Please use this identifier to cite or link to this item: doi:10.22028/D291-33848
Title: Nonemptiness and smoothness of twisted Brill–Noether loci
Author(s): Hitching, George H.
Hoff, Michael
Newstead, Peter E.
Language: English
Title: Annali di Matematica Pura ed Applicata
Volume: 200
Issue: 2
Pages: 685–709
Publisher/Platform: Springer Nature
Year of Publication: 2020
Free key words: Brill–Noether loci
Petri trace map
Vector bundles
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: Let V be a vector bundle over a smooth curve C. In this paper, we study twisted Brill–Noether loci parametrising stable bundles E of rank n and degree e with the property that h0(C,V⊗E)≥k. We prove that, under conditions similar to those of Teixidor i Bigas and of Mercat, the Brill–Noether loci are nonempty and in many cases have a component which is generically smooth and of the expected dimension. Along the way, we prove the irreducibility of certain components of both twisted and “nontwisted” Brill–Noether loci. We describe the tangent cones to the twisted Brill–Noether loci. We end with an example of a general bundle over a general curve having positive-dimensional twisted Brill–Noether loci with negative expected dimension.
DOI of the first publication: 10.1007/s10231-020-01009-x
Link to this record: urn:nbn:de:bsz:291--ds-338481
hdl:20.500.11880/31162
http://dx.doi.org/10.22028/D291-33848
ISSN: 1618-1891
0373-3114
Date of registration: 16-Apr-2021
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
Hitching2021_Article_NonemptinessAndSmoothnessOfTwi.pdf4,29 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons