules is to use generic machine translation
software. The input text is translated from a source language to multiple intermediate
languages and finally translating back to the source language. The hope is that through
this round-trip the style of the text has changed, with the meaning preserved. This
approach was used in the PAN authorship obfuscation challenge recently (Keswani et al.,
2016).
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We use the Google machine translation service3 to perform the round-trip translation
of our input sentences. We have tried a varying number of intermediate languages,
results of which will be discussed in Section 4.5. Since Google limits the api calls and
imposes character limits on manual translation, we use this baseline only on the subset
of 745 sentences from the test set for human evaluation.

4.5 experimental results

We test our model on the three settings discussed in Section 4.4 with the goal to
understand if the proposed A4NT network can fool the attribute classifiers to protect
the anonymity of the author attributes. Through quantitative evaluation done in
Section 4.5.1, we show that this is indeed the case: our A4NT network learns to fool the
attribute classifiers across all three settings. We compare the two semantic loss functions
presented in Section 4.3.4 and show that the proposed reconstruction likelihood loss
does better than pre-trained semantic encoding.

However, this privacy gain comes with a trade-off. The semantics of the input text is
sometimes altered. In Section 4.5.2, using qualitative examples, we analyze the failure
modes of our system and identify limits up to which style-transfer can help preserve
anonymity.

We use three variants of our model in the following study. The first model uses the
semantic encoding loss described in Section 4.3.4.2 and is referred to as FBsem. The
second uses the reconstruction likelihood loss discussed in Section 4.3.4.1 instead, and
is denoted by CycML. Finally, CycML+Lang uses both cyclic maximum likelihood and
the language smoothing loss described in Section 4.3.5.

4.5.1 Quantitative evaluation

Before analyzing the performance of our A4NT network, we evaluate the attribute
classifiers on the three settings we use. For this, we train the attribute classifier model
in Section 4.3.1 on all three settings. Table 4.2 shows the F1-scores of the attribute
classifiers on the training and the validation splits of the blog and the speech datasets.
Document-level scores are obtained from accumulating the class log-probability scores
on each sentence in a document before picking the maximum scoring class as the output
label. We also tried hard voting to accumulate sentence level decisions, and observed
that the hard voting results follow the same trend across datasets and splits.

On the smaller political speech dataset, the attribute classifier is able to easily
discriminate between the two authors, Barack Obama and Donald Trump, achieving
perfect F1-score of 1.0 on both the training and the validation splits. The model also
performs well on the age-group classification, achieving F1-score of 0.88 on the validation
set at the document-level. Gender classification turns out to be the hardest to generalize,
with a significant drop in F1-score on the validation set compared to the training set
(down to 0.75 from 0.93). However, we note that our gender classifier achieves similar

3https://translate.google.com/
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Setting Training Set Validation Set
Sentence Document Sentence Document

Speechdata 0.84 1.00 0.68 1.00
Blog-age 0.76 0.92 0.74 0.88
Blog-gender 0.64 0.93 0.52 0.75

Table 4.2: F1-scores of the attribute classifiers. All of them do well and better than the
document-level random chance (0.62 for speech), (0.53 for age), and (0.50 for gender).

Model Blog-age data Blog-gender data Speech dataset
Sent F1 Doc F1 Meteor Sent F1 Doc F1 Meteor Sent F1 Doc F1 Meteor

Random classifier 0.54 0.54 - 0.53 0.5 - 0.60 0.61 -
Original text 0.74 0.88 1.0 0.52 0.75 1.0 0.68 1.00 1.0
Autoencoder 0.69 0.85 0.77 0.49 0.61 0.78 0.26 0.12 0.32
A4NT FBsem 0.43 0.08 0.40 0.45 0.39 0.53 0.12 0.00 0.28
A4NT CycML 0.49 0.20 0.57 0.41 0.44 0.79 0.11 0.00 0.29
A4NT CycML+Lang 0.54 0.32 0.69 0.44 0.39 0.79 0.12 0.00 0.29

Table 4.3: Performance of the style transfer anonymization in fooling the classifiers,
across the three settings. F1 (lower is better) and Meteor (higher is better). F1-scores
below chance levels are shown in italics.

document-level classification accuracies to the traditional stylometric methods (76.1%
accuracy reported in Argamon et al. (2009), compared to 74.1% accuracy achieved by
our model). In all three tasks, the performance on sentence-level is worse than on
document-level classification. This is especially true in the gender classification task,
where the sentence-level classification does only marginally better than the random
chance (0.52 F1-score). This is expected since the stylistic differences between authors of
different genders is not visible in strong in all the sentences. However there is usually a
few sentences within a document where these stylistic differences are strong. Thus when
we aggregate the classifier scores over a document, the classifier does much better and
is well above the random chance (0.75 F1-score vs 0.50 chance-level). Document-level
classification also generalizes better with less difference between training and validation
set F1-scores in Table 4.2. Henceforth, we will use document-level F1-score as our
primary metric when evaluating the effectiveness of A4NT networks.

4.5.1.1 Quantifying privacy gains from A4NT

We evaluate the performance of our A4NT network using the attribute classifiers
presented in the previous section. To obfuscate the authorship of a document, the
A4NT network is run on every sentence in a document to transfer style from the true
attribute to the target one. For example, to mask age of a teenager written document
we use the A4NT network ZT een−Adult. Style-transferred document is input to the
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attribute classifier of the source attribute and F1-score of this classifier is computed.
This measures the privacy effectiveness of the style transfer. Meteor score is computed
between the source sentence and the A4NT output, to measure the semantic similarity.

Table 4.3 shows these results in the three settings. On the small speech dataset all
methods, including the autoencoder baseline described in Section 4.4.3, successfully
fool the attribute classifier. They all obtain F1-scores below the chance-level, with our
A4NT networks doing better. However the meteor scores of all models is significantly
lower than in the blog dataset, indicating significant amount of semantic loss in the
process of anonymization.

On the larger blog dataset, the autoencoder baseline fails to fool the attribute
classifier, with only a small drop in F1-score of 0.03 (from 0.88 to 0.85) in case of age
and 0.14 in case of gender (from 0.75 to 0.61) Our A4NT models however do much
better, with all of them being able to drop the F1-score below the random chance.

The FBsem model using semantic encoder loss achieves the largest privacy gain, by
decreasing the F1-scores from 0.88 to 0.08 in case of age and from 0.75 to 0.39 in case
of gender. This model however suffers from poor meteor scores, indicating the sentences
produced after the style transfer are no longer similar to the input.

The model using reconstruction likelihood to enforce semantic consistency, CycML,
fares much better in meteor metric in both age and gender style transfer. It is still able
to fool the classifier, albeit with smaller drops in F1-scores (still below random chance).
Finally, with addition of the language smoothing loss (CycML+Lang), we see a further
improvement in the meteor score in the blog-age setting, while the performance remains
similar to CycML on blog-gender setting and the speech dataset. However, the language
smoothing model CycML+Lang fares better in the user study discussed in Section 4.5.1.2
and also produces better qualitative samples as will be seen in Section 4.5.2.
Generalization to other classifiers. An important question to answer if A4NT is to
be applied to protect the privacy of author attributes, is how well it performs against
unseen NLP based adversaries ? To test this we trained ten different attribute classifiers
networks on the blog-age setting. These networks vary in architectures (LSTM, CNN
and LSTM+CNN) and hyper-parameters (number of layers and number of units), but
all of them achieve good performance in predicting the age attribute. The networks were
chosen to reflect real-world architecture choices used for text classification. Results from
evaluating the text generated by the A4NT networks using these “holdout” classifiers
are shown in Table 4.4. The column “mean” shows the mean performance of the ten
classifiers and “max” shows the score of best performing classifier

Holdout classifiers have good performance on the original text, achieving mean 0.85
document-level F1-score. Table 4.4 shows that all three A4NT networks generalize well
and are able to drop the document F1-score of the holdout classifiers to the random
chance level (0.54 for the blog-age setting). They perform slightly worse than on the seen
LSTM classifier, but are able to significantly drop the performance of all the holdout
classifiers (mean F1 score drops from 0.85 to 0.53 or below). This is a strong empirical
evidence that the transformations applied by the A4NT networks are not specific to the
classifier they are trained with, but can also generalize to other adversaries.

We conclude that the proposed A4NT networks are able to fool the attribute classifiers
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on all three tested tasks and also show generalization ability to fool classifier architectures
not seen during training.

Note that here we have considered dropping the classifier score below the random
chance-level on average as the criteria for fooling the classifiers and protecting privacy
as motivated in Section 4.4.2. However, in some scenarios it is desirable for the
obfuscation model to fool the classifiers all the time and pushing adversary to achieving
0% classification accuracy. This guarantee would provide the user the freedom to use
the obfuscation only when desired. Our A4NT model is not able to reach this level of
100% obfuscation. It remains an important open problem for the future work to achieve
100% obfuscation while preserving semantics, so that the user remains in full control.
Comparison to prior work. We also compare the performance of our model to a
prior work on automatic anonymization (Karadzhov et al., 2017). This work proposes
to anonymize the writing style by computing average statistics on certain text features
and applying pre-defined transformations to change the input text statistics towards the
average. We refer to this model as C-Avg and test this model on our age obfuscation
task using the official code from Karadzhov et al. (2017). The results are shown in
Table 4.5. For fair comparison we compare the performance against a holdout classifier,
not seen by our model as well. We can see that the C-Avg model (Karadzhov et al.,
2017) does not perform well on the age obfuscation task, managing to drop the F1-score
only to 0.77 from 0.84, which is well above the random chance-level. Our A4NT model
however drops the F1-score below the chance-level to 0.44. Our model does better in
semantic similarity as well, achieving meteor score of 0.69 compared to 0.55 obtained
by C-Avg. The poor performance of C-Avg model (Karadzhov et al., 2017) on the age
obfuscation task is due to the fact that C-Avg relies on hand designed transformations
(e.g. substituting synonyms from a dictionary) which does not generalize well to the
diverse writing styles found in the blog dataset. This highlights the advantage of the
proposed approach to learn to perform obfuscation directly from the data.
Different operating points. Our A4NT model offers the ability to obtain multiple
different style-transfer outputs by simply sampling from the models distribution. This
is useful as different text samples might have different levels of semantic similarity
and privacy effectiveness. Having multiple samples allows users to choose the level of
semantic similarity vs privacy trade-off they prefer.

We illustrate this in Figure 4.6. Here five samples are obtained from each A4NT model
for each sentence in the test set. By choosing the sentence with minimum, maximum or
random meteor scores w.r.t the input text, we can obtain a trade-off between semantic
similarity and privacy. We see that while the FBsem model offers limited variability,
CycML+LangLoss offers a wide range of choices of operating points. All operating points
of CycML+LangLoss achieve better meteor score than 0.5, which indicates this model
preserves the semantic similarity well.

4.5.1.2 Human judgments for semantic consistency

In machine translation and image captioning literature, it is well known that automatic
semantic similarity evaluation metrics like meteor are only reliable to a certain extent.
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Model Seen Classifier
F1-score

Holdout Classifiers
Mean F1 Max F1

Original text 0.88 0.85 0.87
Autoencoder 0.85 0.83 0.84
A4NT FBsem 0.08 0.19 0.31
A4NT CycML 0.20 0.41 0.58
A4NT CycML+Lang 0.32 0.53 0.62

Table 4.4: Evaluating the A4NT anonymization against previously unseen (holdout)
classifiers, on blogdata (age). Document-level F1 score is used.

Model
Holdout Classifier

F1-score Meteor
Original text 0.84 1.0
C-Avg (Karadzhov et al., 2017) 0.77 0.55
Ours 0.44 0.69

Table 4.5: Comparison of our A4NT model to prior work on automatic anonymization.
We compare both privacy effectiveness against a classifier and semantic consistency
(meteor metric).

Evaluation from human judges is still the gold-standard with which models can be
reliably compared.

Accordingly, we conduct user studies to judge the semantic similarity preserved by our
A4NT networks. The evaluations were conducted on a subset of 745 random sentences
from the test split of the blog-age dataset. First, output from different A4NT models
is obtained for the 745 test sentences. If any model generates identical sentences to
the input, this model is ranked first automatically without human evaluation. Note
that, in some cases, multiple models can achieve rank-1, when they all produce identical
outputs. The cases without any identical sentences to the input are evaluated using
human annotators on Amazon Mechanical Turk (AMT). An annotator is shown one
input sentence and multiple style-transfer outputs and is asked to pick the output
sentence which is closest in meaning to the input sentence. Three unique annotators
are shown each test sample and majority voting is used to determine the model which
ranks first. Cases with no majority from human evaluators are excluded.

The main goal of the study is to identify which of the three A4NT networks performs
best in terms of semantic similarity according to human judges. We also compare the
best of our three systems to the baseline model based on Google machine translation,
discussed in Section 4.4.3.

For the machine translation baseline, we obtain style-transferred texts from four
different language round-trips. We started with English→German→French→English,
and obtained three more versions with incrementally adding Spanish, Finnish and finally
Armenian languages into the chain before the translation back to English.
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Figure 4.6: Operating points of A4NT models on test set.
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Figure 4.7: Privacy and semantic consistency of A4NT and the Google MT baseline on
the human evaluation test set

To pick the operating points for the user study, we compare the performance of these
four machine translation baselines and our three models on the human-evaluation test
set in Figure 4.7. Note that here we show sentence-level F1 score on the y-axis as the
human-evaluation test set is too small for document-level evaluation. We see that none
of the Google machine translation baselines are able to fool the attribute classifiers.
The model with 5-hop translation achieves best (lowest) F1-score of 0.81 which is only
slightly less than the input data F1-score of 0.9. This model also achieves significantly
worse meteor score than any of our A4NT models.

We conduct the user study comparing our style-transfer models on two operating
points of 0.5 F1-score and 0.66 F1-scores, to obtain human judgments at two different
levels of privacy effectiveness as shown in Table 4.6. We see that the model CycML+Lang
outperforms the other two models at both operating points. CycML+Lang wins 50.74%
of the time (ignoring ties) at operating point 0.5 and 57.87% of the time at operating
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Operating Point FBsem CycML CycML + Lang
0.66 32.02 39.75 57.87
0.5 15.03 31.68 50.74

Table 4.6: User study to judge semantic similarity. Three variants of our model are
compared. Numbers show the % times the model ranked first. Can add to more than
100% as multiple models can have rank-1.

point 0.66. These results combined with quantitative evaluation discussed in Section 4.5.1
confirm that the cyclic ML loss combined with the language model loss gives the best
trade-off between semantic similarity and privacy effectiveness.

Finally, we conduct the user study between the CycML+Lang model operating at
0.79 and the Google machine translation baseline with 3 hops. The operating point
is chosen so that the two models are closest to each other in privacy effectiveness and
meteor score. Results in Table 4.7 show that our model wins over the GoogleMT
baseline by approximately 16% (59.46% vs 43.76% rank1) on semantic similarity as per
human judges, while still having better privacy effectiveness. This is largely because
our A4NT model learns not to change the input text if it is already ambiguous for the
attribute classifier, and only makes changes when necessary. In contrast, changes made
by GoogleMT round trip are not optimized towards maximizing privacy gain, and can
change the input text even when no change is needed.

Apart from the relative evaluation between our model and the GoogleMT baseline,
we additionally conduct separate a user study for both the models to assess the semantic
similarity to the input sentence in an absolute scale. This study is conducted on the
same human-evaluation test set containing 745 sentences and using the AMT platform
as before. We show each human judge the input sentence and output form either of
the models and ask them to rate the similarity to the input in a Likert scale from
zero to five. We adopt the instruction used in SemEval task (Agirre et al., 2016) to
describe the different rating values to the user. Here zero rating corresponds to the
worst case where the input and output sentences are not semantically related and five
corresponds to the best case where they are equivalent in meaning. Each input-output
pair is evaluated by three human judges and we report the mean score and standard
deviation in Table 4.7. We see the same trend as in the relative evaluation and our model
achieves better overall score of 4.51/5.0 compared to 4.16 obtained by the GoogleMT
baseline. The score of the A4NT model lies between the ratings of 4.0 (sentences are
equivalent with unimportant details differing) and 5.0 (sentences are equivalent). This
shows that the A4NT model preserves the meaning of the input sentence on average, by
making semantically equivalent changes to fool the authorship classifier.

4.5.2 Qualitative analysis

In this section we analyze some qualitative examples of anonymized text produced by
our A4NT model and try to identify the strengths and the weaknesses of this approach.
Then we analyze the performance of the A4NT network on different levels of input
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Comparison A4NT CycML + Lang GoogleMT
Operating point 0.79 0.85
Relative (% Rank 1) 59.46 43.76
Absolute (0-5) 4.51±0.84 4.16±0.89

Table 4.7: User study of our best model and the Google MT baseline.

difficulty. We use the attribute classifiers’ score as a proxy measure of the input text
difficulty. If the text is confidently correctly classified (with classification score of 1.0)
by the attribute classifier, then the A4NT network has to make significant changes to
fool the classifier. If it is already misclassified, the style-transfer network should ideally
not make any changes.

4.5.2.1 Examples of style transfer for anonymization

Table 4.8 shows the results of our A4NT model CycML+Lang applied to some example
sentences in the blog-age setting. Style transfer in both directions, teenager to adult
and adult to teenager, is shown along with the corresponding source attribute classifier
scores. The examples illustrate some of the common changes made by the model and
are grouped into three categories for analysis (# column in Table 4.8).
# 1. Using synonyms. The A4NT network often uses synonyms to change the style
to target attribute. This is seen in style transfers in both directions, teen to adult and
adult to teen in category # 1 samples in Table 4.8. We can see the model replacing
“yeh” with “ooh”, “would” with “will”, “...” with “,” and so on when going from teen to
adult, and replacing “funnily enough” with “haha besides”, “work out” with “go out”
and so on when changing from adult to teen. We can also see that the changes are not
static, but depend on the context. For example “yeh” is replaced with “alas” in one
instance and with “ooh” in another. These changes do not alter the meaning of the
sentence too much, but fool the attribute classifiers thereby providing privacy to the
author attribute.
# 2. Replacing slang words. When changing from teen to adult, A4NT often
replaces the slang words or incorrectly spelled words with standard English words, as
seen in category #2 in Table 4.8. For example, replacing “wad” (what) with “definitely”,
“wadeva” with “perhaps” and “nuthing” with “ofcourse”. The opposite effect is seen
when going from adult to teenager, with addition of “diz” (this) and replacing of “think”
with “relized” (realized). These changes are learned entirely from the data, and would
be very hard to encode explicitly in a rule-based system due to the variety in slangs and
spelling mistakes.
# 3. Semantic changes. One failure mode of A4NT is when the input sentence
has semantic content which is significantly more biased to the author’s class. These
examples are shown in category #3 in Table 4.8. For example, when an adult author
mentions his “wife”, the A4NT network replaces it with “crush”, altering the meaning
of the input sentence. Some common entity pairs where this behavior is seen are with
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(school↔work), (class↔office), (dad↔husband), (mum↔wife), and so on. Arguably,
in such cases, there is no obvious solution to mask the identity of the author without
altering these obviously biased content words.

On the smaller speech dataset however, the changes made by the A4NT model alter
the semantics of the sentences in some cases. Few example style transfers from Obama
to Trump’s style are shown in Table 4.9. We see that A4NT inserts hyperbole (“better
than anybody”, “horrible horrible”, “crooked”), references to “media” and “system”, all
salient features of Trump’s style. We see that the style-transfer here is quite successful,
sufficient to completely fool the identity classifier as was seen in Table 4.3. However,
and somewhat expectedly, the semantics of the input sentence is generally lost. A
possible cause is that the attribute classifier is too strong on this data, owing to the
small dataset size and the highly distinctive styles of the two authors, and to fool them
the A4NT network learns to make drastic changes to the input text.

4.5.2.2 Performance across input difficulty

Figure 4.8 compares the attribute classifier score on the input sentence and the
A4NT output. Ideally we want all the A4NT outputs to score below the decision
boundary, while also not increasing the classifier score compared to input text. This
“ideal score” is shown as grey solid line. We see that for the most part all three
A4NT models are below or close to this ideal line. As the input text gets more difficult
(increasing attribute classifier score), the CycML and CycML+Lang slightly cross above
the ideal line, but still provide significant improvement over the input text (drop in
classifier score of about ∼ 0.45).

Now, we analyze how much of input semantics is preserved with increasing difficulty.
Figure 4.9 plots the meteor score of the A4NT output against the difficulty of the input
text. We see that the meteor is high for sentences already across the decision boundary.
These are easy cases, where the A4NT networks need not intervene. As the input gets
more difficult, the meteor score of the A4NT output drops, as the network needs to do
more changes to be able to fool the attribute classifier. The CycML+Lang model fares
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better than the other two models, with consistently higher meteor across the difficulty
spectrum.

Figure 4.10 shows the histogram of privacy gain across the test set. Privacy gain is
the difference between the attribute classifier score on the input and the A4NT network
output. We see that majority of transformations by the A4NT networks leads to positive
privacy gains, with only a small fraction leading to negative privacy gains. This is
promising given that this histogram is over all the 500k sentences in the test set. Meteor
score plotted against privacy gain shown in Figure 4.10, again confirms that large privacy
gains comes with a trade-off of loss in semantics.
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# Input: Teen A(x) Output: Adult A(x)

1 and yeh... it’s raining lots now 0.97 and ooh... it’s raining lots now 0.23
1 yeahh... i never let anyone really know

how i’m feeling.
0.94 anyhow, i never let anyone really know how

i’m feeling .
0.24

1 yeh, it’s just goin ok here too! 0.95 alas, it’s just goin ok here too! 0.30
1 would i go so far to say that i love her? 0.52 will i go so far to say that i love her? 0.36
2 wad a nice day.. spend almost the whole

afternoon doing work!
0.99 definitely a nice day.. spend almost the

whole afternoon doing work!
0.19

2 wadeva told u secrets wad did u do ? 0.98 perhaps told u secrets why did u do ? 0.49
2 i don’t know y i even went into dis

relationship
0.92 i don’t know why i even went into another

relationship .
0.33

2 i have nuthing else to say about this
horrid day.

0.79 i have ofcourse else to say about this
accountable day.

0.08

3 after school i got my hair cut so it looks
nice again.

1.0 after all i have my hair cut so it looks nice
again.

0.42

3 i had an interesting day at skool. 0.97 i had an interesting day at wedding. 0.05

# Input: Adult A(x) Output: Teen A(x)

1 funnily enough , i do n’t care all that
much.

0.58 haha besides , i do n’t care all that much. 0.05

1 i may go to san francisco state, or i may
go back.

0.54 i shall go to san francisco state, or i may go
back.

0.09

1 i wonder if they ’ll work out... hard to
say.

0.52 i wonder if they ’ll go out... hard to say. 0.39

2 one is to mix my exercise order a bit
more.

0.97 one is to mix my diz exercise order a bit
more.

0.08

2 ok, think i really will go to bed now. 0.79 ok, relized i really will go to bed now. 0.08
3 my first day going out to see clients after

vacation.
0.98 my first day going out to see some1 after

vacation.
0.04

3 i’d tell my wife how much i love her
every time i saw her.

0.96 i’d tell my crush how much i love her every
time i saw her.

0.06

3 i do believe all you need is love. 0.58 i dont think all you need is love . 0.11

Table 4.8: Qualitative examples of anonymization through style transfer in the blog-age
setting. Style transfer in both direction is shown along with the attribute classifier score
of the source attribute.
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Input: Obama Output: Trump

we can do this because we are MISC. we will do that because we are MISC.
we can do better than that. we will do that better than anybody.
it’s not about reverend PERSON. it’s not about crooked PERSON.
but i’m going to need your help. but i’m going to fight for your country.
so that’s my vision. so that’s my opinion.
their situation is getting worse. their media is getting worse.
i’m kind of the term PERSON because i do care. i’m tired of the system of PERSON PERSON

because they don’t care.
that’s what we need to change. that’s what she wanted to change.
that’s how our democracy works. that’s how our horrible horrible trade deals.

Table 4.9: Qualitative examples of style transfer on the speech dataset from Obama to
Trump’s style
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4.6 conclusions

We presented a novel fully automatic method for protecting privacy sensitive attributes
of an author against NLP based attackers. Our solution consists of the A4NT network
which learns to protect private attributes with novel adversarial training of a machine
translation model. The A4NT network achieves this by learning to perform style-transfer
without paired data.

A4NT offers a new data driven approach to authorship obfuscation. The flexibility of
this end-to-end trainable model means it can adapt to new attack methods and datasets.
Experiments on three different, attributes namely age, gender and identity, showed that
the A4NT network is able to effectively fool the attribute classifiers in all three settings.
We also show that the A4NT network performs well against multiple unseen classifier
architectures. This strong empirical evidence suggests that the method is likely to be
effective against previously unknown NLP adversaries.

We developed a novel solution to preserve the meaning of input text using likelihood
of reconstruction. Semantic similarity (quantified by meteor score) of the A4NT network
remains high for easier sentences, which do not contain obvious give-away words (school,
work, husband etc.), but is lower on difficult sentences indicating the network effectively
learns to identify and apply the right magnitude of change. The A4NT network can be
operated at different points on the privacy-effectiveness and semantic-similarity trade-off
curve, and thus offers flexibility to the user. The experiments on the political speech
data show the limits to which style transfer based approaches can be used to hide
attributes. On this challenging data with very distinct styles by the two authors, our
method effectively fools the identity classifier but achieves this by altering the semantics
of the input text.



Part II
Analyzing Model Robustness Through Image

Manipulation

Despite rapid progress in computer vision benchmarks powered by deep neural networks,
real-world deployment is hindered by sensitivity of these models to input distribution
shifts. While many recent works have collected manually curated datasets to capture
different distribution shifts (Barbu et al., 2019; Hendrycks et al., 2021, 2020), it is an
expensive and slow process. Given the combinatorial nature of some attributes like
co-occuring context objects, it might not even be feasible to collect these variations
in a dataset. In this part of the thesis, we will explore developing generative models
for controlled image editing and leveraging these models to create data variations like
changes in context and appearance of objects and scenes. We show that this process
can be used to efficiently create hard data at scale and analyze robustness of different
computer vision systems.

In Chapter 5, we develop a generative model for removing objects from images,
without requiring precise segmentation annotation. In Chapter 6, we leverage this object
removal model to understand how much image classification and semantic segmentation
networks rely on contextual evidence for making their predictions. Our analysis reveals
that these networks exploit several spurious correlations in object co-occurences to achieve
good performance in i.i.d. setting, but break down when these correlations are broken
in edited data. In Chapter 7, a similar methodology is used to analyze visual question
answering models. Chapter 8 builds a generative model capable of editing appearance
of an object, while keeping its pose and context intact. This synthesizer is then used to
create challenging appearance variations targeting an object detector through adversarial
optimization of the object appearance. Finally, in Chapter 9, we perform adversarial
attack through a simulator to create adversarial weather configurations and study the
performance of a semantic segmentation model under these variations.
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ADVERSARIAL EDIT ING FOR OBJECT REMOVAL
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Rapid progress has been seen in generative modeling of images, in particular
synthesizing full images of faces or structured street scenes. In this chapter, we
turn the focus towards more controlled editing of an input image and develop

an automatic interaction-free object removal model. Similar to our A4NT model in
Chapter 4, object removal model developed here learns to edit general scene images only
using image-level labels and unpaired data in a GAN framework. We achieve this with
two key contributions: a two-stage editor architecture consisting of a mask generator
and image in-painter that cooperate to remove objects, and a novel GAN based prior
for the mask generator that allows us to flexibly incorporate knowledge about object
shapes. We experimentally show on two datasets that our method effectively removes a
wide variety of objects using weak supervision only. The model developed here serves
as a key tool for our work in Chapters 6 and 7, where we use image editing to study
robustness of different computer vision systems.
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5.1 introduction

Automatic editing of scene-level images to add/remove objects and manipulate attributes
of objects like color/shape etc. is a challenging problem with a wide variety of applications.
Such an editor can be used for data augmentation (Shrivastava et al., 2017), test case
generation, automatic content filtering and visual privacy filtering (Orekondy et al.,
2018). To be scalable, the image manipulation should be free of human interaction and
should learn to perform the editing without needing strong supervision. In this chapter,
we investigate such an automatic interaction free image manipulation approach that
involves editing an input image to remove target objects, while leaving the rest of the
image intact.

The advent of powerful generative models like generative adversarial networks (GAN)
has led to significant progress in various image manipulation tasks. Recent works have
demonstrated altering facial attributes like hair color, orientation (Huang et al., 2017a),
gender (Lample et al., 2017) and expressions (Choi et al., 2018) and changing seasons
in scenic photographs (Zhu et al., 2017). An encouraging aspect of these works is that
the image manipulation is learnt without ground truth supervision, but with using
unpaired data from different attribute classes. While this progress is remarkable, it has
been limited to single object centric images like faces or constrained images like street
scenes from a single point of view (Wang et al., 2018). In this work we move beyond
these object-centric images and towards scene-level image editing on general images.
We propose an automatic object removal model that takes an input image and a target
class and edits the image to remove the target object class. It learns to perform this
task with only image-level labels and without ground truth target images, i.e. using only
unpaired images containing different object classes.

Our model learns to remove objects primarily by trying to fool object classifiers in
a GAN framework. However, simply training a generator to re-synthesize the input
image to fool object classifiers leads to degenerate solutions where the generator uses
adversarial patterns to fool the classifiers. We address this problem with two key
contributions. First we propose a two-stage architecture for our generator, consisting of
a mask generator, and an image in-painter which cooperate to achieve removal. The
mask generator learns to fool the object classifier by masking some pixels, while the
in-painter learns to make the masked image look realistic. The second part of our
solution is a GAN based framework to impose shape priors on the mask generator to
encourage it to produce compact and coherent shapes. The flexible framework allows us
to incorporate different shape priors, from randomly sampled rectangles to unpaired
segmentation masks from a different dataset. Furthermore, we propose a novel locally
supervised real/fake classifier to improve the performance of our in-painter for object
removal. Our experiments show that our weakly supervised model achieves on par
results with a baseline model using a fully supervised Mask-RCNN (He et al., 2017)
segmenter in a removal task on the COCO (Chen et al., 2015) dataset.

An important use-case of our system would be in automatic content filtering, e.g.
for privacy or parental control. This would involve automatic removal of objects and
sensitive content from large databases or continuous streams of images. Content to be
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removed in these scenarios are often personalized and beyond the usually studied object
categories in computer vision. Thus a system which can learn to remove these objects
from cheap image-level labels would be useful. We demonstrate the applicability of
our object remover model to such content filtering task, by training it to automatically
remove brand logos from images with only image level labels.

5.2 learning to remove objects

We propose an end-to-end model which learns to find and remove objects automatically
from images without any human interaction. It learns to perform this removal with only
access to image-level labels without needing expensive ground-truth location information
like bounding boxes or masks. Additionally, we do not have ground-truth target images
showing the expected output image with the target object removed since it is infeasible
to obtain such data in general.

We overcome the lack of ground-truth location and target image annotations by
designing a generative adversarial framework (GAN) to train our model with only
unpaired data. Here our editor model learns from weak supervision from three different
classifiers. The model learns to locate and remove objects by trying to fool an object
classifier. It learns to produce realistic output by trying to fool an adversarial real/fake
classifier. Finally, it learns to produce realistic looking object masks by trying to fool a
mask shape classifier. Let us examine these components in detail.

5.2.1 Two-staged editor architecture

Recent works Lample et al. (2017); Choi et al. (2018) on image manipulation utilize
a generator network which takes the input image and synthesizes the output image
to reflect the target attributes. While this approach works well for structured images
of single faces, we found in own experiments that it does not scale well for removing
objects from general scene images. In general scenes with multiple objects, it is difficult
for the generator to remove only the desired object while re-synthesizing the rest of
the image exactly. Instead, the generator finds the easier solution to fool the object
classifier by producing adversarial patterns. This is also facilitated by the fact that the

Image  
In­painter

Mask 
Generator

Object
Classifier

Real/
Fake ?

Is there  
a person ?Editor

Real/ Fake
Classifier

(a) Our editor is composed of a mask-generator and an image
in-painter

input classic
gan ours

(b) Two-stage generator avoids
adversarial patterns

Figure 5.1: Illustrating (a) the proposed two-staged architecture and (b) the motivation
for this approach
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object classifier in crowded scenes has a much harder task than a classifier determining
hair-colors in object centric images and thus is more susceptible to adversarial patterns.
Figure 5.1(b) illustrates this observation, where a single stage generator from Choi et al.
(2018) trying to remove the person, fools the classifier using adversarial noise. We can
also see that the colors of the entire image have changed even when removing a single
local object.

We propose a two-staged generator architecture shown in Figure 5.1(a) to address
this issue. The first stage is a mask generator, GM , which learns to locate the target
object class, ct, in the input image x and masks it out by generating a binary mask
m = GM (x, ct). The second stage is the in-painter, GI , which takes the generated mask
and the masked-out image as input and learns to in-paint to produce a realistic output.
Given the inverted mask m̃ = 1−m, final output image y is computed as

y = m̃ · x+m ·GI (m̃ · x) (5.1)

The mask generator is trained to fool the object classifier for the target class whereas the
in-painter is trained to only fool the real/fake classifier by minimizing the loss functions
shown below.

Lcls(GM ) = −Ex [log(1−Dcls(y, ct))] (5.2)
Lrf(GI) = −Ex [Drf(y)] (5.3)

where Dcls(y, ct) is the object classifier score for class ct and Drf is the real/fake classifier.
Here Drf is adversarial, i.e. it is constantly updated to classify generated samples

y as “fake”. The object classifier Dcls however is not adversarial, since it leads to the
classifier using the context to predict the object class even when the whole object is
removed. Instead, to make the Dcls robust to partially removed objects, we train it
on images randomly masked with rectangles. The multiplicative configuration in (5.1)
makes it easy for GM to remove the objects by masking them out. Additionally, the
in-painter also does not produce adversarial patterns as it is not optimized to fool
the object classifier but only to make the output image realistic. The efficacy of this
approach is illustrated in the image on the right on Figure 5.1(b), where our two-staged
model is able to cleanly remove the person without affecting the rest of the image.

5.2.2 Mask priors

While the two-stage architecture avoids adversarial patterns and converge to desirable
solutions, it is not sufficient. The mask generator can still produce noisy masks or
converge to bad solutions like masking most of the image to fool the object classifier.
A simple solution is to favor small sized masks. We do this by simply minimizing the
exponential function of the mask size, exp(Σijmij). But this only penalizes large masks
but not noisy or incoherent masks.

To avoid these degenerate solutions, we propose a novel mechanism to regularize
the mask generator to produce masks close to a prior distribution. We do this by
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Figure 5.2: Imposing mask priors with a GAN framework

minimizing the Wasserstein distance between the generated mask distribution and the
prior distribution P (m) using Wasserstein GAN (WGAN) (Arjovsky et al., 2017) as
shown in Figure 5.2. The WGAN framework allows flexibility while choosing the prior
since we only need samples from the prior and not a parametric form for the prior.

The prior can be chosen with varying complexity depending on the amount of
information available, including knowledge about shapes of different object classes. For
example we can use unpaired segmentation masks from a different dataset as a shape
prior to the generator. When this is not available, we can impose the prior that objects
are usually continuous coherent shapes by using simple geometric shapes like randomly
generated rectangles as the prior distribution.

Given a class specific prior mask distribution, P (mp|ct), we setup a discriminator, DM

to assign high scores to samples from this prior distribution and the masks generated by
GM (x, ct). The mask generator is then additionally optimized to fool the discriminator
DM . The adversarial losses minimized by DM and GM are as below:

L(DM ) = Ex [DM (GM (x, ct), ct)]−Emp∼P (mp|ct) [DM (mp, ct)] (5.4)
Lprior(GM ) = −Ex [DM (GM (x, ct), ct)] (5.5)

5.2.3 Optimizing the in-painting network for removal

The in-painter network GI is tasked with synthesizing a plausible image patch to fill the
region masked-out by GM , to produce a realistic output image. Similar to prior works
on in-painting (Yu et al., 2018; Iizuka et al., 2017; Liu et al., 2018), we train GI with
self-supervision by trying to reconstruct random image patches and weak supervision
from fooling an adversarial real/fake classifier. The reconstruction loss encourages GI

to keep consistency with the image while the adversarial loss encourages it to produce
sharper images.
Reconstruction losses. To obtain self-supervision to the in-painter we mask random
rectangular patches mr from the input and ask GI to reconstruct these patches. We
minimize the L1 loss and the perceptual loss (Gatys et al., 2015) between the in-painted
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image and the input as follows:

Lrecon(GI) = ‖GI (m̃
r · x)− x‖1 + Σk ‖φk (GI (m̃

r · x))− φk(x)‖1 (5.6)

Mask buffer. The masks generated by GM (x, ct) can be of arbitrary shape and hence
the in-painter should be able to fill in arbitrary holes in the image. We find that
the in-painter trained only on random rectangular masks performs poorly on masks
generated by GM . However, we cannot simply train the in-painter with reconstruction
loss in (5.6) on masks generated by GM . Unlike random masks mr which are unlikely to
align exactly with an object, generated masks GM (x, ct) overlap the objects we intend
to remove. Using reconstruction loss here would encourage the in-painter to regenerate
this object. We overcome this by storing generated masks from previous batches in a
mask buffer and randomly applying them on images from the current batch. These are
not objects aligned anymore due to random pairing and we train the in-painter GI with
the reconstruction loss, allowing it to adapt to the changing mask distribution produced
by the GM (x, ct).
Local real/fake loss. In recent works on in-painting using adversarial loss Yu et al.
(2018); Iizuka et al. (2017); Liu et al. (2018), in-painter is trained adversarially against
a classifier Drf which learns to predict global “real” and “fake” labels for input x and
the generated images y respectively. A drawback with this formulation is that only a
small percentage of pixels in the output y is comprised of truly “fake” pixels generated
by the in-painter, as seen in Equation (5.1). This is a hard task for the classifier Drf
hard since it has to find the few pixels that contribute to the global “fake” label. We
tackle this by providing local pixel-level real/fake labels on the image to Drf instead
of a global one. The pixel-level labels are available for free since the inverted mask m̃
acts as the ground-truth “real” label for Drf. Note that this is different from the patch
GAN (Isola et al., 2016) where the classifier producing patch level real/fake predictions
is still supervised with a global image-level real/fake label. We use the least-square
GAN loss (Mao et al., 2017) to train the Drf, since we found the WGAN loss to be
unstable with local real/fake prediction. This is because, Drf can minimize the WGAN
loss with assigning very high/low scores to one patch, without bothering with the other
parts of the image. However, least-squares GAN loss penalizes both very high and very
low predictions, thereby giving equal importance to different image regions.

L(Drf) =
1

Σijm̃ij

∑
ij

m̃ij · (Drf(y)ij − 1)2 +
1

Σijmij

∑
ij

mij · (Drf(y)ij + 1)2 (5.7)

Penalizing variations. We also incorporate the style-loss (Lsty) proposed in Liu et al.
(2018) to better match the textures in the in-painting output with that of the input
image and the total variation loss (Ltv) since it helps produce smoother boundaries
between the in-painted region and the original image.

The mask generator and the in-painter are optimized in alternate epochs using
gradient descent. When the GM is being optimized, parameters of GI are held fixed
and vice-versa when GI is optimized. We found that optimizing both the models at
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every step led to unstable training and many training instances converged to degenerate
solutions. Alternate optimization avoids this while still allowing the mask generator and
in-painter to co-adapt. The final loss function for GM and GI is given as:

Ltotal(GM ) = λcLcls + λpLprior + λsz exp(Σijmij) (5.8)
Ltotal(GI) = λrfLrf + λrLrecon + λtvLtv + λstyLsty (5.9)

5.3 experimental setup

Datasets. Keeping with the goal of performing removal on general scene images, we
train and test our model mainly on the COCO dataset (Chen et al., 2015) since it
contains significant diversity within object classes and in the contexts in which they
appear. We test our proposed GAN framework to impose priors on the mask generator
with two different priors namely rotated boxes and unpaired segmentation masks. We
use the segmentation masks from Pascal-VOC 2012 dataset (Everingham et al.) (without
the images) as the unpaired mask priors. To facilitate this we restrict our experiments
on 20 classes shared between the COCO and Pascal datasets. To demonstrate that our
editor model can generalize beyond objects and can learn to remove to different image
entities, we test our model on the task of removing logos from natural images. We use
the Flickr Logos dataset (Kalantidis et al., 2011), which has a training set of 810 images
containing 27 annotated logo classes and a test set of 270 images containing 5 images
per class and 135 random images containing no logos.
Evaluation metrics. We evaluate our object removal for three aspects: removal
performance to measure how effective is our model at removing target objects and image
quality assessment to quantify how much of the original image is edited and finally
human evaluation to judge removal.
• Removal performance: We quantify the removal performance by measuring the
performance of an object classifier on the edited images using two metrics. Removal
success rate measures the percentage of instances where the editor successfully fools
the object classifier score below the decision boundary for the target object class.False
removal rate measures the percentage of cases where the editor removes the wrong
objects while trying to remove the target class. This is again measured by monitoring if
the object classifier score drops below decision boundary for other classes.

• Image quality assessment: To be useful, our editor should remove the target
object class while leaving the rest of the image intact.Thus, we quantify the usefulness
by measuring similarity between the output and the input image using three metrics
namely peak signal-to-noise ratio (pSNR), structural similarity index (ssim) (Wang et al.,
2004) and perceptual loss (Zhang et al., 2018b). The first two are standard metrics used
in image in-painting literature, whereas the perceptual loss (Zhang et al., 2018b) was
recently proposed as a learned metric to compare two images. We use the squeezenet
variant of this metric.
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• Human evaluation: We conduct a study to obtain human judgments of removal
performance. We show hundred randomly selected edited images to a human judge and
asked if they see the target object class. To keep the number of annotations reasonable,
we conduct the human evaluation only on the person class (largest class). Each image
is shown to three separate judges and removal is considered successful when all three
humans agree that they do not see the object class. The participants in the study were
not aware of the project and were just asked to determine if they see a ’person’ (either
full body or clear body parts/ silhouettes) in the images shown. The outputs from
different models were all shown in the same session to a human judge in a randomized
order to prevent biasing the results against latter models. This human study evaluates
the removal system holistically and helps verify that the removal performance measured
by a classifier is similar to as perceived by the humans, and thus validating the automatic
evaluation protocol.
Baselines with additional supervision. Since there is no prior work proposing a
fully automatic object removal solution, we compare our model against removal using a
stand-alone fully supervised segmentation model, Mask-RCNN (He et al., 2017). We
obtain segmentation mask predictions from Mask-RCNN and use our trained in-painter
to achieve removal. Additionally we also compare our model to a weakly supervised
segmentation method from Khoreva et al. (2017) (referred to as SDI), which learns to
segment objects by using ground truth bounding boxes as supervision. Please note that
both the above methods use stronger supervision in terms of object bounding boxes
(Mask-RCNN and SDI) and object segmentation (Mask-RCNN) than our proposed
method, which uses only image level labels.

5.4 results

We present qualitative and quantitative evaluations of our editor and comparisons to
the Mask-RCNN based removal. Qualitative results show that our editor model works
well across diverse scene types and object classes. Quantitative analysis shows that our
weakly supervised model performs on par with the fully supervised Mask-RCNN in the
removal task, in both automatic and human evaluation.

5.4.1 Qualitative results

Figure 5.3 shows the results of object removal performed by our model (last row) on
the COCO dataset compared to the Mask-RCNN baseline. We see that our model
works across diverse scene types, with single objects (columns 1-4) or multiple instances
of the same object class (col. 5-6) and even for a fairly large object (last column).
Figure 5.3 also highlight the problems with simply using masks from a segmentation
model, Mask-RCNN, for removal. Mask-RCNN is trained to accurately segment the
objects and thus the masks it produces very closely trace the object boundary, too
closely for removal purposes. We can clearly see the silhouettes of objects in all the
edited images on the second row. These results justify our claim that segmentation
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Figure 5.3: Qualitative examples of removal of different object classes
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Figure 5.4: Results of logo removal
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Figure 5.5: Effect of priors on generated masks

annotations are not needed to learn to remove objects and might not be the right
annotations anyway.

Our model is not tied to notion of objectness and can be easily extended to remove
other image entities. The flexible GAN based mask priors allow us to use random
rectangular boxes as priors when object shapes are not available. To demonstrate this
we apply our model to the task of removing brand logos automatically from images.
The model is trained using image level labels and box prior. Qualitative examples in
Figure 5.4 shows that our model works well for this task, despite the fairly small training
set (800 images). It is able to find and remove logos in different contexts with only
image level labels. The image on the bottom left shows a failure case where the model
fails to realize that the text “NBC” belongs to the logo.

Figure 5.5 shows the masks generated by our model with different mask priors on the
COCO dataset. These examples illustrate the importance of the proposed mask priors.
The masks generated by the model using no prior (second row) are very noisy since the
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model has no information about object shapes and is trying to infer everything from the
image level classifier. Adding the box prior already makes the masks much cleaner and
more accurate. We can note that the generated masks are “boxier” while not strictly
rectangles. Finally using unpaired segmentation masks from the pascal dataset as shape
priors makes the generated masks more accurate and the model is able to recover the
object shapes better. This particularly helps in object with diverse shapes, for example
people and dogs.

5.4.2 Quantitative evaluation of removal performance

To quantify the removal performance we run an object classifier on the edited images
and measure its performance. We use a separately trained classifier for this purpose, not
the one used in our GAN training, to fairly compare our model and the Mask-RCNN
based removal.
Sanity of object classifier performance. The classifier we use to evaluate our model
achieves per-class average F1-score of 0.57, overall average F1-score of 0.67 and mAP
of 0.58. This is close to the results achieved by recent published work on multi-label
classification (Wang et al., 2016a) on the COCO dataset, which achieves class average
F1-score of 0.60, overall F1-score of 0.68 and mAP of 0.61. While these numbers are not
directly comparable (different image resolution, different number of classes), it shows
that our object classifier has good performance and can be relied upon. Furthermore,
human evaluation shows similar results as our automatic evaluation.
Effect of priors. Table 5.1 compares the different versions of our model using different
priors. The box prior uses randomly generated rectangles of different aspect ratios, area
and rotations. The Pascal (n) prior uses n randomly chosen unpaired segmentation
masks for each class from the Pascal dataset. The table shows metrics measuring the
removal performance, image quality and mask accuracy. The arrows ↑ and ↓ indicate if
higher or lower is better for the corresponding metric. Comparing removal performance
in Table 5.1 we see that while the model with no prior achieves very high removal
rate (94%), but it does so with large masks (37 %) which causes low output image
quality. As we add priors, the generated masks become smaller and compact. We also
see that mIou of the masks increase with stronger priors (0.22-0.23 for pascal prior),
indicating they are more accurate. Smaller and more accurate masks also improve the
image quality metrics and false removal rates which drop more than half from 36% to
16%. This is inline with the visual examples in Figure 5.5, where model without prior
produces very noisy masks and quality of the masks improve with priors.

Another interesting observation from Table 5.1 is that using very few segmentation
masks from pascal dataset leads to a drop in removal success rate, especially for the
person class. This is because the person class has very diverse shapes due to varying
poses and scales. Using only ten masks in the prior fails to capture this diversity
and performs poorly (59%). As we increase the number of mask samples in the prior,
removal performance jumps significantly to 81% on the person class. Considering these
results, we note that the pascal all version offers the best trade-off between removal and
image quality due to more accurate masks and we will use this model in comparison to
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Prior
Removal Performance Image quality metrics Mask accuracy

removal success ↑ false ↓
removal

percep.
loss ↓ pSNR ↑ ssim ↑ mIou ↑

%
masked
area ↓all person

None 94 96 36 0.13 19.97 0.743 0.15 37.7
boxes 83 88 23 0.11 20.41 0.777 0.18 28.1
pascal (10) 67 59 17 0.07 23.81 0.833 0.23 16.7
pascal (100) 70 75 16 0.07 23.02 0.821 0.22 18.1
pascal (all) 73 81 16 0.08 22.64 0.803 0.22 20.2

Table 5.1: Quantifying the effect of using more accurate mask priors

Model dilation Removal Success
all person

SDI: supervised with GT boxes - 54 45
7x7 64 65

Ours - 73 81

Table 5.2: Comparison to weakly supervised semantic segmentation model, SDI (Khoreva
et al., 2017)

benchmarks.
Benchmarking against GT and Mask-RCNN. Table 5.3 compares the performance
of our model against baselines using ground-truth (GT) masks and Mask-RCNN seg-
mentation masks for removal. These benchmarks use the same in-painter as our-pascal
model. We see that our model outperforms the fully supervised Mask-RCNN masks and
even the GT masks in terms of removal (66%& 68% vs 73%). While surprising, this is
explained by the same phenomenon we saw in qualitative results with Mask-RCNN in
Figure 5.3. The GT and Mask-RCNN masks for segmentation are too close to the object
boundaries and thus leave object silhouettes behind when used for removal. When we
dilate the masks produced by Mask-RCNN before using for removal, the performance
improves overall and is on par with our model (slightly better in all classes and a bit
worse in the person class). The drawback of weak supervision is that masks are a
bit larger which leads to bit higher false removal rate (16% ours compared to 10%
Mask-RCNN dilated) and lower image quality metrics. However this is still a significant
result, given that our model is trained without expensive ground truth segmentation
annotation for each image, but instead uses only unpaired masks from a smaller dataset.
Comparison to weakly supervised segmentation. We compare to the weakly
supervised SDI (Khoreva et al., 2017) model in Table 5.2. We use the the output masks
generated by SDI to mask the image and use the in-painter trained with our model to
fill in the masked region. Simply using the masks from SDI without dilation results in
poor removal performance with only 54% success overall and 45% success on the ‘person’
class. Upon dilation, the performance improves, but is still significantly worse than our
model and Mask-RCNN.
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Model Supervision
Removal Performance Image quality metrics

removal success ↑ false ↓
removal

percep.
loss ↓ pSNR ↑ ssim ↑

all person
GT masks - 66 72 5 0.04 27.43 0.930
Mask RCNN Seg. masks &

bound boxes
68 73 6 0.05 25.59 0.900

Mask RCNN
(dil. 7x7)

75 77 10 0.07 24.13 0.882

ours-pascal image labels &
unpaired masks 73 81 16 0.08 22.64 0.803

Table 5.3: Comparison to ground truth masks and Mask-RCNN baselines.

Additionally, SDI method starts from boxes generated by a fully supervised RCNN
network and generates segmentation with weak supervision, whereas our model uses
only image-level labels and hence is more generally applicable.
Human evaluation. We verify our automatic evaluation results using a user study to
evaluate removal success as described in Section 5.3. The human judgements of removal
performance follow the same trend seen in automatic evaluation, except that human
judges penalize the silhouettes more severely.Our model clearly outperforms the baseline
Mask-RCNN model without dilation by achieving 68% removal rate compared to only
30% achieved by Mask-RCNN. With dilated masks, Mask-RCNN performs similar to
our model in terms of removal achieving 73% success rate.

5.4.3 Ablation studies

Joint optimization. We conduct an experiment to test if jointly training the mask
generator and the in-painter helps. We pre-train the in-painter using only random boxes
and hold it fixed while training the mask generator. The results are shown in Table 5.5.
Not surprisingly, the in-painting quality suffers with higher perceptual loss (0.10 vs 0.08)
since it has not adapted to the masks being generated. More interestingly, the mask
generator also degrades with a fixed in-painter, as seen by lower mIou (0.19 vs 0.22) and
lower removal success rate (0.68 vs 0.73). This result shows that it is important to train
both the models jointly to allow them to adapt to each other for best performance.
In-painting components. Table 5.4.3 shows the ablation of the in-painter network
components. We note that the proposed mask-buffer, which uses masks from previous
batch to train the in-painter with reconstruction loss, significantly improves the results
significantly in all three metrics. Using local loss improves the results in-terms of
perceptual loss (0.10 vs 0.12) while being slightly worse in the other two metrics.
However on examining the results visually in Figure 5.6, we see that the version with
the global GAN loss produces smooth and blurry in-painting, whereas the version with
local GAN loss produces sharper results with richer texture. While these blurry results
do better in pixel-wise metrics like pSNR and ssim, they are easily seen by the human
eye and are not suitable for removal. Finally addition of total variation and style loss
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Input image Global loss Local loss

Figure 5.6: Comparing global and local
GAN loss. Global loss smooth blurry
results, while local one produce sharp,
texture-rich images.

Mask
buffer

GAN TV+
Style

percep.
loss ↓ pSNR ↑ ssim ↑

- G - 0.13 20.0 0.730
X G - 0.12 21.9 0.772
X L - 0.10 21.5 0.758
X L X 0.10 21.6 0.763

Table 5.4: Evaluating in-painting compo-
nents

Joint
training

Removal
success ↑ mIou ↑

percep.
loss ↓

- 0.68 0.19 0.10
X 0.73 0.22 0.08

Table 5.5: Joint training helps improve both
mask generation and in-painting

helps slighlty improve the pSNR and ssim metrics.

5.5 conclusions

We presented an automatic object removal model which learns to find and remove objects
from general scene images. Our model learns to perform this task with only image level
labels and unpaired data. Our two-stage editor model with a mask-generator and an
in-painter network avoids degenerate solutions by complementing each other. We also
developed a GAN based framework to impose different priors to the mask generator,
which encourages it to generate clean compact masks to remove objects. Results show
that our model achieves similar performance as a fully-supervised segmenter based
removal, demonstrating the feasibility of weakly supervised solutions for the general
scene-level editing task.
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Importance of visual context in scene understanding tasks is well recognized in the
computer vision community. However, to what extent the computer vision models
are dependent on the context to make their predictions is unclear. A model overly

relying on context will fail when encountering objects in different contexts than in training
data and hence it is important to identify these dependencies before we can deploy the
models in the real-world. In this chapter, utilizing the editor developed in Chapter 5, we
propose a method to quantify the sensitivity of black-box vision models to visual context.
We create context changes by removing selected objects from input images and measure
the response of the target models, allowing us to quantify their robustness to these
variations. We apply this methodology on two tasks, image classification and semantic
segmentation, and discover undesirable dependency between objects and context, for
example that “sidewalk” segmentation relies heavily on “cars” being present in the
image. We propose an object removal based data augmentation solution to mitigate
this dependency and increase the robustness of classification and segmentation models
to contextual variations. Our experiments show that the proposed data augmentation
helps these models improve the performance in out-of-context scenarios, while preserving
the performance on regular data.

87
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6.1 introduction

Visual context of an object in an image is an important source of information for scene
understanding tasks in both human and computer vision (Torralba et al., 2010; Parikh
et al., 2012). Contextual cues such as presence of frequently co-occurring objects can
help resolve ambiguities between visually similar classes and improve performance in
various vision tasks including object detection (Mottaghi et al., 2014; Bell et al., 2016)
and segmentation (Zhang et al., 2018a). However, objects can also appear in previously
unseen context or be absent from a very typical context. For example, we might find
a keyboard on a desk without a monitor (object-without-context), or find a monitor
without a keyboard (context-without-object). While humans can handle both these
atypical scenarios gracefully, computer vision models often fail by ignoring the visual
evidence for the object in object-without-context case or hallucinating objects which are
not actually present in the image in context-without-object case. For example, in our
experiments we find that keyboard is often not recognized without a nearby monitor,
and semantic segmentation of roads suffers without cars (see Figure 6.1). While context
can be an important cue, this kind of too heavy or even pathological dependency on
contextual signals is undesirable, and it is important to systematically identify and
ideally fix such cases. In this work, we analyze and quantify the effect contextual
information on two tasks, multi-label classification and semantic segmentation.

Context generally refers to different kinds of information including co-occurring
objects, scene type and lighting. For our analysis, we limit context to only the set of
co-occurring objects in the image. While this might seem restrictive, we find in our
analysis that image classification and segmentation models learn many interesting and
undesirable dependencies between an object and other co-occurring objects (context) in
the image. We use object removal as the main methodology to understand and quantify
the role of context in downstream vision models. Specifically, we compare the output
of the target models on the original input image and an edited version of this image
with one object removed from it. If the model heavily uses the contextual relationship
between removed object and the objects present in the image, removal will have an
adverse effect on the model output. Measuring this helps us quantify the contextual
dependencies learnt by the target model.

Ideally we want models which can utilize contextual cues when available, but are
robust to variations in context and can detect and segment objects even when they
appear out of context. However, machine learning based vision models are biased to the
data seen frequently in training and tend to perform poorly on less frequent situations, for
example the object-without-context and context-without-object scenarios. We address
this by proposing a data augmentation scheme to expose the image classification and
segmentation models to different contexts during training, and thus improving the
robustness of the models to context. This is done by removing selected objects from
images and training the models on the edited images to recognize and segment other
objects in the image, even with contextual objects removed. Our experiments show that
the classification and segmentation models trained with this data augmentation scheme
are less sensitive to context changes and perform better on real out-of-context datasets,
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Original(I) Upernet (Xiao et al., 2018b) Ours

I − car Upernet (Xiao et al., 2018b) Ours

Figure 6.1: An example of the sensitivity of road and sidewalk segmentation to the
context object car. Removing car from the image (second row) causes segmentation
errors in the baseline model which hallucinates a sidewalk (yellow) when there is none.
Our model trained with proposed data-augmentation is more robust to these context
changes.

while preserving the baseline performance on the regular data splits.
To summarize, the main contributions of this paper are as follows: a) We propose

an object removal based method to understand and quantify sensitivity of vision models
to context, b) We apply this to analyze image classification and segmentation models
and find some interesting and undesirable dependencies learnt by the models between
classes and contextual objects and c) We propose a data augmentation scheme based on
object removal to make the models more robust to contextual variation and show that
it helps improve performance in out-of-context scenarios.

6.2 quantifying the role of context

We use object removal to quantify the contextual dependence of image classification
and segmentation models, by designing metrics which measure the change in the model
output between the original and the edited images with context objects removed.
Now, we will discuss our removal model, present the robustness metrics and the data
augmentation strategies to reduce the contextual dependence and improve performance
in out-of-context setting.

6.2.1 Object removal

To create edited images with context objects removed, we need a fully automatic object
removal model. For this, we utilize ground-truth object masks to remove the desired
object and use an in-painting network to fill in the removed region. We co-opt the



90 chapter 6. measuring context sensitivity with scene editing

in-painting network from the object removal model in Chapter 5, since this inpainter is
directly optimized for removal, and can better handle irregular masks used in removal.
The above removal method works well for medium sized objects, but struggles for large
objects since then the in-painter needs to synthesize most of the image. Hence, we
impose size restrictions on the objects we choose to remove to be less than 30% of the
image. In the classification scenario on the COCO dataset, we consider all 80 object
categories for removal. In the segmentation setting on the ADE20k dataset, we consider
only the non-stuff categories (90 categories) for removal and measure the effects of
removing these objects on the segmentation of all 140 categories. The stuff categories
include objects like road, sky and field which are typically very large and hard to inpaint
and hence are excluded from removal. An important point to note here is that the
in-painter is not aware of the downstream models and is not optimized to fool/change
their decisions. The effects of the in-painter are local and only around the removed
object. Qualitative examples in Figures 6.2 and 6.3 show that the in-painting works
well in the object removal setting.

6.2.2 Measuring context dependency

To understand the effect of contextual cues on image-classification and segmentation
models, we test them on edited images where a context object has been removed.
Precisely, given an original image I containing a set of objects C = {c1, · · · cn}, we
create a set of edited images Ie = {I − ci|ci ∈ C and removable(ci)}. Then, we test
the target model on I and Ie and check if its output is consistent with the performed
removal as described below.
Image-level classification. Given a trained classifier Sci for class ci, we will now
characterize how robust it is to changes in context of ci. We first obtain classifier scores
for the original image I, edited image I − ci with object ci removed and for the edited set
Iowc = {I − cj : cj ∈ I, j 6= i}, all of which contain the object ci but have one context
object removed. Ideally, if the classifier Sci is robust to context changes it should score
all the images in Iowc higher than the image I − ci, since I − ci does not contain the
object ci and the images in Iowc do. Precisely, a classifier robust to context should
satisfy the below in-equality:

Sci(Iowc) ≥ Sci(I − ci),∀Iowc ∈ Iowc (6.1)

We can count the number of times this condition is violated to quantitatively measure
the robustness of the classifier.

V min(ci)=

∑
I 1 [(minIowc Sci(Iowc))<Sci(I − ci)]∑

I 1[ci∈I ]
(6.2)

V mean(ci)=

∑
I 1 [EIowc [Sci(Iowc)]<Sci(I − ci)]∑

I 1[ci∈I ]
(6.3)

where 1 is the indicator variable. V min(ci) is a strict metric counting instances classifier
scores I − ci higher than any of the edited images, whereas V min(ci) is a softer metric
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counting instances where I − ci is scored higher than the average score assigned to the
edited images.
Semantic segmentation. To understand the role context plays in this pixel-level
labeling task, we analyze the behaviour of a trained segmentation model by removing one
object at a time from the original image. Specifically, we measure how the segmentation
correctness of the rest of the image changes (as compared to segmentation of the original
image) when we remove an object from the original image. Given a segmentation model
P , we compute the intersection-over-union (IoU) for a class ci (w.r.t. ground-truth)
on the original image I and edited image I − cj . If the IoU value changes more than
threshold α, we consider the segmentation prediction for class ci to be affected by
removal of cj . Counting these violations we get,

AR(ci, cj) =
∑

I 1

[∣∣∣∆IoUcicj

∣∣∣ ≥ α
]

∑
I 1 [ci, cj ∈ I ]

(6.4)

where ∆IoUcicj is the change in IoU of class ci with removal of object cj and α is
the change threshold. The matrix AR(ci, cj) represents the fraction of images where
removing the object cj , affects the segmentation of the object ci with high values of
AR(ci, cj) indicating that the segmentation model depends heavily on the presence of
the context object cj to segment ci.

6.2.3 Data augmentation with object removal

We now present our data augmentation solution to reduce the sensitivity of classification
and segmentation models to context distribution. The main idea is to expose these
models to training images of object-without-context and context-without-object scenarios.
This will help the models deal with the lack of contextual information and hence get
more robust to context changes. For this, we perform object removal to create edited
images with some objects removed and add these edited images to the training batch.
Specific details of how to pick objects for removal and how to use them in training for
the two tasks are discussed below.
Classification. We experiment with two strategies to use the edited images in the
classifier training. In the first approach Data-aug-rand, a uniformly randomly sampled
with uniform probability and the classifier is trained with simple binary cross-entropy
loss using both original and edited images. Edited image is assigned the same labels
as the same as the original image excluding the removed object class. In the second
approach Data-aug-const, we explicitly optimize for robustness by including the in-
equality in (6.1) in the loss function. To do this, for randomly selected images in the
training batch, we create the full edited image set {I − ci : ci ∈ I}. Then we can
incorporate the robustness constraint as a hinge loss Lh with final loss being a weighted
sum of the cross-entropy and the hinge losses.

Lh(I) =
∑
ci∈I

max
[
0,Sci(I − ci)− min

cj ,j 6=i
Sci(I − cj)

]
(5)
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Object without Context Context without Object

Original

Regular S(keyboard) = 1.99E ≥ S(keyboard) = 4.67E
Ours S(keyboard) = 3.40 S(keyboard) = 1.39

Original

Regular S(skate) = 0.39E ≥ S(skate) = 2.97E
Ours S(skate) = 2.33 S(skate) = −0.13

Original

Regular S(frisbee) = 0.39E ≥ S(frisbee) = 2.06E
Ours S(frisbee) = 3.32 S(frisbee) = 0.23

Original

Regular S(person) = 2.15E ≥ S(person) = 2.79E
Ours S(person) = 2.83 S(person) = −2.20

Figure 6.2: Context violations by image-level classifier. The primary object is marked
with blue box and the context object is marked with magenta. The first column shows
the original image, middle shows the image with only object and the third with only
the context. We see that the baseline classifier depends heavily on the context and
always scores the context only images (last column) higher than the image with only
the primary object (middle column). The data augmented model does better and gets
the ordering right.
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Segmentation. We also perform data augmentation on the segmentation task by
creating edited images with selected objects removed. The edited images can be used
in training the segmentation model in two ways. First we can ignore the removed
pixels and train the model to predict the original ground-truth labels on the rest of the
image (Ignore). This helps the model learn that the labeling of a pixel should not be
affected by the removal of a context object. Alternatively, we can explicitly tell the
model that the removed object is not present by minimizing the likelihood assigned to
the removed class at the edited pixels (Negative loss).

We explore three strategies to select objects to remove. The first strategy, Random,
selects one random object to remove from the objects present in the image with uniform
probability. However, sometimes the Random strategy can select very large object for
removal, which can harm the quality of the edited image. To address this the Sizebased
strategy selects objects based on their relative sizes in the image, assigning higher
probability to smaller objects. The probability for picking an object is computed as
p(ci, I) ∝

[∑
ci∈I a(I,ci)

a(I,ci)

]
where a(I, ci) is the area of the class ci in image I.We also

explore a hard negative mining based strategy, where we create harder training examples
for the segmentation model by removing easy classes. This allows the model to focus
on segmenting the harder classes while also becoming robust to context. Concretely, in
HardNegative strategy we monitor the average cross-entropy loss lavg(ci) for an object
class ci and calculate the probability of removal of ci as inversely proportional to lavg(ci).

6.3 experiments and results

This section presents the results of our analysis of how much the contextual information
influences the performance of image classification and segmentation models. Using
the robustness metrics defined in Section 6.2.2, we discover that the classification
predictions on many well-performing classes are sensitive to context, and perform poorly
on object-without-context and context-without-object images. Similar results are also
found in the segmentation setting with the model depending heavily on context objects
to correctly segment classes like road, sidewalk, grass. We also present results from our
data-augmentation strategies, which help reduce this context dependence and improve
robustness, without sacrificing performance.

6.3.1 Image level classification

6.3.1.1 Experimental setup for classification

Training data. We run our classification experiments on the COCO dataset (Lin et al.,
2014a), which contains 80 labeled object classes in their natural contexts. The dataset
also has bounding box and segmentation annotation for each object. We use image-level
labels to train the classifiers and use the object segmentation masks to test them with
object removal.
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original (I) Upernet Ours original (I) Upernet Ours

I − sign Upernet Ours I − car Upernet Ours

original (I) Upernet Ours original (I) Upernet Ours

I − tree Upernet Ours I − tree Upernet Ours

Figure 6.3: Examples of segmentation failures due to removal of a single context object.
We see the segmentation of road, sidewalk and grass affected significantly when context
objects like signboard, car and tree is removed (comparing odd and even rows). Model
trained with proposed data-augmentation is more robust to these changes.

Out-of-context testing. Apart from testing the classifier models on regular COCO
data we conduct additional experiments to quantify the performance in out-of-context
scenarios with natural images. We divide the COCO images into two splits: the first split
Co-occur with images having at least two objects in them and the second split Single
with images containing a single object. The Full split is all images combining Co-occur
and Single. The idea behind this splitting of the dataset is to separate out images where
objects occur in their context (Co-occur) and images where object occur alone without
the usual co-occurring context objects Single. Now we can train our models on the
Co-occur split and test it on the Single split to measure, using only real images, how a
classifier trained with only co-occurring objects performs when objects appear without
the context seen in training. Additionally we also test our COCO trained models on the
UnRel dataset (Peyre et al., 2017) which contains natural images with objects occurring
in unusual contexts and relationships. We keep the classes which map to one of the 80
object classes in COCO, leaving 29 classes and 1071 images in the UnRel dataset.

Baseline classifier. The image-level classification model we test is based on the
architecture proposed in Oquab et al. (2015). It consists of a Imagenet (Deng et al.,
2009) pre-trained VGG-19 network for feature extraction network followed by two
convolution layers, global max-pooling layer and a linear classification layer with sigmoid
activations. The model is trained with binary cross-entropy loss. We train and test
the model at single scale at 256x256 resolution, to simplify the analysis. Our classifier
achieves similar mAP on real COCO data as reported in Oquab et al. (2015), with our
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Figure 6.4: Comparing class-wise average precision to the % of violations in changes
to context. Many well-performing categories (high mAP), have high percentage of
violations, including mouse, tennis racket, keyboard, book, and sink.

Model Training
Data

COCO test set Robustness Metrics UnRel
Full ↑ Co-occur ↑ Single ↑ V min ↓ V mean ↓ dataset ↑

Baseline Full (39k) 0.60 0.57 0.62 34% 24% 0.50
Data-aug-rand Full (39k) 0.61 0.58 0.65 32% 22% 0.54
Data-aug-const Full (39k) 0.60 0.58 0.63 25% 14% 0.52
Baseline Co-occur (30k) 0.56 0.55 0.58 34% 24% 0.46
Data-aug-rand Co-occur (30k) 0.58 0.57 0.60 31% 21% 0.49
Data-aug-const Co-occur (30k) 0.58 0.57 0.60 27% 15% 0.51

Table 6.1: Effect of data augmentation on classification model

mAP slightly lower (0.600 vs 0.628 in Oquab et al. (2015)) due to single scale training
and testing.

6.3.1.2 Analyzing classifier robustness to context

To measure the robustness of the trained classifier to context, we test it on real images
and edited images and compute the robustness scores V min and V mean as described in
Section 6.2.2. Table 6.1 shows the robustness scores averaged over all classes computed
on the COCO test along with the standard performance metric mean average precision
(mAP) for the baseline classifier (first row). We can see that, despite achieving good
mAP (0.6), the baseline classifier trained on full data performs poorly in-terms of
robustness metrics. In about 34% of cases the model violates the context consistency
requirement of (6.1). This means in 34% cases, the classifier scores images without the
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Model all (407 images) with car (258) without car (149)
Road Sidewalk Road Sidewalk Road Sidewalk

Upernet 0.81 0.59 0.86 0.67 0.68 0.40
DataAug 0.82 0.60 0.86 0.65 0.72 0.46

Table 6.2: Comparing the performance of road and sidewalk segmentation on natural
images with and without cars.
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Figure 6.5: Comparing the % of violations in different classes with and without data
augmentation. Points below the diagonal line show improvement with data-augmentation
and the ones above degrade. The colors denote the average precision.

target object higher than an image where object is present but a context object has been
removed. Comparing the per-class robustness score, V min(ci) and the per-class average
precision (AP) (see Figure 6.4 for visualization), we see that good performance in AP
does not mean the classifier is robust to context. Many classes like mouse, keyboard, sink,
tennis racket etc, which are performing well in AP (≥ 0.8), but have poor robustness
to changes in context (V min

o ≥ 50%). In extreme case, the mouse classifier violates
the consistency in more than 90% of cases, despite having very good AP (0.88). This
indicates that the classifiers are relying too much on contextual evidence to detect the
objects but perform poorly when tested on images where the context distribution is
different from training.

We visualize the violations in Figure 6.2. In the first row we can see that the
keyboard classifier scores the image with the keyboard removed higher (4.67) than the
image with the keyboard but with the monitors removed (1.99). Similarly, we see the
skateboard and the frisbee classifiers relying on person to hallucinate the respective
objects. The violations shown in the first three rows of Figure 6.2 occur in objects with
high co-occurrence dependence with other classes. However, context violations also
occur in classes like person which appear in diverse contexts as seen in the last row of
Figure 6.2. Here, the violation occurs in a difficult image where the person is small, but
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a more distinct class with co-occurrence dependence on person is clearly visible (kite).
The classifier uses the kite context to hallucinate that there is a person, even when the
person has been removed.

6.3.1.3 Data augmentation to improve robustness

We train two variants of the data-augmented image classification models as described in
Section 6.2.3. The first Data-aug-rand learns with standard cross-entropy loss on the
edited images with a random object removed and the second Data-aug-const which is
optimized directly for robustness using a set of edited images and hinge loss.
Quantitative results. We present the evaluation of the data-augmented and the
baseline models in Table 6.1. On models trained with Full training data, the data-
augmented model Data-aug-rand provides a small improvement in overall mAP on the
COCO test set (0.61 vs 0.60). However measuring the performance on the two splits
Co-occur and Single reveals that the improvement is significant on the Single split (0.65
vs 0.62), indicating that the data augmentation helps the classifier better deal with out of
context objects. This is also seen when comparing the performance of the two models on
the UnRel dataset, where data-aug-rand significantly improves over the baseline model
(0.54 vs 0.50). This improved robustness of the data augmented classifier to context
changes is also measured by our robustness metrics V min and V mean. Data-aug-rand
classifier makes overall 2% less violations under both worst-case (V min) and average-
case (V mean) context changes. Directly optimizing the robustness constraints allows the
model Data-aug-const to significantly improve upon the baseline model in robustness
metrics, while still obtaining improvement in the performance metrics. It exhibits much
less worst-case (25% vs 34% for baseline) and average-case violations (14% vs 24% for
baseline), while improving the performance in the UnRel dataset (0.52 mAP vs 0.50 for
baseline). The benefit of optimizing for robustness is clearly seen when we constrain the
training data to the Co-occur set, where the classifier never sees objects alone. Baseline
model trained on the Co-occur set drops in performance on the Single (0.58 from 0.62
on when trained on Full) and the UnRel test sets (0.46 vs 0.50 with Full) . However,
with data augmentation and enforcing robustness constraints, we can recover some of
this performance. On the Single test set Data-aug-const model trained on Co-occur
set gets 0.58 mAP compared to 0.60 by baseline model trained on full data and even
surpass it on the UnRel test set with 0.51 mAP. This shows that the data augmented
model is able to overcome the contextual bias in the training set and perform well in
unseen contexts.

When we compare the per-class robustness metrics between regular and data
augmented models (data-aug-const), as shown in the Figure 6.5, we see that data-
augmentation significantly reduces the worst case violations (V min) on well-performing
classes. For example, V min drops from 95% to less 36% for the mouse class and from
58% to 28% for the keyboard class. The effect of this increased robustness is seen in
qualitative examples in Figure 6.2. In the first row, the baseline keyboard classifier gives
too much weight to evidence from monitor and scores the image with only monitor
higher than the image with only keyboard. However, the data augmented model correctly
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orders the two images.

6.3.2 Semantic segmentation

So far, we have seen that multi-label classification models suffer from sensitivity to
context, with classifiers often mixing up contextual and visual evidence. Next we will
measure the context sensitivity of models in a more local and strongly supervised task
of semantic segmentation.

6.3.2.1 Experimental setup for segmentation

Training and test data. We conduct our semantic segmentation experiments primarily
on the ADE20k dataset (Zhou et al., 2017) containing 140 categories of labeled objects,
in different settings. Some of the 140 classes are typical background classes like sky, sea
and wall and are large and difficult to in-paint and are hence excluded from removal.
Out-of-context testing. Following the process in image-level classification, we also
measure the performance of the segmentation models on real out-of-context data. This
in done in two ways. First, we train the segmentation model in a restricted setting
with only three classes car, road and sidewalk. Now, we can again make two splits
of the training and testing images into the Co-occur split of images with at-least two
objects (3317 images) and the single split with only a single object (1693 images). Then
we train the segmentation models on co-occur split and test on single split to see how
well it can perform segmentation without context. Additionally we also test the models
trained with ADE20k data on the Pascal-context dataset (Mottaghi et al., 2014) in
order to measure the performance under a different context distribution. This is done by
manually mapping the 59 labels in the pascal-context to ADE20k labels and restricting
the segmentation model to produce only the mapped labels.
Baseline segmentation model. We use the recent UperNet (Xiao et al., 2018b)
model, with good results on the ADE20k, as our baseline segmentation model. We train
the variant with the Resnet-50 encoder and a Upernet decoder with batch size of 6
images (maximum that fit in GPU) and with the default hyper-parameters suggested
by the authors. This model achieves mean intersection-over-union (mIoU) of 0.377 and
accuracy of 78.19% with single scale testing.

6.3.2.2 Context in semantic segmentation

We analyze robustness of the segmentation models to context by removing objects and
computing the matrix AR(ci, cj) presented in Section 6.2.2, which measures the % of
images where removal of object cj significantly affects segmentation of object ci. The
matrix AR(ci, cj) we obtain for the Upernet model in ADE20k dataset is a sparse matrix
with sharp peaks. This indicates that the classes depend on specific context objects and
are significantly affected by their removal. The sparsity also indicates that the effects on
the segmentation are due the class being removed and not in-painting artifacts (otherwise
the segmentation would be affected by all removal). Some of dependencies we discover in



6.3 experiments and results 99

Model Removed pixels mIoU Acc

Upernet(Xiao et al., 2018b) - 0.377 78.31

DA (random) Ignore 0.320 75.2
DA (sizebased) Ignore 0.379 78.31
DA (hard negative) Ignore 0.375 77.8

DA (sizebased) Negative 0.377 78.25
DA (hard negative) Negative 0.385 78.47

Table 6.3: Data augmentation results on ADE20k dataset.

AR(ci, cj) are reasonable and harmless, for example between pot and plant (AR = 50%).
Once you remove the plant, pot looks more like a trash can and the segmentation model
often flips the label to trash can. However other dependencies are spurious and not
desirable. For example, we notice that often the segmentation model uses presence of
car to differentiate between road and sidewalk. Removing car affects the IoU of the road
and sidewalk in 21% and 22% of cases respectively. This dependence is undesirable, and
can be catastrophic in applications like self-driving cars.

We show qualitative examples where removal affects segmentation of Upernet model
in Figure 6.3. The first two rows show the cases where removal of an object negatively
impacts the segmentation of other objects. This include cases where removal of street
sign and car severely affects segmentation of road and sidewalk, and a case where removal
of trees affects segmentation of grass. We can see from these examples that while edit
on the image is small and local, the effects of this removal on segmentation prediction
is not local. Removal of a small objects can have drastic effects on segmentation in a
far-away region.

6.3.2.3 Data augmentation for segmentation

Next we will look at the results of using data-augmentation for segmentation models.
For this purpose we train the Upernet (Xiao et al., 2018b) based data-augmented models
on the ADE-20k dataset with on three different strategies for selecting the object to
remove as discussed in Section 6.2.3.
Quantitative results. Table 6.3, shows the results comparing the data-augmented
models with the baseline Upernet model. We can see that random sampling strategy,
which worked well in image classification, fails here leading to drop in performance. This
is because, many object categories in ADE20k dataset are large and difficult to remove
like bed, sofa and mountain and random strategy suffers by picking these. Instead when
we switch to size-based and hard-negative based sampling, we see that the performance
improves and the the size-based sampling model achieves the best mIoU of the three
models (0.379). Applying negative likelihood loss on the removed object class gets
further improvement when combined with hard negative sampling. This model also
improves upon the Upernet baseline (achieving 0.385 IoU vs 0.377 by Upernet), despite
the fact that the removal based data-augmentation is designed to make the model more
robust to contextual variations.
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To understand how data-augmentation impacts sensitivity to context, Figure 6.6
visualizes the maximum sensitivity of a class to removal of other classes, maxcj AR(ci, cj)
for different classes with and without data-augmentation. We see that for majority of
classes robustness to context improves with data augmentation. For example pillow class
is only affected 32% of the time with context changes, compared to 53% before data
augmentaion. Similary, road and sidewalk classes are only affected 9% and 14% of the
time respectively, compared to 21% and 22% before. This improved robustness translates
into better generalization to real out-of-context data. We can see this in Table 6.2 where
the performance of the road and sidewalk segmentation is measured on the validation set
on images with and without cars. On the full set and on the split with cars, we see that
the performance of the baseline Upernet and our augmented model (DA hard negative
with negative loss) is equivalent. However, when we look at only images without car,
the Upernet model performs significantly worse in both road (0.68 vs 0.72 for ours)
and sidewalk (0.40 vs 0.46 for ours) segmentation. This quantitatively shows that the
baseline model struggles to distinguish between road and sidewalk without car in the
image, whereas our data augmentation is more robust and performs well even without
context (car).

We also see the benefit of data augmentation in experiments on restricted Co-occur
training set and on the Pascal-context dataset. Our data augmented model outperforms
the Upernet model (both trained on the ADE20k dataset) when tested on the Pascal-
context dataset in both mIoU and pixel accuracy. While the Upernet model achieves
mIoU of 0.284 and pixel accuracy of 61.3% our data augmented model achieves 0.293
and 62.10% respectively, indicating that it is able to generalize better when tested on
a dataset with different context distribution than one seen during training. Table 6.4
presents the experiments with the Co-occur training set in the three class setting. First
we can see that when we switch from training on Full training data to Co-occur split
(containing only images with atleast two objects), the performance of the Upernet
greatly drops on the Single test split (from 0.67 to 0.52). This is indicates that the
model overfits to the context it sees, and is not able to segment objects when it seeing
them out of context. However, with data-augmentation we generate images of objects
without context, and can recover most of this performance loss (0.646). Surprisingly,
data-augmented model trained on smaller co-occur data also outperforms the baseline
trained with Full data when tested on the co-occur split.

Qualitative examples in Figure 6.3 also show the effect of increased robustness to
context. While the baseline Upernet model is affected by context object removal causing
drastic changes in predictions of other regions, our data augmented model is more stable.
For example the removal of signboard, car or tree does not effect the segmentation of
the road or sidewalk by our model.
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Figure 6.6: Comparing the context sensitivity of different classes with and without data
augmentation with maxcj AR(ci, cj) metric. Points below the diagonal improve with
data-augmentation. The color denotes the mIoU.

Model Training Data Full Only Cooccur Only Single

Upernet Full (5k) 0.774 0.797 0.670
Data Aug Full (5k) 0.742 0.754 0.675

Upernet Co-occur (3.3k) 0.680 0.713 0.520
Data Aug Co-occur (3.3k) 0.82 0.86 0.646

Table 6.4: Experiments in three class setting on ADE20k.

6.4 conclusions

We have presented a methodology to analyze and quantify context sensitivity of image
classification and segmentation models, based on editing images to remove objects and
measuring the effect on the target model output. Our analysis shows that despite good
performance in-terms of mAP, classifiers are, for certain classes like keyboard, mouse,
skateboard, very sensitive to context objects and perform poorly when presented with
images that are out of context. In semantic segmentation, our analysis shows similar
dependency between classes. For example, we discover that the model depends on the
presence of a car to segment roads and sidewalks and fails drastically when the car is
not present in the image. We present a data augmentation scheme based on object
removal to mitigate this and make the classification and segmentation models more
robust to context changes. Our experiments show that the proposed data augmentation
helps models generalize to out of context scenarios without losing performance in the
i.i.d. settings, indicating that the data augmented models better balance contextual and
visual information.
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In this chapter, we employ the similar analysis to Chapter 6, to visual question
answering models. Applying object removal approach from Chapter 5 to create
different versions of the input image, we test if visual question answering models are

consistent in their response. While prior works have exposed brittleness of VQA models
variations in the question language, this is the first effort to understand their robustness
to visual variations. In contrast to Chapter 6, we also consider edits which alter the
ground-truth answer in a predictable fashion, and test if the VQA model responds
to the change accordingly. We perform our analysis on three diverse, state of the art
VQA models and diverse question types with a particular focus on challenging counting
questions. In addition, we show that models can be made significantly more robust
against inconsistent predictions by augmenting the training set with our edited data.
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7.1 introduction

Q: Is this a kitchen?
A: no toilet removed; A: no

Baseline Ours Baseline Ours
CL no no yes no
SAAA no no no no
SNMN no no yes no

Q: What color is the balloon?
A: red umbrellas removed; A: red

Baseline Ours Baseline Ours
CL pink red red red
SAAA pink red red red
SNMN pink red red red

Q: How many zebras are there in the picture?
A: 2 zebra removed A: 1

Baseline Ours Baseline Ours
CL 2 2 2 1
SAAA 2 2 2 1
SNMN 2 2 2 1

Figure 7.1: VQA models change their predic-
tions as they exploit spurious correlations
rather than causal relations based on the
evidence. Shown above are predictions of
3 VQA models on original and synthetic
images from our proposed IV-VQA and CV-
VQA datasets. ‘Ours’ denote the models
robustified with our proposed data augmen-
tation strategy.

VQA allows interaction between images
and language, with diverse applications
such as interacting with chat bots to as-
sisting visually impaired people. In these
applications we expect a model to answer
truthfully and based on the evidence in
the image and the actual intention of the
question. Unfortunately, this is not always
the case even for state of the art methods.
Instead of “sticking to the facts”, mod-
els frequently rely on spurious correlations
and follow biases induced by data and/or
model. For instance, recent works Shah
et al. (2019); Ray et al. (2019) have shown
that the VQA models are brittle to linguis-
tic variations in questions/answers. Shah
et al. in Shah et al. (2019) introduced
VQA-Rephrasings dataset to expose the
brittleness of the VQA models to linguistic
variations and proposed cyclic consistency
to improve their robustness. They show
that if a model answers “Yes” to the ques-
tion: “Is it safe to turn left?”, it answers
“No” when the question is rephrased to
“Can one safely turn left?”. Similarly Ray
et al. in Ray et al. (2019) introduced Con-
VQA to quantitatively evaluate the con-
sistency for VQA towards different gener-
ated entailed questions and proposed data
augmentation module to make the models
more consistent.

While previous works have studied lin-
guistic modifications, our contribution is
the first systematic study of automatic vi-
sual content manipulations at scale. Anal-
ogous to rephrasing questions for VQA,
images can also be semantically edited to
create different variants where the same question-answer (QA) pair holds. One sub-task
of this broader semantic editing goal is object removal. One can remove objects in such
a way that the answer remains invariant (wherein only objects irrelevant to the QA
are removed) as shown in Figure 7.1 (top/middle). Alternately one could also make
covariant edits where we remove the object mentioned in the QA and hence expect the



7.2 synthetic dataset for variances and invariances in vqa 105

answer to change in a predictable manner as shown in Figure 7.1 (bottom). We explore
both invariant and covariant forms of editing and quantify how consistent models are
under these edits.

We employ a GAN-based (Shetty et al., 2018a) re-synthesis model to automatically
remove objects. Our data generation technique helps us create exact complementary
pairs of the image as shown in Figures 7.1, 7.2. We pick three recent models which
represent different approaches to VQA to analyze robustness: a simple CNN+LSTM
(CL) model, an attention-based model (SAAA Kazemi and Elqursh (2017)) and a
compositional model (SNMN Hu et al. (2018)). We show that all the three models are
brittle to semantic variations in the image, revealing the false correlation that the models
exploit to predict the answer. Furthermore, we show that training data augmentation
with our synthetic set can improve models robustness.

Our motivation to create this complementary dataset stems from the desire to study
how accurate and consistent different VQA models are and to improve the models by
the generated ‘complementary’ data (otherwise not available in the dataset). While
data augmentation and cyclic consistency are making the VQA models more robust
(Kafle et al., 2017; Ray et al., 2019; Shah et al., 2019) towards the natural language
part, we take a step forward to make the models consistent to semantic variations in
the images. We summarize our main contributions as follows:
• We propose a novel approach to analyze and quantify issues of VQA models due to

spurious correlation and biases of data and models. We use synthetic data to quantify
these problems with a new metric that measures erroneous inconsistent predictions
of the model.

• We contribute methodology and a synthetic dataset 4 that complements VQA datasets
by systematic variations that are generated by our semantic manipulations. We
complement this dataset by a human study that validates our approach and provides
additional human annotations.

• We show how the above-mentioned issues can be reduced by a data augmentation
strategy - similar to adversarial training. We present consistent results across a range
of questions and three state of the art VQA methods and show improvements on
synthetic as well as real data.

• While we investigate diverse question types, we pay particular attention to counting
by creating an covariant edited set and show that our data augmentation technique
can also improve counting robustness in this setting.

7.2 synthetic dataset for variances and invariances in
vqa

While robustness w.r.t linguistic variations (Shah et al., 2019; Ray et al., 2019) and
changes in answer distributions (Agrawal et al., 2018) have been studied, we explore
how robust VQA models are to semantic changes in the images. For this, we create

4https://rakshithshetty.github.io/CausalVQA/

https://rakshithshetty.github.io/CausalVQA/
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a synthetic dataset by removing objects irrelevant and relevant to the QA pairs and
propose consistency metrics to study the robustness. Our dataset is built upon existing
VQAv2 (Goyal et al., 2017) and MS-COCO (Lin et al., 2014b) datasets. We target
the 80 object categories present in the COCO dataset (Lin et al., 2014b) and utilize
a GAN-based (Shetty et al., 2018a) re-synthesis technique to remove them. The first
key step in creating this dataset is to select a candidate object for removal for each
Image-Question-Answer (IQA) pair. Next, since we use an in-painter-based GAN, we
need to ensure the removal of the object does not affect the quality of the image or
QA in any manner. We introduce vocabulary mapping to take care of the former and
area-overlapping criteria for the latter. We discuss these steps in detail to generate the
edited set in irrelevant removal setting and later extend these to relevant object removal.

7.2.1 InVariant VQA (IV-VQA)

For the creation of this dataset, we select and remove the objects irrelevant to answering
the question. Hence the model is expected to make the same predictions on the edited
image. A change in the prediction would expose the spurious correlations that the model
is relying on to answer the question. Some examples of the semantically edited images
along with the original images can be seen in Figures 7.1, 7.2. For instance, in Figure
7.2 (top-right), for the question about the color of the surfboard, removing the person
should not influence the model’s prediction. In order to generate the edited image, we
first need to identify person as a potential candidate which in turn requires studying
the objects present in the image and the ones mentioned in the QA. Since we use VQA
v2 dataset (Goyal et al., 2017), where all the images overlap with MS-COCO (Lin et al.,
2014b), we can access the ground-truth bounding box and segmentation annotations for
each image. In total, there are 80 different object classes in MS-COCO which become
our target categories for removal.
Vocabulary mapping. To decide if we can remove an object, we need to first map all the
object referrals in question and answer onto the 80 COCO categories. These categories
are often addressed in the QA space by many synonyms or a subset representative of
that class. For example- people, person, woman, man, child, he, she, biker all refer to
the category: ‘person’; bike, cycle are commonly used for the class ‘bicycle’. To avoid
erroneous removals, we create an extensive list mapping nouns/pronouns/synonyms
used in the QA vocabulary to the 80 COCO categories. Table 7.1 shows a part of the
object mapping list. The full list can be found in code-release for the project 5.

Let OI represent the objects in the images (known via COCO segmentations), OQA
represent the objects in the question-answer (known after vocabulary mapping). Then
our target object for removal, Otarget, is given by OI − {OI ∩OQA}. We assume that
if the object is not mentioned in the QA, it is not relevant and hence can be safely
removed.
Area-Overlap threshold. The next step is to make sure that the removal of Otarget
does not degrade the quality of the image or affect the other objects mentioned in the

5https://github.com/AgarwalVedika/CausalVQA

https://github.com/AgarwalVedika/CausalVQA
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COCO categories Additional words mapped

person man, woman, player, child, girl, boy
people, lady, guy, kid, he etc

fire hydrant hydrant, hydrate, hydra
wine glass wine, glass, bottle, beverage, drink
donut doughnut, dough, eating, food, fruit
chair furniture, seat
... ...

Table 7.1: Example of vocabulary mapping from QA space to COCO categories. If any
of these words (in the right column) occur in the QA, these words are mapped to the
corresponding COCO category (in the left column).

QA. Since we use an in-painter based GAN (Shetty et al., 2018a), we find that larger
object removal is harder to in-paint leaving the images heavily distorted. In order to
avoid such distorted images, we only remove the object if the area occupied by its largest
instance is less than 10% of the image area. Furthermore, we also consider if the object
being removed overlaps in any manner with the object that is mentioned in the QA. We
quantitatively measure the overlap score as shown in Equation 7.1 where MO denotes
the dilated ground truth segmentation mask of all the instances of the object. We only
remove the object if the overlap score is less than 10%.

Overlap score(Otarget,OQA) =
(MO)

target ∩ (MO)
QA

(MO)QA (7.1)

Uniform Ground-Truth. Finally, we only aim to target those IQAs which have
uniform ground-truth answers. In VQA v2 (Goyal et al., 2017), all the questions have 10
answers, while it is good to capture diversity in open-ended question-answering, it also
introduces ambiguity, especially in case of counting and binary question types. To avoid
this ambiguity in our robustness evaluation, we build our edited set by only selecting to
semantically manipulate those IQs which have a uniform ground truth answer.

Finally, we remove all the instances of the target object from the image for those
IQAs which satisfy the above criteria using the inpainter GAN (Shetty et al., 2018a).
We call our edited set as IV-VQA as removal of objects does not lead to any change in
answer, the answer is invariant to the semantic editing. Table 7.2 shows the number of
edited IQAs in IV-VQA. While our algorithm involves both manually curated heuristics
to select the objects to remove, and a learned in-painter-based GAN model to perform
the removal, the whole pipeline is fully automatic. This allows us to apply it to the
large-scale VQA dataset with 658k IQA triplets.
Validation by Humans. We get a subset (4.96k IQAs) of our dataset validated by
three humans. The subset is selected based on an inconsistency analysis of 3 models
covered in the next Section 7.3. Every annotator is shown the edited IQA and is asked to
say if the answer shown is correct for the given image and question (yes/no/ambiguous).
According to the study, 91% of the time all the users agree that our edited IQA holds.
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IV-VQA CV-VQA

#IQA train val test train val test

real 148013 7009 63219 18437 911 8042
realNE 42043 2152 18143 13035 648 5664
edit 256604 11668 108239 8555 398 3743

Table 7.2: IV-VQA and CV-VQA distribution. Real refers to VQA (Goyal et al., 2017)
IQAs with uniform answers, realNE refers to IQAs for which no edits are possible (after
vocabulary mapping and area-overlap threshold), edit refers to the edited IQA. We split
the VQA val into 90:10 ratio, where the former is used for testing purpose and latter for
validation.

7.2.2 CoVariant VQA (CV-VQA)

An alternate way of editing images is to target the object in the question. Object-specific
questions like counting, color, whether the object is present or not in the image are
suitable for this type of editing. We choose counting questions where we generate
complementary images with one instance of the object removed. If the model can count
n instances of an object in the original image, it should also be able to count n− 1
instances of the same object in the edited image. Next, we will describe how to generate
this covariant data for counting.

First, we collect all the counting questions in the VQA set: selecting questions which
contained words ‘many’ and ‘number of’ and which had numeric answers. Next, we focus
on removing instances of the object which is to be counted in the question. Vocabulary
mapping is used to identify the object mentioned in the question OQ. Then only those
images are retained where the number of the target object instances according to COCO
segmentations match the IQA ground-truth answer A given by 10 human annotators.

For the generation of this set, we use the area threshold as 0.1, we only intend to
remove the instance if it occupies less than 10% of the image. Furthermore for overlap,
since we do not want the removed instance to interfere with the other instances of the
object, two masks considered to measure the score are: (1). dilated mask of instance to
be removed (2). dilated mask of all the other instances of the object. The object is only
removed if the overlap score is zero.

We call our edited set as CV-VQA since removal of the object leads to a covariant
change in answer. Table 7.2 shows the number of edited IQAs in VQA-CV. Figure
7.2 (bottom row) shows a few examples from our edited set. We only target one instance
at a time.

7.3 experiments: consistency analysis

The goal of creating edited datasets is to gauge how consistent are the models to semantic
variations in the images. In IV-VQA, where we remove objects irrelevant to the QA
from the image, we expect the models predictions to remain unchanged. In CV-VQA,
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pos→neg neg→pos
Q: What are the shelves made of? Q: What color is the surfboard?
A: glass vases removed; A: glass A: white person removed; A: white

CNN+LSTM glass wood CNN+LSTM yellow white
SAAA glass metal SAAA white white
SNMN glass metal SNMN yellow white

Q: Are there zebras in the picture? Q: Is there a cat?
A: yes giraffes removed; A: yes A: no dogs removed; A: no

CNN+LSTM yes no CNN+LSTM yes no
SAAA yes no SAAA yes no
SNMN yes no SNMN yes no

Q: What sport is he playing? Q: What room of a house is this?
A: soccer sports-ball; A: soccer A: kitchen bowl; A: kitchen

CNN+LSTM soccer tennis CNN+LSTM bathroom kitchen
SAAA soccer tennis SAAA bathroom kitchen
SNMN soccer tennis SNMN bathroom kitchen

Q: How many dogs are there? Q: How many giraffe are there?
A: 1 dog removed; A: 0 A:3 giraffe removed; A: 2

CNN+LSTM 1 2 CNN+LSTM 1 2
SAAA 1 1 SAAA 2 2
SNMN 1 1 SNMN 2 2

Figure 7.2: Existing VQA models exploit spurious correlations to predict the answer
often looking at irrelevant objects. Shown above are the predictions for 3 different
VQA models on original and edited images from our synthetic datasets IV-VQA and
CV-VQA.
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Trained by us For comparison

CNN+LSTM 53.32 d-LSTM Q + norm I (Lu et al., 2015) 51.61

SAAA 61.14 SAN (Yang et al., 2016) 52.02
HieCoAttn (Lu et al., 2016) 54.57
MCB (Fukui et al., 2016) 59.71

SNMN 58.34 NMN (Andreas et al., 2016) 51.62

Table 7.3: Accuracy (in %) of different models when trained on VQA v2 train and
tested on VQA v2 val.

where one of the instances to be counted is removed, we expect the predicted answer
to reduce by one as well. Next, we briefly cover the models’ training and then study
their performances both in terms of accuracy and consistency. We propose consistency
metrics based on how often the models flip their answers and study the different type of
flips qualitatively and quantitatively.
VQA models and training. For comparison and analysis, we select three models from
the literature, each representing a different design paradigm: a simple CNN+LSTM
(CL) model, an attention-based model (SAAA (Kazemi and Elqursh, 2017)) and a
compositional model (SNMN (Hu et al., 2018)). We use the official code for training
the SNMN (Hu et al., 2018) model, Hu (2018). SAAA (Kazemi and Elqursh, 2017) is
trained using the code available online (Zhang, 2017). We modified this SAAA code in
order to get CL model by removing the attention layers from the network. As we use the
VQA v2 val split for consistency evaluation and testing, the models are trained using
only the train split. Table 7.3 shows the accuracy scores on VQA v2 val set for models
trained by us along with similar design philosophy models benchmarked in Agrawal
et al. (2018) and Goyal et al. (2017). The models chosen by us exceed the performance
of other models within the respective categories.
Consistency. The edited data is created to study the robustness of the models.
Since we modify the images in controlled manner, we expect the models predictions
to stay consistent. Robustness is quantified by measuring how often models change
their predictions on the edited IQA from the prediction on original IQ. On IV-VQA, a
predicted label is considered “flipped” if it differs from the prediction on the corresponding
unedited image. On CV-VQA, if the answer on the edited samples is not one less than
the prediction on original image, it is considered to be “flipped”.

We group the observed inconsistent behavior on edited data into three categories:
1. neg→pos 2. pos→neg 3. neg→neg. neg→pos flip means that answer predicted on
the edit IQA was correct but the prediction on the corresponding real IQA was wrong.
Other flips are defined analogously. In the neg→neg flip, answer predicted is wrong
in both the cases. While all forms of label flipping show inconsistent behaviour, the
pos→neg and neg→pos categories are particularly interesting. In these the answer
predicted is correct before and afterward the edit, respectively. These metrics show
that there is brittleness even while making correct predictions and indicate that models
exploit spurious correlations while making their predictions.
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CL (%) SAAA (%) SNMN (%)

Accuracy orig 60.21 70.26 66.04

Predictions flipped 17.89 7.85 6.52
pos→neg 7.44 3.47 2.85
neg→pos 6.93 2.79 2.55
neg→neg 3.53 1.58 1.12

Table 7.4: Accuracy-flipping on real data/IV-VQA test set.

Quantitative analysis. Table 7.4 shows the accuracy along with the consistency
numbers for all the 3 models on the IV-VQA test split. Consistency is measured across
edited IV-VQA IQAs and corresponding real IQAs from VQA v2. Accuracy is reported
on real data from VQA v2 (original IQAs with uniform answers). We follow this
convention throughout our analysis. On the original data, we see that SAAA is the
most accurate model (70.3%) as compared to SNMN (66%) and CL (60.2%). In terms
of robustness towards the variations in the images, CL model is the least consistent-
with a 17.9% flipping on the edit set compared to the predictions on the corresponding
original IQA. For SAAA, 7.85% flips, making SNMN the most robust model with 6.522%
flips. SAAA and SNMN are much more stable than CL. A point noteworthy here is
that SNMN turns out to be the most robust despite its accuracy being lesser than
SAAA. This shows that higher accuracy does not necessarily mean we have the best
model, further highlighting the need to study and improve the robustness of the models.
Of particular interest are the pos→neg and neg→pos scores, which are close to 7%
each for the CL model. For a neg→pos flip, the answer to change from an incorrect
answer to one correct answer of the 3000 possible answers (size of answer vector). If
the removed object was not used by the model, as it should be, and editing caused
uniform perturbations to the model prediction, this event would be extremely rare
(p(neg → pos) = 1/3000 ∗ 39.8 = 0.013%). However we see that this occurs much
more frequently (6.9%), indicating that in these cases model was spuriously basing its
predictions on the removed object and thus changed the answer when this object was
removed.

In the CV-VQA setting, where we target counting and remove one instance of the
object to be counted, we expect the models to maintain n/n-1 consistency on real/edited
IQA. As we see from Table 7.5, the accuracy on orig set is quite low for all the models
reflecting the fact that counting is a hard problem for VQA models. SAAA (49.9%) is
the most accurate model with SNMN at 47.9% and CL at 39.4%. In terms of robustness,
we see that for all 3 models are inconsistent more than 75%, meaning for >75% for the
edited IQAs, if models could correctly count n objects in the original IQA, it wasn’t
able to count n-1 instances of the same object in the edited IQA. These numbers further
reflect that counting is a difficult task for VQA models and enforcing consistency on
it seems to break all 3 models. In the next section, we discuss these flips with some
visual examples.
Qualitative analysis. We visualize the predictions of the models on a few original and
edited IQAs for all the 3 models in Figure 7.2. The left half shows examples of pos→neg
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CL (%) SAAA (%) SNMN (%)

Accuracy orig 39.38 49.9 47.948

Predictions flipped 81.41 78.44 78.92
pos→neg 28.69 31.66 32.35
neg→pos 20.57 25.38 23.51
neg→neg 32.14 21.4 23.06

Table 7.5: Accuracy-flipping on real data/CV-VQA test set.

and the right half shows the neg→pos flips. Existing VQA models often exploit false
correlations to predict the answer. We study the different kinds of flips in detail here
and see how they help reveal these spurious correlations.

pos→neg. VQA models more often rely on the contextual information/ background
cues/ linguistic priors to predict the answer rather than the actual object in the question.
For instance, removal of the glass vases from the shelves in Figure 7.2 (Top-left) from
the image causes all 3 models to flip their answers negatively, perhaps models were
looking at the wrong object (glass vases) to predict the material of the shelves that also
happened to be glass. In absence of giraffes, models cannot seem to spot the occluded
zebras anymore- hinting that maybe they are confusing zebras with giraffes. Removing
the sports-ball from the field make all 3 models falsely change their predictions to tennis
without considering the soccer field or the players. In the bottom-left, we also see
that if models were spotting the one dog rightly in the original image, on it’s edited
counterpart( with no dog anymore )- it fails to answer 0. Semantic edits impact the
models negatively here exposing the spurious correlations being used by the models
to predict the correct answer on the original image. These examples also show that
accuracy should not be the only sole criterion to evaluate performance. A quick look at
the Table 7.4 show that for IV-VQA, pos→neg flips comprise a major chunk (>40%) of
all the total flips. For CV-VQA (refer Table 7.5) , these flips are 28-32% absolute- again
reinforcing the fact that VQA models are far from learning to count properly.

neg→pos. Contrary to above, semantic editing here helps correct the predictions,
meaning removal of the object causes the model to switch its wrong answer to one
right answer by getting rid of the wrong correlations. For instance, removing the pink
umbrella helps models predict correctly the color of the balloon Figure 7.1 (middle). In
Figure 7.2 (second-right), removing the dogs leave no animals behind and hence models
now can correctly spot the absence of cat- hinting that they were previously confusing
cats and dogs. In absence of the bowl, models can identify the room as kitchen- shows
that too much importance is given to the bowl (which is falsely correlated to bathroom)
and not to the objects in the background such as microwave. Towards the bottom-right,
we see that removing a giraffe helps all the 3 models now- it’s hard to say what is the
exact reason for the behaviour but it indeed reflects upon the inconsistent behaviour of
the models. From Table 7.4 we see that these flips also comprise a significant number of
the total flips (>35%) for all the models. For CV-VQA (refer Table 7.5), these numbers
are in range 20-25%, showing that counting is easier for these models when spurious
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correlations are removed.
neg→neg. These flips where answers change show the inconsistent behavior of models
as well but since both the answers are wrong- they are harder to interpret. But in the
end goal of building robust models, we expect consistent behavior even when making
incorrect predictions.

All these flips show that existing VQA models are brittle to semantic variations in
images. While VQA models are getting steadily better in terms of accuracy, we also
want our models to be robust to visual variations. We want VQA models to not just be
accurate but use the right cues to answer correctly. Accuracy combined with consistency
can help us understand the shortcomings of the models.

7.4 robustification by data augmentation

In the previous section, we see that VQA models are brittle to semantic manipulations.
While these flips expose the inconsistent behaviour, they also show the underlying scope
of improvement for VQA models and can be used to make the models more robust. In
order to leverage the variances brought in by the synthetic data, we finetune all the
models using real and real+synthetic data. Our analysis shows that using synthetic
data significantly reduces inconsistency across a variety of question types.

For fine-tuning experiments, we use a strict subset of IV-VQA with an overlap score
of zero. The performance of all the baseline models on this strict subset remains similar
to Table 7.4. For SNMN, the model trained using a learning rate of 1e−3 is unstable
while fine-tuning and hence we use a lower learning rate 2.5e−4 to train the model and
further finetune this model.
InVariant VQA Augmentation. In order to train and test different models, we aim
at specific question types and see if we are able to boost the model’s performance on that
question type. We select 4 question types based on how much they are affected from
editing (i.e total number of flips/ total number of original IQA per question type) and if
that question category has significant number of flipped labels in order to ensure we
have enough edited IQAs for finetuning. Hence, we select the given 3 question categories
and run our experiments on these splits: 1. ‘what color is the’ 2. ‘is there a’ 3. ‘is this a’
4. ‘how many’. Additionally we focus on all the counting questions. All these specialized
splits have around 6.3k-12.5k IQAs in the real train split with 10.8k-15.2k in edit train
split.

For each question-type, we finetune all the models with corresponding real + IV-VQA
IQAs for the particular question type. For a fair baseline, we also finetune all the models
using just real data. Figure 7.3 (left) shows how different models, each specialized for a
question type, behave when finetuned using real+synthetic data relative to finetuning
using real data. The y axis denotes the reduction in flips and x axis represents the
accuracy on the original set for. We observe that using synthetic data always reduces
flipping as all the points lie above the y = 0 axis. The amount of reduction differs for
each question type and varies from model to model. For instance, CL model has the
highest reduction in flips for question ‘is this a’ with no change in accuracy and while
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Figure 7.3: Accuracy-flipping results of finetuning experiments. Plots show relative
performance of models finetuned using real+edit data w.r.t to using just real data.

Q: What color is the mouse? Q:Is there a bowl on the table?
A: white keyboards; A: white A: no cup; A: no

real real+edit real real+edit real real+edit real real+edit

CL white white white white no no yes no
SAAA green white white white no no yes no
SNMN green white white white no no yes no

Q: How many computer are there? Q: How many people are in the water?
A: 2 dog ; A: 2 A: 1 person; A: 0

real real+edit real real+edit real real+edit real real+edit
CL 2 2 1 2 1 1 1 0
SAAA 1 2 2 2 1 1 1 0
SNMN 2 2 1 2 1 1 1 0

Figure 7.4: Visualizations from fine-tuning experiments using real/real+edit. Using
real+edit makes models more consistent and in these examples- also accurate. Note:
Striked-out objects are removed in the image below
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question type ‘how many’ shows the least reduction. However for SAAA, ‘how many’
has the highest reduction with 2.5% drop in accuracy. For SNMN, counting has the
highest reduction in flips. We also see that there are many points on the right side
of x = 0 axis showing that synthetic data also help improve accuracy on the test set.
Figure 7.4 shows some of the examples for these specialized models. As we can see,
finetuning the model with IV-VQA dataset helps in improving consistency and leads to
more accurate predictions both on real as well as synthetic data.

Additionally, we also finetune all the baseline models with all the real data in
VQA-v2 + IV-VQA data. Overall, we find that there is 5-6% relative improvement in
flips for all 3 models: CL (17.15→16.1), SAAA (7.53→7.09), SNMN (8.09→7.72) with
marginal improvement in accuracy% in case of CL (60.21 →60.24), 1% reduction in
accuracy in case of SAAA (70.25→69.25) and 0.6% improvement in accuracy for SNMN
(67.65→68.02).
CoVariant VQA Augmentation. For counting, we create our CV-VQA edit set by
removing one instance of the object being counted and evaluate the models on both
accuracy and consistency. Following the procedure above, we finetune all the models
using real data, real+CV and real+CV+IV IQAs. We evaluate the n/n-1 consistency
for counting on CV-VQA for all the three models. The results are shown in Figure
7.3 (right). We see that using CV-VQA edit set reduces flipping by 40% for all 3
models with 1-4% drop in accuracy. Additionally we see that using CV-VQA + IV-VQA
data reduce the flipping by 30%: CL (83.8→59.58), SAAA (77.74→52.71), SNMN
(77.13→51.91)) with comparable accuracy: CL (43.65→43.94), SAAA (50.87→50.45)
and SMNM (50.67→50.61). Figure 7.4 (Bottom) shows that models when trained using
synthetic data can show a more accurate and consistent behaviour.

7.5 conclusions

We proposed a semantic editing based approach to study and quantify the robustness
of VQA models to visual variations. Our analysis shows that the models are brittle
to visual variations and reveals spurious correlations being exploited by the models to
predict the correct answer. Next, we proposed a data augmentation based technique
to improve models’ performance. Our trained models show significantly less flipping
behaviour under invariant and covariant semantic edits, which we believe is an important
step towards causal VQA models. By making our invariant and covariant VQA sets
as well as evaluation and synthesis available to the community, we hope to support
research in the direction towards causal VQA models.
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Departing from object removal based analysis discussed in Chapters 6 and 7,
in this chapter we analyze the robustness of object detectors to changes in
visual appearance of objects. We achieve this by developing a differentiable

object synthesizer network which can change an object’s appearance while retaining
its pose. Using the synthesizer, we perform constrained adversarial optimization of an
object’s appearance to produces rare/difficult versions of an object which fool the target
object detector. Unlike pervious chapters, this testing process is targeted to a specific
model, on account of the adversarial optimization. This enables our semantic adversary
to efficiently create model specific hard examples – dropping the performance of the
YoloV3 detector by more than 20 mAP points by changing the appearance of a single
object and discovering failure modes of the model. The generated semantic adversarial
data can also be used to robustify the detector through data augmentation, consistently
improving its performance in both standard and out-of-dataset-distribution test sets,
across three different datasets.
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8.1 introduction

Performance evaluation of computer vision systems is predominantly done by empirical
evaluation on a fixed test set, often drawn from a similar distribution as the training
data. However, due to limited sample size a fixed test set only captures a small portion
of errors the model would make on diverse data seen during real-world deployment. This
discrepancy manifests as poor out-of-dataset-distribution (OODD) generalization (Recht
et al., 2019, 2018; Hendrycks et al., 2021), vulnerabilities to input noise (Hendrycks and
Dietterich, 2019; Michaelis et al., 2019) and adversarial perturbations (Goodfellow et al.,
2014). In this work, we propose automated testing through semantic adversarial editing
which synthesizes difficult cases, targeted for a particular model, exposing its weaknesses.
The error cases synthesized by our model often have atypical appearance and outside the
distribution covered by fixed size datasets, however still within the true class boundary
to human observers. Apart from its usefulness for testing, our semantic adversarial data
can also be used to robustify the target model and improve its performance on OODD
data.

To create reliable test data, we need to ensure that the generated sample is consistent
with its label. At the same time, the created test data needs to be difficult, ideally
capturing the different failure modes of the target model. Simply gathering more data
is expensive and inefficient as the process is not targeted to the model. Our approach
to meet both these criteria is to start from a real data point, and to make constrained
semantic edits through a differentiable synthesizer model. The synthesis process is
adversarially optimized to produce semantic changes which fool the target model. By
only editing the appearances of individual objects with their pose and the scene held
intact, we keep the changes minimal and realistic. An example is seen in Figure 8.1
where the appearance of “cow” is edited to change the detector prediction to “horse”.

Our key insight to constrain the semantic adversarial objects to be label-consistent
is by limiting the range of synthesized appearance to be a combination of real ones.
We first select a set of guiding templates by sampling instances of the same class from
the real data. Then a new appearance is synthesized for the target object optimized
to fool the detector, while staying within the convex hull spanned by the appearance
of guiding instances. Since changing pose realistically is a much harder task, requiring
reasoning over both object and the context, we keep it fixed. Our synthesizer network
disentangles the object’s pose from its appearance thus allowing editing the appearance
without affecting the pose.

Since our semantic adversarial object synthesis process is fully differentiable, we can
mine new errors for a target model by directly optimizing the appearance to fool it. We
demonstrate this by creating hard test data for the YoloV3 object detector (Redmon and
Farhadi, 2018). The same mechanism can also be used to generate hard training data
for the detector. The synthesized examples are hard positive examples, often lying close
to detectors class boundaries. Our experiments on three dataset, COCO, BDD100k and
Pascal, show that using the generated data to fine-tune the detector model improves the
model performance and generalization to data distribution shift. To summarize, main
contributions of our work are:
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Figure 8.1: Standard testing paradigms only covers a small portion of errors models make
in the real world due to sample size limitation. We propose semantic adversarial testing
to find targeted failure cases through continuous optimization of object appearance to
cross the model’s decision boundary, while remaining within the true class boundary.

• We propose the first method for automatized testing of computer vision models
finding new error cases by synthesizing semantic adversarial examples.

• We design an object synthesizer network which disentangles object shape and appear-
ance. This is achieved through a novel binary part segmentation bottleneck which
scales better to the diverse object classes.

• We propose a novel mechanism to semantically change the object appearance to fool
detectors, while keeping the appearance within the class boundaries as verified by a
human study. Experiments show that our semantic adversary editing the appearance
of a single object drops the detector performance by 20 mAP points and helps find
new vulnerabilities of the model.

• Utility of our generated data is further shown by using it for training the YoloV3
detector. Experiments on three datasets show that the generated data helps improve
the detector performance and generalization to OODD data.

8.2 synthesizing semantic adversarial objects

Our main goal is to efficiently synthesize hard/error cases for an object detector from
data manifold. We achieve this goal by starting from a real data point and adversarially
editing its appearance through a synthesizer network to fool the target detector. This
is a continuous optimization problem efficiently solvable through gradient descent.
Additionally, we also need to make sure the synthesized sample is realistic and matches
the original label. This is achieved first by only editing appearance of selected objects
while retaining its pose, ensuring that the object instance fits well to the image context.
Additionally, we constrain the space of appearances allowed during optimization to keep
label consistency.

Our solution, shown in Figure 8.2, consists of two key contributions. First, we build
an object synthesizer which disentangles object’s pose and appearance, thus allowing us
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to generate various appearances for an object while keeping its original pose. This is
enabled by a binary part segmentation bottleneck, which scales better to diverse object
classes, a key requirement to scale to detection datasets like COCO. Second, we propose
a novel optimization formulation wherein the latent appearance codes in the synthesizer
are constrained to the convex hull of guiding templates. Under this constraint, the
appearance is optimized to find the adversarial appearance for an object instance to
fool the target detector.

8.2.1 Synthesizer design

To achieve disentanglement between pose and appearance we propose a modular archi-
tecture consisting of an appearance encoder producing latent codes representing the
object appearance, a shape encoder producing a binary part segmentation of the object
and a decoder which utilizes both the parts and the appearance vectors to synthesize
the object. Note that the whole model is learned with only self-supervision, by learning
to autoencode objects in the dataset. The overall architecture of synthesizer is shown
in Figure 8.3. While this architecture is inspired by recent works Lorenz et al. (2019);
Jakab et al. (2018), our solution differs in two crucial aspects, the type of bottleneck
and the architecture of the decoder. To understand this difference, let us walk through
the process of synthesizing an object given an instance x with the target shape and an
instance y with target appearance.

Shape Encoder. A representation of the input object shape is first extracted by the
shape encoder. This is a CNN with Unet (Ronneberger et al., 2015) structure which
maps the input image into a K×M×N dimensional tensor Z, where K is the number
of parts and M,N are the spatial dimensions. Zkij represents the likelihood of the kth

part being present at locations ij. To disentangle shape and appearance, we need to
restrict Z to only carry information about the spatial layout of the object instance. Prior
works Lorenz et al. (2019); Jakab et al. (2018) do this by approximating Z with 2D
Gaussians. While this works for classes like “person” whose parts fit well with gaussian
shapes, we find that it does not work well on diverse object classes with complex sub-parts
like “bicycle”, “bus”, and so on. Instead, we solve this by bottlenecking the information
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Figure 8.4: Appearance interpolations with Our (even rows) and the Gaussian bottleneck
model (odd rows). The objects are generated using the shape code from x and by
interpolating the appearance vectors from x and y.

in Z by converting it to a spatial probability distribution and sampling binary masks
from it. Specifically, we obtain the part-probability distribution as Pkij = softmaxk[Zij ]
and sample binary part maps Ωkij = gumbel_softmaxk[Pij ] from it. Here we use
gumbel softmax approximation (Jang et al., 2016; Maddison et al., 2016) to sample from
the multinomial distribution Pkij in-order to keep the sampling process differentiable.
Appearance Encoder. Object appearance is encoded with a CNN, which maps the
input image to a tensor A of dimensions D×M ×N . This spatial appearance map is
reduced to K appearance codes V = [V1 · · ·Vk], one for each part, by averaging A over
the part activations Vk =

∑
ij PkijAij.

Decoder Network. Now using the appearance vector Vy extracted from image y
and the binary part segmentation Ωx extracted from image x, the decoder network G
synthesizes the desired object and its segmentation mask. The appearance vectors Vy

k
are first projected onto their corresponding binary part activation map to reconstruct the
spatial appearance map Ãy = VyΩx. Our decoder architecture, in contrast to Lorenz
et al. (2019), utilizes spatially adaptive normalization layers (Park et al., 2019) to input
the appearance code at different resolutions to produce the four channel output (image
+ mask). We find that this helps better preserve the smaller appearance details in
generated images as compared to inputting the appearance codes at the first layer.
Training the Synthesizer. We train the Synthesizer by learning to autoencode objects
and to transfer appearance to other instances, similar to prior works Lorenz et al.
(2019). Additionally we use an adversarial discriminator D, to improve the sharpness
of the generated images. When autoencoding, the model is trained end-to-end with
l1 reconstruction loss for the image and cross-entropy loss for the segmentation mask.
Paired training data for learning to transfer appearance is created in two ways. First,
we apply simple affine transformations to object instances x to obtain T (x), creating
paired data. Now the appearance can be transferred by reconstructing x using shape
ΩT (x) and appearance Vx encodings and vice-versa. Secondly, the model is trained to
transfer appearance to a random instance y of the same class by using the discriminator
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Figure 8.5: Intermediate steps when optimizing the appearance to fool the detector.

real/fake loss and cyclic reconstruction loss (Zhu et al., 2017). Precisely, given shape
code Ωy and Vx, we generate a hybrid object xy and use the discriminator D to evaluate
realism and provide a training signal. We also re-encode xy to obtain appearance code
Vxy, and use it to reconstruct the original image as x̃ = G (Ωx,Vxy). Apart from the
reconstruction losses, we also impose additional constraints on the appearance and shape
latent codes to provide intermediate supervision. For example, ΩT (x) should be same
as T (Ωx) since an affine transformed input image should lead to an affine transformed
part-map. Equations for these training losses are given below.

Lr = |x−G(Ωx,Vx)|+ |T (x)−G(ΩT (x),Vx)|+ |x−G(Ωx,V xy) (8.1)
Ld = D(G(Ωx,Vx)) +D(G(ΩT (x),Vx)) +D(G(Ωy,Vx)) (8.2)
La = ‖Vx −VT (x)‖+ ‖Vx −Vxy‖ (8.3)
Lp = −P T (x) log(T (P x)) (8.4)

Figure 8.4 compares the appearance transfer produced by our model trained on
COCO dataset and a baseline model with identical structure, except using 2D Gaussians
to bottleneck the shape encoding. We see big difference in quality of the generated
images especially for objects like bus and dog. This performance gap can be understood
by looking at the part representations extracted using the two methods also shown in
Figure 8.4. We see that while Gaussian part maps are very crude approximations, our
binary part maps captures detailed shape information, enabling better reconstruction
and interpolation of appearance.

8.2.2 Synthesizing semantic adversaries

Now that we have a synthesizer which can effectively change appearance of a target
object x using an appearance guiding template, let us leverage it to produce semantic



8.2 synthesizing semantic adversarial objects 123

adversaries to fool an object detector. We start by extracting the shape (Ωx) and
appearance (Vx) representations for the target instance x occurring in image C, which
we wish to edit to fool the detector O. Instance x is removed from C using the ground-
truth box and an object removal in-painter from Shetty et al. (2018a) to obtain canvas
image C−x. A new version of object x is synthesized as G(Ωx,Vx) and is pasted in
place of the original to get the composed image. We denote this as C−x + G(Ωx,Vx).
This process is illustrated in Figure 8.2.

A simple way to fool the detector would be to adversarially optimize the appearance
vector Vx until the object detector fails on the generated image G(Ωx,Vx). However,
in unconstrained optimization the appearance vectors often move into areas where
synthesizer produces unrealistic images, which also fools the detector. We overcome this
with a novel scheme which keeps the adversarially optimized Vx from going far from
the synthesizer’s input distribution. We first sample a set I = {i1, · · · in} of n guiding
templates belonging to the same class and extract appearance codes for each of them
VI = {V i1

k , · · · V in
k }. Now the appearance vector for the generated object is optimized to

fool the detector while constraining it to remain within the convex hull spanned by VI .

Vadv
k =


n∑

j=1
αj

1V
ij

1 , · · ·
n∑

j=1
αj

kV
ij

k

 (8.5)

max
(a1

1,···an
k )
Ldet

[
O
(
C−x +G

(
Ωx,Vadv

k

))]
(8.6)

Here αj
k = softmaxn(a

j
k), with {a1

k · · · an
k} being the interpolation co-efficients for

part k and Ldet is the detector loss function which we maximize. There are total
of n× k interpolation coefficients which are optimized to find the adversary. Having
independent part coefficients allows mixing and matching appearances from different
templates for each part, and thus allowing richer appearances space to be explored
through optimization. Further, since we only manipulate the latent appearance codes,
the adversary cannot directly manipulate pixels to produce noisy patterns to fool the
detector, but must instead rely on semantic changes. Detector loss is usually a sum of
classification, objectness and box regression losses. We discard the box regression losses,
as they are not directly affected by appearance and often leads to unstable behavior
in optimization. Hence the detector loss becomes Ldet = λLobj + (1− λ)Lcls, where
λ ∈ [0, 1] is a co-efficient controlling how much the adversary focusses on causing missed
detection versus misclassification. Spatial perturbations like position or scale of the
object can be easily incorporated into our formulation by inserting a parametrized affine
transformation matrix before pasting the object onto canvas image, allowing position
and appearance to be jointly optimized to fool the detector.

Figure 8.5 depicts the adversarial appearance optimization steps to fool the YoloV3
detector. First row shows the synthesized bird changing from a reconstruction in the
zeroth step to a different color by the fourth step, causing detector confidence to drop.
More optimization leads to a bigger failure in the detector where the brown head and the
yellow circle in the body of the synthesized bird causes the detector to see the object as a
“dog” and a “frisbee”. The second row shows a case where the appearance of the “ball” is
slowly changed to camouflage with the background and cause a missed detection. These
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examples show that our method makes large semantic changes to the object appearance
which fools the detector while looking plausible to human eye (empirically verified in
Section 8.3.2).

8.3 experiments and results

We evaluate our semantic adversary for two applications, as a diagnostic tool to find
failure modes in the detector and as a hard data generation mechanism to improve
the performance of these detectors. We measure the effectiveness of the semantic
adversary in terms of the detector performance on generated adversarial test set. We
verify label consistency of the semantic adversary by a human study where observers
verify if the original class is preserved after adversarial editing. We also qualitatively
examine the synthesized error cases and find different mechanisms which cause detector
failures. Data augmentation experiments are run on three different datasets, COCO,
VOC and BDD100k, and we measure the benefit of the generated adversarial data
for improving model performance on both standard test, as well as generalization to
out-of-dataset-distribution. First, we describe the experimental setup and datasets,
followed by the analysis on effectiveness of the semantic adversary for diagnostics and
data augmentation.

8.3.1 Setup and datasets

We conduct our data augmentation experiments on three datasets – COCO (Lin et al.,
2014a), PascalVOC (Everingham et al.)(VOC) and BDD100k (Yu et al., 2020). COCO
and VOC contains both indoor and outdoor images with common objects like person,
car, table etc. While COCO has 120k training images with 80 classes, VOC is smaller
with 20 classes and 14k training data (combining 2007+2012 splits). BDD100k is a
large scale driving dataset with 100k street scenes captured from a car driving around
major US cities, with annotation of objects like person, car, traffic light and so on. The
object synthesizer and removal inpainter are both trained on the COCO dataset, due
to availability of instance segmentation masks needed to extract the object patches.
Since all the classes in VOC and 9/10 classes in BDD100k are part of COCO (except
“rider” class), COCO trained model can be used to synthesize adversarial objects on
these datasets. The synthesizer operates at 128× 128 resolution. The generated objects
are scaled to match the target box.

We use the YoloV3 (Redmon and Farhadi, 2018) model as the target detector, as it is
a popular single staged detector with fast runtime, making adversarial attack experiments
run quicker. We train our baseline model from scratch using the implementation available
in Ultralytics (2019), using all the standard data augmentation methods including color
jittering and rotation. However, to keep the synthesis single resolution, all our detector
models are trained on single fixed resolution (416× 416 on COCO and VOC, 704× 1248
on BDD100k) as opposed to multi-scale training used in YoloV3, yielding a lower baseline
performance. All the improvement reported from training on our synthesized data is
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Optimize n_obj mAP ↓ Success rate by instance type ↑
Edited Co-occuring Com-

bined

Real Data 0 81.2 - - -
Appear 1 62.4 74.99 58.62 61.10
Pos + Appear 1 59.5 77.69 59.30 62.13
Pos + Appear 2 46.5 77.10 61.54 65.82

Table 8.1: Overall and instance-level detector perfor-
mance under semantic advesarial editing. Co-occuring
refers to the other untouched objects in the image.

Instance Label
correctness

Real 99%
Random label 11%
SemAdv (appearance) 93%

Table 8.2: Human study results
on the label correctness of se-
mantic adversarial editing.

in-complimentary to the standard augmentations. The evaluation is also performed at
these fixed resolutions. The models on BDD100k and VOC are trained after initializing
from a trained COCO model. This ensures that these models have already been exposed
to the instances from the COCO dataset. When training on synthetic data, we start
from the pre-trained model and fine-tune the last two layers in case of COCO and
BDD100k and last three layers in case of Pascal. For fair comparison we also further
fine-tune the pre-trained model using the exact same configuration, but only with real
data to obtain the Base-FT model in all three datasets.

Apart from evaluating on i.i.d. test sets, we also measure the generalization to OODD
data. This tests our hypothesis that semantic adversarial data improves the model
robustness to OODD samples, since our adversarial data often contains atypical objects,
from the tail of appearance distribution. To do this, we test the COCO trained model
on the UnRel (Peyre et al., 2017) and VOC test sets. The models are tested on the
overlapping 29 classes in UnRel and all 20 classes in VOC. UnRel data contains objects
in unusual relationships and contexts and will measure if the model generalizes to rare
cases. Similarly VOC trained models are also tested on UnRel, for the overlapping 14
classes. The BDD100k models are tested on D2-City (Che et al., 2019), with driving
images from Chinese cities.

8.3.2 Semantic adversary for automated testing

To quantify the effectiveness of the semantic adversary, we create adversarial test sets
using the COCO training images by optimizing the appearance of selected objects in
each image to fool the detector. Objects are selected at random as long as they are
not too small/large (≥ 32 pixels and ≤ 30% of the image area). We do this with three
variants of our approach. First only optimizes the appearance of one object instance.
The second variant optimizes both the position and the appearance of the same object.
In the third variant two random objects are chosen from each image and their position
and appearance are adversarially optimized. Each of these test sets contain 37k images.
Object detector is run on these three sets and performance is measured using mean
average precision (mAP@0.5)
Quantitative Analysis. The results are reported in Table 8.1. We see that all the
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Figure 8.6: Qualitative examples of the failure cases discovered by our semantic adversary.
Green boxes are correct detections, purple boxes indicate missed detections and red
boxes show the misclassified objects. Only relavant detections are marked.

semantic adversaries drop the performance of the model significantly, with mAP dropping
from 81.2 on the corresponding real data to 62.4 with just optimizing the appearance.
Optimizing the position and scale of the object along with appearance further degrades
the detector performance, with mAP dropping to 59.5. When we adversarially modify
two objects jointly, the detector performance drops again to 46.5 mAP, making it a 57%
drop in detector performance. To understand this performance drop, we look at the
effect on the detector’s confidence for each object instance. We consider it a success if
the detector’s confidence drops after adding the semantic adversary. Table 8.1 presents
the success rate on the edited as well as untouched objects in the same image. Firstly,
we see that all three strategies drop the detector’s confidence on more than 74% of the
semantically edited instances. Interestingly, about 60% of the untouched co-occurring
instances are also negatively affected. This is often due to the contextual changes
caused by the misclassification of the edited instances or minor occlusions produced by
the edited instance. We note again that our semantic adversarial attacks are efficient,
performed in just 10 steps of gradient descent. To put this in context, adversarial color
jittering (Hosseini and Poovendran, 2018) takes about 200 trials to attack (success in
50% of cases) a simpler classification model on a smaller CIFAR-10 dataset.

We also compare the effectiveness of our semantic adversary to a standard L∞ norm
adversarial attack. For fair comparison we also restrict the L∞ attacker to change pixels
within the bounding box of a single object. The experiments show that our single object
semantic adversarial attack (mAP=59.5) is roughly equivalent in strength to a L∞ norm
attack with ε = 8/255 (mAP=58.7).
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Human Study. A natural question at this point is if the semantic adversarial samples
are within the true class boundary. To answer this we turn to human observers. We
conduct a study where a human judge is presented with an image and asked if the object
highlighted with the box belongs to the specified class. If they consider the label correct,
they are asked to also rate how typical the object appearance is from 1 to 5, with 1
corresponding to very unusual and 5 corresponding to very typical appearance. The
study is conducted on a mix of 250 real and semantically edited instances each, with
each instance rated by three independent observers. We also introduce additional 10%
samples where labels are shuffled. This is done in-order to verify the work of the human
annotators. Table 8.2 shows the label correctness results as judged by majority vote of
three humans. As expected the label correctness is very high on real instances and is
very low on label-shuffled instances. We also see that in 93% of cases, humans agree
that semantic adversary preserves the label of the object instance. Performance drop on
semantic adversary is small for human observers compared to the significant drop by
object detectors seen before. The typicality rating provided by the human judges on
real and semantically edited instances shown in Figure 8.7 helps understand this gap.
While most of the real samples have a typicality rating of 4 or 5 (very typical), semantic
adversary have lower rating between 2-3. These results show that the semantic adversary
generates atypical examples which are still correctly detectable by humans, but are hard
for our detectors. This is further supported by lower performance of the detector on less
typical real samples (Accuracy>70% on typicality rating=5 and accuracy 35-40% on
typicality rating between 1-3).
Qualitative Analysis. Examining the cases where the semantic adversary fools the
detector reveals that the adversary causes missed detections and misclassification through
four main mechanisms listed below and illustrated in Figure 8.6. All examples are from
the strategy with editing single object and position.
• Camouflaging - Semantic adversary often causes missed detections by changing

the appearance of the object to blend with the background. First row of Figure 8.6
illustrates a frisbee, a stop-sign and a hydrant being camouflaged.

• Occlusion - Second row shows cases where the semantic adversary causes missed
detections by moving to partially occlude some co-occurring objects.

• Appearance - In many instances, the appearance of the object is altered to include
small visual features which trigger misclassification by the detector. These can be
seen in the third row in Figure 8.6. We see that "cow" is changed to "horse" based on
color change and person is misclassified as a dog due to a small change in hue. These
cases indicate that detectors often rely on false correlations of low-level textures or
colors to certain classes, and often fail when these textures are altered, as also shown
for classifiers in recent work (Geirhos et al., 2019).

• Contextual Appearance - Last row shows examples where with a change in an
object appearance, the contextual evidence overrides the visual features, causing
misclassification. For example in the first image, a dog changed to white color is
misclassified as a sheep as there are other sheep present nearby. Similarly, a falling
person is mistaken as an airplane, and a surfboard as a boat.

We note that despite a few generation artifacts, with the COCO dataset being hard
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Figure 8.8: Comparing various adversarial strate-
gies and the worst-case template baseline.

for current GAN models, these samples look plausible to human eye and we would not
make the same predictions as the detector. This makes it a useful tool to explore the
breaking points of a trained detector.

8.3.3 Semantic adversary for data augmentation

Apart from being a useful diagnostic tool, semantic adversaries can be used to generate
training data. By targeting the detector, we can create tailored hard positives for the
model, and thus get the most benefit when added to the model training set. We generate
the training data with a similar process as in the previous section: first selecting an
eligible object from each training image, adversarially optimizing its appearance and
adding it back to the training set. The model is then fine-tuned with a combination of
the original and the synthesized adversarial data for 50 epochs, and performance on the
standard test sets and OODD data is measured. We now present this data augmentation
results on the three datasets.
COCO dataset. Table 8.3 shows the data augmentation results on the COCO dataset.
Comparing the Baseline and Base+FT models we see that the further fine-tuning the
last two layers of the model improves the performance a bit on COCO and VOC test
sets, while reducing a bit on UnRel (39.0 vs 38.8). Comparing this with the basic semantic
adversary augmented model SA-Rand-App, which only edits object appearance, we
see a bigger improvement on all three test sets. Table 8.3 also shows Base+FreeAdv,
an adversarial baseline which allows for free manipulation of appearance vector under
l∞ constraint, without the convex hull constraint. Its poor performance compared
to SA-Rand-App shows that the unconstrained attack does not work well as often
the adversarial sample looks unrealistic. SA-Rand-App model generates the semantic
adversaries using randomly sampled instances for guidance. We can further target the
model weaknesses by sampling the templates from hard instances for the detector, i.e.
setting the probability of picking an instance inversely proportional to the detectors
confidence on it. The model trained this way, SA-App, further improves the performance
a bit on COCO and significantly on UnRel (39.6 vs 39.2). Moreover, the SA model
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which jointly optimizes position and appearance gets even better results, improving
over SA-App in COCO and VOC test sets. Now, we compare our approach to a simpler
baseline, where an object is replaced with the template which increases the detector loss
the most. While this often fools the detector, it also places instances which do not fit
with the image context, as seen in the examples in Figure 8.8. Thus, the Base-WorstT
model using this data in training performs worse than SA-App on all test sets.

We can increase the benefit of semantic adversaries by editing more objects in the
image, creating harder data. The SA#2 model which edits appearance and position of
two objects improves on COCO(+0.3 mAP) and UnRel(+0.4 mAP) test sets compared to
SA editing single objects. Since our adversarial data is adaptive to the model, we can
continue generating harder examples attacking the newly trained model. SA#2x2 does
this, further training the SA#2 model using the adversarial data generated by attacking
SA#2. This second iteration helps and SA#2x2 still improves. By repeating this four
times, we get the SA#2x4 model which outperforms the baseline on all three test sets,
COCO(+1.0 mAP), VOC(+1.3 mAP) and UnRel(+1.8 mAP). The gain is larger on OODD
test sets, VOC and UnRel, indicating that training with semantic adversary improves the
robustness of the model to input distribution changes. We also compare our approach to
recent data augmentation approaches PSIS (Wang et al., 2019a) and AutoAug (Cubuk
et al., 2019). For PSIS, we use the data provided by the authors (Wang, 2019) to fine-
tune our baseline model same as before. While the PSIS data improves over the baseline,
it falls short compared to our SA#2x4 model in all test sets. Table 8.3 also shows
that our approach is complimentary to AutoAug (Cubuk et al., 2019), which applies
augmentation policies on the entire image. While auto-augment improves the baseline
performance, our SA#2 model improves even more when combined with AutoAug.
PascalVOC Dataset. Results in Table 8.4 for data augmentation on VOC dataset
show that, semantic adversarial data improves performance here as well. The SAx5
model, which edits appearance and position of a single object, is better than the baseline
on both VOC(+1 mAP) and the UnRel(+2.1mAP) test sets, again with bigger gains on
the OODD data. SA#2x5 which creates two adversarial objects underperforms SAx5,
since VOC images often have only a single object, which causes the SA#2x5 to add too
many out-of-context objects in its generation.
BDD100k Dataset. On BDD100k (see Table 8.5), we found that adversary often
caused drastic appearance changes when fooling the classifier. Since BDD100k has
only 10 classes, the class boundaries are well separated and fooling the classifier needs
large unrealistic appearance changes. Instead, optimizing to only reduce the objectness
score (setting λ = 1) leads to more realistic synthesis. This is seen when comparing
SA-App models with λ = 0.5 and λ = 1.0. The model with λ = 1.0 performs much
better on both the BDD and the OODD D2-city test sets, while also improving over the
fine-tuned baseline. Additionally, we see in Table 8.5 that the SA-App performs better
than SA which optimizes position, showing that it is better to edit objects in-place in
structured scenes in BDD.
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Model obj COCO VOC UnRel

Baseline - 46.1 66.4 39.0
Base+FT - 46.2 66.9 38.8
Base+FreeAdv 1 45.8 65.3 37.9
Base+WorstT 1 46.2 66.8 39.2

SA-Rand-App 1 46.5 67.1 39.2
SA-App 1 46.6 67.0 39.6
SA 1 46.7 67.3 39.4

SA#2 2 46.9 67.4 39.8
SA#2 x2 2 47.0 67.4 40.4
SA#2 x4 2 47.1 67.7 40.8

Base+AutoAug - 47.0 67.6 40.4
SA#2+AutoAug 2 47.8 68.1 41.5

PSIS (Wang et al.,
2019a)

- 46.7 67.5 39.8

Table 8.3: Data augmentation results on COCO
dataset. Metric used is mAP@0.5. AutoAug
is the data augmentation proposed by Cubuk
et al. (2019).

Model obj VOC UnRel

Base+FT 0 74.0 42.9
Base+WorstT 1 73.7 43.4
SA x5 1 75.0 45.0
SA#2 x5 2 74.0 44.3

Table 8.4: Data augmentation
results on VOC using semantic
adversary.

Model λ BDD D2City

Base+FT - 50.7 34.7
SA-App 0.5 50.8 34.6
SA-App 1.0 51.4 35.1
SA 1.0 51.2 35.0

Table 8.5: Data augmentation re-
sults on BDD100k dataset.

8.4 conclusions

We presented a method for automatic test case generation through semantic adversarial
optimization of object appearances. Our approach can synthesize new OODD hard
examples which cause failures in the target detector, while remaining realistic to human
eye. Analysis of the synthesized data shows the different failure modes discovered by the
process includes camouflaging, occlusions and appearance changes. Our adversarial data
is also useful for data augmentation, consistently improving the detector on standard
and OODD test sets, in three datasets. We hope that our work will facilitate future
approaches to test models beyond finite datasets and hence develop more reliable
performance metrics.
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So far in the thesis, we have developed methods and approaches to measure and
improve robustness of different computer vision systems to semantic variations in the
input. However, we have restricted ourselves to localized variations by focusing on
individual objects. This is true for object removal based methods studied in Chapters 6
& 7 and object appearance editing based method developed in Chapter 8. We will
now generalize this to study if we can optimize scene-level properties, which affect
large portions of the image, to create hard examples to test vision systems. In this
chapter, we propose an approach to create adversarial weather configuration for a scene,
targeted to a specific model. In a simulation environment using CARLA (Dosovitskiy
et al., 2017), we adversarially optimize the weather settings to cause failures in semantic
segmentation models. We compare different approaches to perform this optimization
through a non-differentiable simulator. Our analysis demonstrates that models show
significant drop in performance in this adversarial testing framework, compared to
standard fixed test sets. This highlights the need to measure worst-case performance of
models before deployment.
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9.1 introduction

Driving in adverse weathers is challenging even for human drivers. Control dynamics of
the car change due to snow or rain. Perceiving the surrounding environment can also be
difficult due to low visibility and changing appearance. In order to build autonomous
driving systems which can safely navigate in adverse weather conditions, we need
mechanisms to stress-test their robustness to weather variations. In this chapter, we
study the robustness of perception models to visual changes caused by weather.

A key challenge in studying weather robustness of computer vision systems is the
lack of large datasets with diverse weather annotations. Collecting, training/testing data
in adversarial weather is a difficult and expensive process. Sakaridis et al. (2019) create
a dataset to capture daylight changes, by driving through the same parts of Zurich
during day and night time and obtain two versions of the scene. Of course this approach
is difficult to emulate for other weather changes like fog, rain and snow, as the weather
would need to cooperate with the kind of data samples we need. For this reason, we
conduct our study in a simulated environment. We use the CARLA simulator proposed
by Dosovitskiy et al. (2017) to create driving scenes and test the robustness of semantic
segmentation models to weather variations.

Standard benchmarking protocol used in computer vision dictates that we create
fixed size test sets from CARLA and test our models on these fixed sets. Following this
we create test splits where weather is sampled from clear conditions or from difficult
conditions like foggy/rainy. However, continuing in the spirit of Chapter 8, we compare
these fixed test sets with an adaptive testing approach. Here we create worst-case
weather configuration tailored to the model for each scene in the test set. This is done by
adversarially optimizing the weather settings of the simulator to maximize segmentation
errors of the target model, for each scene. This approach allows us to measure the
worst-case performance of the model w.r.t weather.

Adversarially optimizing the weather parameters of the simulator has a critical
technical challenge. The simulator is not differentiable and hence we cannot simply
backpropagate the segmentation loss to optimize weather. We can get around this
problem by using finite-differences to approximate the gradients. But, computing finite
differences is computationally taxing. We can use fast approximators like simultaneous
perturbations (SPSA) proposed by Spall (1992) Another option is to use gradient-free
black-box optimizer (Cazenave et al., 2019). We compare these approaches for their
effectiveness in finding worst-case weather configurations.

In summary, our main contributions are:

• We investigate a method to stress-test robustness of semantic segmentation models
to scene-level properties like weather. We use the CARLA simulator to create
weather variants for a scene. Targeted worst-case weather configuration of the
simulator are found by adversarially optimizing them to maximize the segmentation
error.

• We compare different approaches to perform this optimization, despite the non-
differentiability of the simulator. We find that sampling based gradient-free
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optimization approach TBPSA (Cazenave et al., 2019) works better than finite-
difference based gradient approximators.

• We study the effect of the training data distribution on the robustness of the seg-
mentation model. We find that while training on uniformly distributed data (w.r.t
to the weather parameters) significantly improves the model robustness, these
models still show a performance drop (1̃0%) under semantic adversarial attack.

9.2 adversarial weather optimization

We use the CARLA simulator to study robustness of semantic segmentation models to
weather variations in self-driving scenarios. By adversarially optimizing the weather
parameters to fool the segmentation model we are able to measure the worst-case
perfomance of the model w.r.t weather. In the following subsections we will describe the
overall approach of testing models with a simulator in Section 9.2.1, and discuss methods
to optimize the weather parameters despite the simulator being non-differeniable in
Section 9.2.2.

9.2.1 Testing with simulator in loop

Overall flow of our testing approach is shown in Figure 9.1. We iterate over obtaining
the image and ground-truth segmentation from the simulator, scoring the predicted
segmentation by the target model and adversarially optimizing the weather configuration
to increase the segmentation loss.
Configuring the simulator. To begin our testing, the first step is to configure the
CARLA simulator. CARLA allows us to create driving scenes with camera mounted on
the ego-vehicle, and other cars and pedestrians placed at desired locations. We start by
placing the ego-vehicle in a randomly chosen drivable location on the map. We can then
configure the weather, driving behaviors of the other cars and navigation policies of the
pedestrians. However, since we are interested in measuring segmentation performance
across weathers, we want to keep the rest of the scene static. For this, all car and
pedestrian velocities are set to zero.

Once the scene is set, and we start obtaining camera and ground-truth segmentation
readings from the simulator, we can optimize the weather parameters to fool the
segmentation model. CARLA offers nine weather parameters affecting different aspects
like sunlight, rain, fogginess and windiness. Full description of these parameters are
shown in Table 9.1. All the parameters are continuous valued. At each time step t, we set
the weather parameters Wt of the simulator C and feed the obtained image It = C(Wt)
to the segmentation model S, to obtain predictions S(It). The quality of the predicted
segmentation is measured using the cross-entropy loss Lt between ground-truth Gt and
S(It). The adversary uses the current weather, Wt, and the loss to obtain the new
weather parameters as:

Wt+1 = Adversary [Wt,Lt] (9.1)
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Figure 9.1: Overview of our pipeline to find worst-case weather configuration for a given
scene.

Parameter Function Range
cloudiness amount of sky covered by clouds (0, 100)
precipitation rain intensity (0 100)
precipitation deposits amount of water deposited on the ground (0,100)
wind wind strength, affects rain direction and trees (0,100)
fog density concentration of fog (0,100)
fog distance starting distance of the fog (0, ∞)
wetness determines wetness of materials (0, 100)
sun altitude angle of the sun on vertical axis, affects day light (-90, 90)
sun azimuth angle of the sun on horizontal axis, affects light direction (0, 360)

Table 9.1: Comparing efficiency of different attack mechanisms when attacking the
model trained on uniform training data

9.2.2 Adversarially optimizing weather

If the simulator was differentiable we could use gradient descent to optimize the weather
parameters by backpropagating the loss all the way. Then the update equation in 9.1
would simply be:

Wt+1 = Wt + α
∂Lt

∂Wt
(9.2)

where α is the step size. Since the simulator is non-differentiable, we explore three
alternate approaches to perform this optimization. Finite differences and SPSA try to
approximate the gradient by perturbing the weather vector and measuring the response.
We also experiment with gradient-free optimization approaches, based on evolutionary
algorithms (Arnold, 2012).

Apart from non-differentiability, another challenge for the optimization is the simu-
lation noise. We observe that even with all the cars/pedestrians static and the weather
held constant there are small changes in the image between time steps. This is caused
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by the small movements in vegetation caused by wind, ripples in water puddles, and so
on. While these are not large visual variations, it still causes fluctuations in the loss
function between time-steps. In flat areas of the loss, this can mislead the optimization
or cause oscillations. Hence the optimization methods need to account for this noise.
Now let’s look at these three optimization approaches in detail.
Finite differences. In this approach we approximate the derivative of the loss, by
perturbing each weather parameter by a small amount and measuring its effect on the
loss (Kiefer et al., 1952). We use central differences where the parameter is perturbed
in both directions (+ve and -ve) and the gradient is computed as:

Hj(i) =

h, if i = j

0, otherwise
(9.3)

∂L

∂wj
=
L
(
S
(
C
(
W +Hj

)))
−L

(
S
(
C
(
W −Hj

)))
2h (9.4)

where h is the probe step-size. Once we compute the gradient we can use Equation (9.2)
to compute the next weather parameter to query. We can see from Equation (9.4)
that finite differences approach needs two measurements for each parameter dimension,
resulting in 18 queries to the simulator to compute gradients for the nine weather
parameters. This is extremely slow and is a major drawback of this method.
SPSA. Simultaneous perturbation approach was proposed in Spall (1992) to overcome
this limitation of finite differences. The key idea here is to take measurements in a
randomly chosen vector direction by perturbing the whole parameter vector. This needs
only two measurements per step, and is independent of the parameter dimension. As
long as the random perturbation vector is zero mean and takes only non-zero values, this
approach works well to approximate the gradients. It is common to use random vectors
from the Rademacher distribution, where each dimension takes the values ∆j ∈ −1, 1
with probability 0.5. Gradient approximated with spsa is given as

∂L

∂W
=
L (S (C (W + h∆)))−L (S (C (W − h∆)))

2hδ (9.5)

Gradient free optimization. An alternative to these gradient approximation based
approaches are the gradient-free global optimization methods. Evolutionary algorithms
are one such class of methods, which work by sampling a population of initial candidate
solutions and evolving them over time to find the best candidates. Covariance matrix
adaptation (CMA-ES) (Hansen and Ostermeier, 1996) does this by adapting the mean
and variance of the sampling function to increase the likelihood of sampling the best
performing candidates. In our work we use the TBPSA (Cazenave et al., 2019; Hellwig
and Beyer, 2016) algorithm implemented in the Nevergrad library (Rapin and Teytaud,
2018), which incorporates noise control strategies into CMA-ES algorithm.
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9.3 experiments and results

We proposed an approach to find the worst-case weather configuration for a model for
each scene. It is a computationally intense process involving optimizing the weather
parameters with a simulator in the loop. To understand the usefulness of this approach,
we will now evaluate if there is a significant difference in the model performance on
these worst-case samples compared to standard fixed size test sets. We compare the
different optimization approaches discussed before on their effectiveness in decreasing
the segmentation performance. We also study the effect of the training data distribution
on the segmentation model robustness. We also qualitatively analyze the results and
show interesting failure cases discovered by our approach. But first we will discuss the
experimental setup.

9.3.1 Experimental setup

We perform our studies on the segmentation model in Zhu et al. (2019), since it was one
of the best performing models on cityscapes dataset with an open-source implementation.
To avoid domain shift issues, we train this model from scratch on the CARLA simulator
data first. We mimic the cityscapes dataset and create training set of 3000 street
scenes by driving the ego-car in the simulator and periodically capturing images. The
3000 samples come from five different maps (Town01 to Town05) each contributing 600
samples. We also create a validation set of 500 samples for hyperparameter tuning and
fixed size test sets of 500 samples. Adversarial testing is also carried out in the 500
scenes sampled from the five towns.
Training and Test distributions. To understand the effect of training data distribu-
tion on model robustness, we create different training sets with varying distributions of
the weather as follows.

• Clean: In these samples the weather is held fixed to mimic a clear day. All weather
parameters are set to zero, except sun altitude which is set to 60 degrees (mid-day
light).

• Gaussian: While there have been attempts to collect datasets with different
weather conditions (e.g. in BDD100k there are day/night and a few rainy/foggy
images), they are are never balanced as it is difficult to obtain images of extreme
weather conditions. To mimic these imbalanced real-world datasets we create
splits where we sample weather parameters from Gaussian distributions centered
around clear day. Each weather parameter is sampled independently. We create
splits with four different variances, σ = 5, 10, 20, 30. Note that we normalize all
parameter ranges to 0-100 for this sampling.

• Uniform: This acts as the oracle case where all weather settings are uniformly
sampled. While this is unrealistic compared to real-world data, it helps us
understand the upper-limits of model performance.
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Method Mean worst-case mIoU (↓)
Clear test set 85.55
Uniform test set 86.02
Finite differences 81.23
Random Sampling 77.49
SPSA 77.62
TBPSA 69.79

Table 9.2: Comparing efficiency of different attack mechanisms when attacking the
model trained on uniform training data. Lower is better.

We train segmentation models on each of these training splits. For standard testing we
create equivalent Clean and Uniform test sets to measure clear weather and adverse
weather performance. Segmentation performance is measured using mean intersection-
over-union (mIoU) averaged over each class.

9.3.2 Quantitative results

We now present the quantitative results of our experiments.
Comparing optimization methods. We compare the different optimization methods
by attacking the segmentation model trained on Uniform training data. We chose
this model, since it is the hardest model to attack. Table 9.2 reports the performance
of the target model in terms of mIoU on the data created by different optimization
methods. We can see the standard baseline performances on Clear and Uniform fixed
size test sets in the first two rows. Model shows no drop in performance when tested on
Uniform set compared to Clean set (86.02 vs 85.55) which seems to indicate that the
model is robust to weather variations. However on adversarial weather configurations
we start seeing performance drops. Finite differences approach drops performance by
5̃ points to 81.23. A random sampling baseline, where N different weather conditions
are uniformly randomly sampled for each scene and the worst one is picked, does much
better dropping performance by 9 points to 77.49. This indicates that finite differences
approach is ineffective, as it is not able to handle the noisy optimization. The more
efficient SPSA method does better than finite differences, but is still slightly worse than
random sampling at 77.62 mIoU. Gradient-free approach TBPSA is much better at
handling this noisy optimization and significantly drops the model performance to 69.79
mIoU. The gradient-free approaches have an advantage in this setting, where often SPSA
gets stuck in local minimas. TBPSA ignores local gradients and can move quickly across
the parameter space. This results in significantly improved performance compared to
other methods. We will use TBPSA for rest of the experiments and analysis.
Effect of training data. So far we saw that while segmentation model trained on
Uniform data shows good performance on standard Uniform test set, it shows significant
performance drop on adversarial test set created by our attack using TBPSA. This
also holds for other models trained on more realistic biased data. Table 9.3 shows the
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Training Data Clear day test Uniform test set Adversarial set
Only clear day 88.88 58.54 30.19
Gaussian (σ=5.0) 84.39 60.95 31.23
Gaussian (σ=10.0) 84.85 64.07 37.59
Gaussian (σ=20.0) 83.66 79.46 48.37
Gaussian (σ=30.0) 86.09 85.10 64.40
Uniform 85.55 86.02 69.79

Table 9.3: Effect of training data on the susceptibility of the segmentation models to
adversarial weather. Mean IoU scores are reported for three different test sets. We use
the TBPSA method to perform the attack. We can see that while training on more
diverse data improves the model robustness, adversarially crated weather parameters
(last column) still cause a significant drop in model performance compared to uniformly
sampled ones (middle column).

comparison of performance on Clear, Uniform and Adversarial test sets (using TBPSA)
for models trained on different training distributions. We see that while all models
have good performance on Clear test set, they improve significantly on Uniform test
sets with increasing diversity of training data. However there is still a large gap in
performance on the fixed uniform test sets compared to tailored adversarial test sets.
The gap is larger for more biased models. For example Gaussian (σ=5.0) model has a
gap of nearly 30 mIoU points (60.95 vs 31.23). These results indicate that worst-case
performance of the segmentation models is much worse than indicated by the Uniform
test set. This highlights the need to identify and improve these worst-case failure modes
before deploying these models for autonomous driving in the real-world.

9.3.3 Qualitative analysis of the failure modes

We will now look at qualitative cases of adverse weather found by our attack and
understand the different types of failure modes discovered. Figure 9.2 shows examples
of the adversarial weather created for the segmentation model trained on biased data
(Gaussian sigma = 20). We see different mechanisms causing failures. In the first
row we see that the reflections on the street caused by the rain-water puddling cause
large segmentation failures. The model is unable to distinguish reflection from the real
objects and erroneously segments them as real. In the second row, low light caused
by night time cloudiness causes sporadic segmentation mistakes. Third row shows the
cases where fog causes visibility issues leading to the model missing some background
objects. Finally the last row shows that shiny surfaces caused by specular light and
wetness causes model to hallucinate objects.

Model trained with Uniform data is more robust to these kinds of failures as we
saw in quantitative evaluation. However our attack still finds interesting errors made
by the uniform model, as seen in Figure 9.3. We see that while the errors are smaller,
the model still shows difficulty in distinguishing reflections (first row). In the second
and third rows we see interesting failures where cloudiness and positioning of the sun
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Input Image Prediction Prediction Error Input Image Prediction Prediction Error

Figure 9.2: Examples of segmentation failures of the Gaussian (σ = 20)caused by
adverse weather found via our attack. Each pair of images shows the original scene (top)
and the scene in adversarial weather (bottom), along with the model prediction and
errors in this prediction. We see that this model trained on biased data has trouble
dealing with reflections (1st row), low light (2nd row), fog (3rd row) and shiny surfaces
(last row).
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Input Image Prediction Prediction Error Input Image Prediction Prediction Error

Figure 9.3: Examples of segmentation failures of the Uniform model caused by adverse
weather found via our attack. Each pair of images show the original scene (top) and the
scene in adversarial weather (bottom), along with the model prediction and errors in
this prediction. We see that the model trained on Uniform data does better than the
biased model. The errors are smaller. However, it shows failures with reflections (1st
row), appearance change due to light (2nd row), shadows (3rd row) and fog (last row).
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Figure 9.4: Class level performance drop caused by adversarial weathers on the model
trained on Uniform data. Classes like car, pedestrian and fence are significantly affected.

causes shadows, leading the segmentation model to make mistakes. A car is seen as a
fence (third row, first column) and a sidewalk is seen as drivable road (third row, second
column). These kinds of mistakes would be truly dangerous in real world. We see that
with adversarial attacks we can find the worst-case weather settings which induce errors,
even on models trained on fully balanced data.
Class-level effect. Figure 9.4 shows the per class intersection over union on Clear
weather as well as adversarial weather created by TBPSA attack. These results are
for the model trained on Uniform data. Classes with biggest negative impact due
to adversarial weather are pedestrian, fence and car. The model often misclassifies
shiny surfaces caused by wetness as car, leading to a drop of more than 50 points in
performance for this class. Pedestrian and fence classes are often affected by fog, and
missed by the segmentation model. Lane markings (Road line) and wall classes also
show more than a 10 point drop. In contrast the dominant road class is less affected,
since it occupies a large area in most images.

9.4 conclusions

In this chapter we proposed an approach to test the robustness of semantic segmentation
models to adversarial weather conditions. We created targeted adverse weather configu-
rations for a model for each scene, by adversarially optimizing the weather settings of the
CARLA simulator. We show that gradient-free algorithms can successfully optimize the
weather parameters through a non-differentiable simulator. In our experiments models
show a significant drop in performance on the adverse weather settings created by our
approach, compared to the performance on standard fixed test sets. This highlights the
need to do worst-case testing before deploying models in the real world.





10CONCLUS IONS AND FUTURE PERSPECTIVES

Contents
10.1 Key Contributions and Insights . . . . . . . . . . . . . . . . . . . . . 143

10.1.1 Automatic content manipulation . . . . . . . . . . . . . . . 143
10.1.2 Analyzing and improving robustness of computer vision systems144

10.2 Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.2.1 Short-term research questions . . . . . . . . . . . . . . . . . 145
10.2.2 Long-term perspectives . . . . . . . . . . . . . . . . . . . . . 147

In this chapter we will summarize the key contributions made in the thesis as well
as the insights derived from them. We will also discuss future research directions to
conclude the thesis.

10.1 key contributions and insights

This thesis studied two concrete problems. First, we developed generative models to
automatically and controllably edit text and image data. In both these domains, we
developed adversarial training techniques to build content editing models using only
unpaired datasets. Focusing on conditional editing enabled our generative models to
operate on complex and unstructured datasets like COCO and ADE20k with crowded
scenes. This was crucial in facilitating the second big focus are of the thesis – employing
these generative models to measure and improve robustness of computer vision systems
to semantic variations in the input image. By using the image editing models to create
model-agnostic and model-specific test cases we were able to systematically analyze and
improve robustness of various computer vision systems – including image classification,
semantic segmentation, visual question answering and object detection systems – to
context and appearance variations in the input. The following subsections will recap
our key contributions in these two problem domains.

10.1.1 Automatic content manipulation

Lack of paired training data is the key challenge in learning content manipulation models.
We overcome this challenge in the thesis by using adversarial training, combined with
problem-specific constraints, to guide the generative model. We started our foray in
this direction by building an adversarially trained image caption generator in Chapter 3.
Despite having a discrete output space, we show that text generators can be trained
in an adversarial framework by using Gumbel-Softmax approximation (Jang et al.,
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2016) to enable back-propagation. Key observation from this chapter is that adversarial
training helps improve the diversity of generated captions, while maintaining same level
of correctness.

In Chapter 4, we built a text style translation model A4NT, which obfuscates
authorship of input text by mimicking a different style. We show that with adversarial
training against attribute classifiers, combined with semantic consistency and language
coherence losses, we can learn to perform text style transfer without paired data. In an
application space without many automatic solutions, we show that our model learns
to hide private attributes like age, gender and identity from the data, while mostly
succeeding in retaining original meaning.

Switching to the image domain, we proposed an object removal model in Chapter 5
which learns from unpaired training data. Here, we show that we can avoid degenerate
solutions with the right architectural constraints (two-staged model consisting of a
mask generator with a binary output and an inpainter), and imposing a prior on the
mask generator. We also show that this weakly-supervised (using image-level labels)
model can achieve similar removal performance as a fully-supervised baseline (using
segmentation labels), allowing us to operate on datasets without mask annotation. Part
of this model also enabled our studies on context-sensitivity in Chapters 6 and 7.

Our final contribution in this direction is the object appearance editing model
presented in Chapter 8. This model learns to disentangle the pose and appearance
of an object, allowing it to edit its appearance while keeping the pose intact. We
show that imposing appropriate bottlenecks at the output of two image encoders forces
them to learn separate functions, one focusing on representing shape and the second on
appearance. Here again adversarial losses, combined with cyclic reconstruction losses
provide the training signal. This model is able to smoothly interpolate appearance of an
object, which plays a key role in enabling semantic adversarial synthesis of corner-case
object appearances to test the robustness of object detectors.

10.1.2 Analyzing and improving robustness of computer vision systems

The second important problem studied in this thesis is developing methods to test and
improve robustness of computer vision systems to semantic variations in input. We
propose a new approach in the thesis, and show that image editing models can be used
to automatically synthesize new test cases and find failure modes of the target computer
vision model. We studied two approaches to synthesize test cases – model-agnostic and
model-specific. In model-agnostic approach we exhaustively synthesize all test-cases
for a particular variation type and test the target model on them to find failure cases.
This approach is taken in Chapters 6 and 7. In model-specific approach the synthesis is
guided by the target model by adversarially optimizing the generator’s latent space to
fool the target. This approach is taken in Chapters 8 and 9.

In Chapter 6, we measure the context-sensitivity of image classification and segmen-
tation models by removing context objects. Using the edited images, we proposed simple
metrics to quantify the robustness of classifiers and segmentation models. Our analysis
show that, models rely too heavily on correlations between co-occurring objects to make
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their predictions, causing failures when context changes. We show that our edited data
is also useful beyond testing, and improves model generalization when used for data
augmentation. We extended this analysis to VQA models in Chapter 7. We created
two kinds of test sets, IV-VQA where edit is not expected to change the answer and
CV-VQA where the answer changes in a controlled fashion. Analyzing three different
VQA models using these test sets, we show that the modular SNMN model is more
robust than other approaches, despite lower performance on standard i.i.d. test sets.

Our first model-specific test-case synthesis approach was presented in Chapter 8,
where we developed and leveraged an object appearance editing model to synthesize
hard corner cases. By adversarially optimizing the object appearance to fool the Yolov3
object detector, our test samples drop the performance of the detector by more than
20 mAP points. We show that by constraining the latent code during adversarial
optimization to the convex-hull spanned by guiding instances, we can keep the generated
appearances realistic to human eye. Qualitatively we show that this approach can
automatically discover interesting failure modes including camouflaging, occlusion and
confusing appearances.

In Chapter 9, we present a second model-specific testing approach, this time focusing
on global appearance changes caused by weather. We use the CARLA simulator to
create worst-case weather setting for a given scene, by adversarially optimizing the
weather configuration to fool the segmentation model. We show that using gradient-
free optimization technique we can effectively find worst-case weather settings for a
scene, despite the simulator being a black box. Segmentation models show significant
performance drop on these adversarially optimized weathers compared to standard fixed
test sets. This highlights the usefulness of the model-specific testing approach in finding
the limits of a model’s performance.

10.2 future perspectives

Building robust computer vision models is an important and active research problem.
This thesis took the first steps towards leveraging generative models to build automatic
test-suites for measuring robustness of various computer vision systems. However, there
is a long path forward to make generative-model driven testing more widely applicable.
We will now discuss a few short-term follow up directions and longer term perspectives
in the field.

10.2.1 Short-term research questions

Improving authorship obfuscation. In Chapter 4 we presented the A4NT model
which obfuscates authorship by editing writing style while preserving content. While
A4NT operated on sentence-level, we need obfuscated text to preserve coherence across
the entire text. To achieve this the LSTM language generator used in our work should
be upgraded to the latest transformers based language models which are better at
modeling long-term relationships (Devlin et al., 2019; Brown et al., 2020). In some cases
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obfuscation is not possible without changing the meaning, for example when an author
talks about topics which are very predictive of their age. In such cases our A4NT model
often alters the semantic content of the input. A better obfuscation model should instead
detect these scenarios and warn the author that this content could compromise their
privacy.
Shape and geometric manipulations. In this thesis we measured the robustness of
computer vision models to three types of semantic variations – object removal (Chapter 6
and 7), appearance editing (Chapter 8) and weather simulation (Chapter 9). However,
this only scratches the surface when it comes to possible semantic variations one could
expect in natural scenes. Geometric and object shape variations are one such class
to look at next. This includes 3D rotations, unusual poses for deformable objects
like people and occlusions. To synthesize corner-case poses for an object, we need a
generative model which can smoothly interpolate object poses, similar to our model in
Chapter 8. This can be challenging due to space of valid poses often being discontinuous,
for example for the person class. Synthesizing geometric variations can be especially
useful to study the robustness of computer vision models like human pose detectors.
Manipulations at the scene-graph level. Object relationships is another dimension
to consider when creating semantic variants of the image. This includes for example
editing the image of a man riding a bike to a more unusual relationship like a man
pushing a bike. We can generalize these manipulations as a task of first automatically
editing image scene-graphs (Krishna et al., 2017), and then generating images based
on the new graph. Dhamo et al. (2020) take a step in this direction, by building an
interactive system where the user manipulates the scene-graph corresponding the input
image and the model synthesizes the corresponding image. However to enable automated
testing in this space, the scene-graph editing will need to be done by a generative model
operating in graph domain. Generating objects in unusual relationships could be useful
in testing scene-level computer vision systems like image captioning and visual question
answering.
Better data augmentation strategies. A shortcoming of the work presented in this
thesis is the simple data augmentation approach we took to utilize the synthetic hard
examples generated by models. The edited semantic variants are not i.i.d. samples to the
original training data, but have a very specific relationship to the original samples they
are created from. Simply adding these samples back to the training set as independent
samples might not make full use of them. Loss functions which explicitly exploit the
relationship between the original and edited samples to further regularize the target
model might be a good avenue to explore. Minimizing worst-case loss over semantic
image variants could be a good candidate for this, given the success of this approach
in Sagawa et al. (2020) to improve worst-group generalization. Condition variance
penalties from Heinze-Deml and Meinshausen (2020) is also a suitable option since
semantic editing creates exactly the two instance variants needed by this loss function.
Robustness Certification in Semantic Space. In the field of adversarial robustness,
certified defenses have recently gained popularity (Raghunathan et al., 2018; Sinha et al.,
2018; Wong and Kolter, 2018; Cohen et al., 2019). These methods guarantee the neural
network to be robust against any adversarial perturbation under a specific strength (in
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terms of lp norm). The guarantees are achieved by adversarial training (Sinha et al.,
2018) or by minimizing the worst-case loss over all reachable outputs under lp bounded
input perturbations. However these certificates only apply for norm-bounded adversary
and can be broken with semantic perturbations (Ghiasi et al., 2019). An interesting
future work is to certify robustness to semantic variations, like the ones explored in this
thesis. The certification could guarantee robustness to a particular type of editing or to
a particular generative model. Mohapatra et al. (2020) take a first step in this direction,
by certifying robustness to semantic perturbations like translations, 2D rotations, hue,
saturation and contrast. It would be interesting to generalize this to plausible semantic
variations reachable by a generative model.

10.2.2 Long-term perspectives

While the previous section has looked at immediate follow up directions related to the
thesis, we will now present a longer-term speculative view on the path to build robust
computer vision models. Looking forward, we believe there are two major directions
of research – first on how to efficiently test and find failure modes of computer vision
systems and second on how to learn better models to correct these failure modes.
Content generation as a framework for mining hard examples. This thesis
mainly focused on using 2D image-domain generative models to synthesize test-cases.
While these work well for creating local variations like object removal or changing
appearance of one object, altering more complex relationships involving multiple objects
in the scene is not possible with current generative models. For example, finding the
worst case positions of objects in the scene which causes a detector failure. To generate
such variations, the model should also respect physical constraints.

3D models and simulation would allow us to model such complex relations and scene
level effects, while keeping physical constraints satisfied. However, traditional simulation
scenarios are painstakingly hand-designed to match real-world data (e.g. the maps in
the CARLA simulator). Procedural content generation (PCG) used in video games
offers an alternative where things like game levels, maps etc. are programmatically
generated on the fly from simple primitives. This can be done using search-based
algorithms (Togelius et al., 2011) or sampling from a learned model. Recently, procedural
generation techniques have been also used to generate training data for machine learning
models. Wang et al. (2019b, 2020) use evolution strategies to continuously generate new
more difficult environments to train their reinforcement learning agent. In computer
vision, domain randomization is used to improve generalization from simulation to real
world data (Tobin et al., 2017; Tremblay et al., 2018). See Risi and Togelius (2020) for
comprehensive overview on the current state and avenues for the use of PCG in machine
learning.

A big challenge with using PCG to synthesize corner cases is still the combinatorial
search space of all the simulation configuration. Even with a few objects, number of
things one can change explodes and it becomes infeasible to brute force search for failure
cases. Moreover, most of these variations are harmless and do not affect the model being
tested too much. Simulators with differentiable rendering (Kato et al., 2020) might
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offer a way forward, by allowing us to directly optimize the simulation configuration
to find the failure modes of the model being tested. Early works such as Liu et al.
(2019); Venkatesh et al. (2020) explore this approach for simple single object settings.
Extending this to full complex scenes and synthesizing worst-case scene configurations
to find failure modes of computer vision systems is an exciting line of future work.
Causal computer vision models and data generation. Creating data variations is
a useful mechanism to teach computer vision models to be invariant and hence robust
to certain changes. Standard data augmentation does this for simple variations like
translations, color jittering and rotations. This thesis showed that data augmentation
with semantic variations can help improve generalization. However this process is still
adhoc, needing careful balancing of the number of real and augmented samples to not
loose i.i.d. performance.

Causality offers a principled framework to learn robust models and is a very promising
research direction in the long-term Schölkopf (2019). One can think of images as a result
of causal generative process containing many independent factors (location, objects,
time of day, camera parameters) (Lopez-Paz et al., 2017). Only some of these factors
are causal to the label (e.g. label cow is only caused by the object cow), while other
could be spuriously correlated to the label in the current dataset (e.g. grass background
is correlated with the label cow). Causal learning algorithms aim to learn models which
discover the causal features from data and only rely on them to make their predictions.
This also makes the model robust to variations in the spuriously correlated factors, like
changes in context. Some of these algorithms (Arjovsky et al., 2019; Peters et al., 2016;
Heinze-Deml and Meinshausen, 2020) assume access to a set of different training datasets
where the causal relation is unchanged, but the strength of the spurious correlations vary.
For example, two datasets one with cows often in pastures and other with cows often
in the city. This kind of data is hard to manually curate for every factor of variation.
Generative model based image editing might offer a scalable approach to create these
data by intervening on non-causal factors. For example, we can edit backgrounds to
create balanced sub-groups of data with every background. Recent work by Sauer and
Geiger (2021) takes a step in this direction. They model three independent factors
(object shape, texture and background) using a causal GAN, and use this to learn
an ensemble of three classifiers which only rely on one of these factors each. These
classifiers trained on counterfactual data show better out-of-distribution generalization.
Extending this to general scenes, where causal structure is not known apriori is still a
hard challenge.
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