Please use this identifier to cite or link to this item:
doi:10.22028/D291-30208
Title: | Synthesis, Structural Characterization, and Biological Activities of Organically Templated Cobalt Phosphite (C4N2H14)[Co(H2PO3)4]·2H2O |
Author(s): | Hamdi, Najlaa Chaouch, Souad da Silva, Ivan Ezahri, Mohamed Lachkar, Mohammed Alhasan, Rama Abdin, Ahmad Yaman Jacob, Claus El Bali, Brahim |
Language: | English |
Title: | Sci |
Volume: | 1 |
Year of Publication: | 2019 |
Free key words: | hybrid phosphite X-rays crystal structure FTIR thermal behavior biological activities antimicrobial micro-organisms |
DDC notations: | 610 Medicine and health |
Publikation type: | Other |
Abstract: | A novel hybrid phosphite (C4N2H14)[Co(H2PO3)4]·2H2O was synthesized with 1,4- diaminobutane (dabn) as a structure-directing agent using slow evaporation method. Single crystal X-ray diffraction analysis showed that it crystallizes in the P\-1 triclinic space group, with the following unit cell parameters (Å, °) a = 5.4814 (3), b = 7.5515 (4), c = 10.8548 (6), α = 88.001 (4), β = 88.707 (5), γ = 85.126 (5), and V = 447.33 (4) Å3. The crystal structure was built up from corner-sharing [CoO6]-octahedrons, forming chains parallel to [001], which are interconnected by H2PO3− pseudo-tetrahedral units. The diprotonated 1,4-butanediammonium molecules, residing between the parallel chains, interacted with the inorganic moiety via hydrogen bonds leading thus to the formation of the 3D crystal structure. The Fourier transform infrared spectrum showed characteristic bands corresponding to the phosphite group and the organic molecule. The thermal decomposition of the compound consisted mainly of the loss of the organic moiety and the water molecules. The biological tests exhibited significant activity against Candida albicans and Escherichia coli strains in all used concentrations, while less activity was pronounced when tested against Staphylococcus epidermidis and Saccharomyces cerevisiae, while there was no activity against the nematode model Steinernema feltiae. |
DOI of the first publication: | 10.3390/sci1010041 |
Link to this record: | urn:nbn:de:bsz:291--ds-302083 hdl:20.500.11880/30757 http://dx.doi.org/10.22028/D291-30208 |
ISSN: | 2413-4155 |
Date of registration: | 1-Mar-2021 |
Notes: | Second Version Published: 25 July 2019 (doi:10.3390/sci1010041) |
Faculty: | NT - Naturwissenschaftlich- Technische Fakultät |
Department: | NT - Pharmazie |
Professorship: | NT - Prof. Dr. Claus Jacob |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
sci-01-00041.pdf | 3,39 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License