Please use this identifier to cite or link to this item:
doi:10.22028/D291-33726
Title: | Brill–Noether general K3 surfaces with the maximal number of elliptic pencils of minimal degree |
Author(s): | Hoff, Michael Knutsen, Andreas Leopold |
Language: | English |
Title: | Geometriae Dedicata |
Publisher/Platform: | Springer Nature |
Year of Publication: | 2020 |
Free key words: | K3 surfaces Unirationality Moduli map Lazarsfeld–Mukai bundle |
DDC notations: | 510 Mathematics |
Publikation type: | Journal Article |
Abstract: | We explicitly construct Brill–Noether general K3 surfaces of genus 4, 6 and 8 having the maximal number of elliptic pencils of degrees 3, 4 and 5, respectively, and study their moduli spaces and moduli maps to the moduli space of curves. As an application we prove the existence of Brill–Noether general K3 surfaces of genus 4 and 6 without stable Lazarsfeld–Mukai bundles of minimal c2. |
DOI of the first publication: | 10.1007/s10711-020-00565-z |
Link to this record: | urn:nbn:de:bsz:291--ds-337263 hdl:20.500.11880/31057 http://dx.doi.org/10.22028/D291-33726 |
ISSN: | 1572-9168 0046-5755 |
Date of registration: | 1-Apr-2021 |
Faculty: | MI - Fakultät für Mathematik und Informatik |
Department: | MI - Mathematik |
Professorship: | MI - Keiner Professur zugeordnet |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
Hoff-Knutsen2020_Article_BrillNoetherGeneralK3SurfacesW.pdf | 423,48 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License