Please use this identifier to cite or link to this item:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-34557
Title: | Targeting the Microtubule-Network Rescues CTL Killing Efficiency in Dense 3D Matrices |
Author(s): | Zhao, Renping Zhou, Xiangda Khan, Essak S. Alansary, Dalia Friedmann, Kim S. Yang, Wenjuan Schwarz, Eva C. del Campo Bécares, Aránzazu Hoth, Markus Qu, Bin |
Language: | English |
Title: | Frontiers in immunology |
Volume: | 12 |
Publisher/Platform: | Frontiers |
Year of Publication: | 2021 |
Publikation type: | Journal Article |
Abstract: | Efficacy of cytotoxic T lymphocyte (CTL)-based immunotherapy is still unsatisfactory against solid tumors, which are frequently characterized by condensed extracellular matrix. Here, using a unique 3D killing assay, we identify that the killing efficiency of primary human CTLs is substantially impaired in dense collagen matrices. Although the expression of cytotoxic proteins in CTLs remained intact in dense collagen, CTL motility was largely compromised. Using light-sheet microscopy, we found that persistence and velocity of CTL migration was influenced by the stiffness and porosity of the 3D matrix. Notably, 3D CTL velocity was strongly correlated with their nuclear deformability, which was enhanced by disruption of the microtubule network especially in dense matrices. Concomitantly, CTL migration, search efficiency, and killing efficiency in dense collagen were significantly increased in microtubule-perturbed CTLs. In addition, the chemotherapeutically used microtubule inhibitor vinblastine drastically enhanced CTL killing efficiency in dense collagen. Together, our findings suggest targeting the microtubule network as a promising strategy to enhance efficacy of CTL-based immunotherapy against solid tumors, especially stiff solid tumors. |
DOI of the first publication: | 10.3389/fimmu.2021.729820 |
URL of the first publication: | https://www.frontiersin.org/articles/10.3389/fimmu.2021.729820/full |
Link to this record: | hdl:20.500.11880/31679 http://dx.doi.org/10.22028/D291-34557 |
ISSN: | 1664-3224 |
Date of registration: | 1-Sep-2021 |
Faculty: | M - Medizinische Fakultät NT - Naturwissenschaftlich- Technische Fakultät |
Department: | M - Biophysik NT - Chemie |
Professorship: | M - Prof. Dr. Markus Hoth NT - Prof. Dr. Aránzazu del Campo M - Prof. Dr. Barbara Niemeyer-Hoth |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
There are no files associated with this item.
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.