Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-34415
Titel: | Information consumption on social media : efficiency, divisiveness, and trust |
VerfasserIn: | Babaei, Mahmoudreza |
Sprache: | Englisch |
Erscheinungsjahr: | 2020 |
DDC-Sachgruppe: | 004 Informatik |
Dokumenttyp: | Dissertation |
Abstract: | Over the last decade, the advent of social media has profoundly changed the way people produce and consume information online. On these platforms, users themselves play a role in selecting the sources from which they consume information, overthrowing traditional journalistic gatekeeping. Moreover, advertisers can target users with news stories using users’ personal data. This new model has many advantages: the propagation of news is faster, the number of news sources is large, and the topics covered are diverse. However, in this new model, users are often overloaded with redundant information, and they can get trapped in filter bubbles by consuming divisive and potentially false information. To tackle these concerns, in my thesis, I address the following important questions: (i) How efficient are users at selecting their information sources? We have defined three intuitive notions of users’ efficiency in social media: link, in-flow, and delay efficiency. We use these three measures to assess how good users are at selecting who to follow within the social media system in order to most efficiently acquire information. (ii) How can we break the filter bubbles that users get trapped in? Users on social media sites such as Twitter often get trapped in filter bubbles by being exposed to radical, highly partisan, or divisive information. To prevent users from getting trapped in filter bubbles, we propose an approach to inject diversity in users’ information consumption by identifying non-divisive, yet informative information. (iii) How can we design an efficient framework for fact-checking? Proliferation of false information is a major problem in social media. To counter it, social media platforms typically rely on expert fact-checkers to detect false news. However, human fact-checkers can realistically only cover a tiny fraction of all stories. So, it is important to automatically prioritizing and selecting a small number of stories for human to fact check. However, the goals for prioritizing stories for fact-checking are unclear. We identify three desired objectives to prioritize news for fact-checking. These objectives are based on the users’ perception of truthfulness of stories. Our key finding is that these three objectives are incompatible in practice. In den letzten zehn Jahren haben soziale Medien die Art und Weise, wie Menschen online Informationen generieren und konsumieren, grundlegend verändert. Auf Social Media Plattformen wählen Nutzer selbst aus, von welchen Quellen sie Informationen beziehen hebeln damit das traditionelle Modell journalistischen Gatekeepings aus. Zusätzlich können Werbetreibende Nutzerdaten dazu verwenden, um Nachrichtenartikel gezielt an Nutzer zu verbreiten. Dieses neue Modell bietet einige Vorteile: Nachrichten verbreiten sich schneller, die Zahl der Nachrichtenquellen ist größer, und es steht ein breites Spektrum an Themen zur Verfügung. Das hat allerdings zur Folge, dass Benutzer häufig mit überflüssigen Informationen überladen werden und in Filterblasen geraten können, wenn sie zu einseitige oder falsche Informationen konsumieren. Um diesen Problemen Rechnung zu tragen, gehe ich in meiner Dissertation auf die drei folgenden wichtigen Fragestellungen ein: • (i) Wie effizient sind Nutzer bei der Auswahl ihrer Informationsquellen? Dazu definieren wir drei verschiedene, intuitive Arten von Nutzereffizienz in sozialen Medien: Link-, In-Flowund Delay-Effizienz. Mithilfe dieser drei Metriken untersuchen wir, wie gut Nutzer darin sind auszuwählen, wem sie auf Social Media Plattformen folgen sollen um effizient an Informationen zu gelangen. • (ii) Wie können wir verhindern, dass Benutzer in Filterblasen geraten? Nutzer von Social Media Webseiten werden häufig Teil von Filterblasen, wenn sie radikalen, stark parteiischen oder spalterischen Informationen ausgesetzt sind. Um das zu verhindern, entwerfen wir einen Ansatz mit dem Ziel, den Informationskonsum von Nutzern zu diversifizieren, indem wir Informationen identifizieren, die nicht polarisierend und gleichzeitig informativ sind. • (iii) Wie können wir Nachrichten effizient auf faktische Korrektheit hin überprüfen? Die Verbreitung von Falschinformationen ist eines der großen Probleme sozialer Medien. Um dem entgegenzuwirken, sind Social Media Plattformen in der Regel auf fachkundige Faktenprüfer zur Identifizierung falscher Nachrichten angewiesen. Die manuelle Überprüfung von Fakten kann jedoch realistischerweise nur einen sehr kleinen Teil aller Artikel und Posts abdecken. Daher ist es wichtig, automatisch eine überschaubare Zahl von Artikeln für die manuellen Faktenkontrolle zu priorisieren. Nach welchen Zielen eine solche Priorisierung erfolgen soll, ist jedoch unklar. Aus diesem Grund identifizieren wir drei wünschenswerte Priorisierungskriterien für die Faktenkontrolle. Diese Kriterien beruhen auf der Wahrnehmung des Wahrheitsgehalts von Artikeln durch Nutzer. Unsere Schlüsselbeobachtung ist, dass diese drei Kriterien in der Praxis nicht miteinander vereinbar sind. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-344150 hdl:20.500.11880/31753 http://dx.doi.org/10.22028/D291-34415 |
Erstgutachter: | Gummadi, Krishna |
Tag der mündlichen Prüfung: | 14-Jun-2021 |
Datum des Eintrags: | 14-Sep-2021 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Professur: | MI - Keiner Professur zugeordnet |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
thesis (5).pdf | Doctoral Thesis | 4,15 MB | Adobe PDF | Öffnen/Anzeigen |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.