Please use this identifier to cite or link to this item: doi:10.22028/D291-33726
Title: Brill–Noether general K3 surfaces with the maximal number of elliptic pencils of minimal degree
Author(s): Hoff, Michael
Knutsen, Andreas Leopold
Language: English
Title: Geometriae Dedicata
Publisher/Platform: Springer Nature
Year of Publication: 2020
Free key words: K3 surfaces
Unirationality
Moduli map
Lazarsfeld–Mukai bundle
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: We explicitly construct Brill–Noether general K3 surfaces of genus 4, 6 and 8 having the maximal number of elliptic pencils of degrees 3, 4 and 5, respectively, and study their moduli spaces and moduli maps to the moduli space of curves. As an application we prove the existence of Brill–Noether general K3 surfaces of genus 4 and 6 without stable Lazarsfeld–Mukai bundles of minimal c2.
DOI of the first publication: 10.1007/s10711-020-00565-z
Link to this record: urn:nbn:de:bsz:291--ds-337263
hdl:20.500.11880/31057
http://dx.doi.org/10.22028/D291-33726
ISSN: 1572-9168
0046-5755
Date of registration: 1-Apr-2021
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
Hoff-Knutsen2020_Article_BrillNoetherGeneralK3SurfacesW.pdf423,48 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons