Please use this identifier to cite or link to this item: doi:10.22028/D291-32562
Title: Assessment of Fibrinogen Macromolecules Interaction with Red Blood Cells Membrane by Means of Laser Aggregometry, Flow Cytometry, and Optical Tweezers Combined with Microfluidics
Author(s): Semenov, Alexey N.
Lugovtsov, Andrei E.
Shirshin, Evgeny A.
Yakimov, Boris P.
Ermolinskiy, Petr B.
Bikmulina, Polina Y.
Kudryavtsev, Denis S.
Timashev, Peter S.
Muravyov, Alexei V.
Wagner, Christian
Shin, Sehyun
Priezzhev, Alexander V.
Language: English
Title: Biomolecules
Volume: 10
Issue: 10
Publisher/Platform: MDPI
Year of Publication: 2020
Free key words: fibrinogen macromolecules
RBC membrane
optical (laser) tweezers
flow cytometry
glycoproteins IIbIIIa inhibition
microfluidics
DDC notations: 500 Science
530 Physics
600 Technology
Publikation type: Journal Article
Abstract: An elevated concentration of fibrinogen in blood is a significant risk factor during many pathological diseases, as it leads to an increase in red blood cells (RBC) aggregation, resulting in hemorheological disorders. Despite the biomedical importance, the mechanisms of fibrinogen-induced RBC aggregation are still debatable. One of the discussed models is the non-specific adsorption of fibrinogen macromolecules onto the RBC membrane, leading to the cells bridging in aggregates. However, recent works point to the specific character of the interaction between fibrinogen and the RBC membrane. Fibrinogen is the major physiological ligand of glycoproteins receptors IIbIIIa (GPIIbIIIa or αIIββ3 or CD41/CD61). Inhibitors of GPIIbIIIa are widely used in clinics for the treatment of various cardiovascular diseases as antiplatelets agents preventing the platelets’ aggregation. However, the effects of GPIIbIIIa inhibition on RBC aggregation are not sufficiently well studied. The objective of the present work was the complex multimodal in vitro study of the interaction between fibrinogen and the RBC membrane, revealing the role of GPIIbIIIa in the specificity of binding of fibrinogen by the RBC membrane and its involvement in the cells’ aggregation process. We demonstrate that GPIIbIIIa inhibition leads to a significant decrease in the adsorption of fibrinogen macromolecules onto the membrane, resulting in the reduction of RBC aggregation. We show that the mechanisms underlying these effects are governed by a decrease in the bridging components of RBC aggregation forces.
DOI of the first publication: 10.3390/biom10101448
Link to this record: urn:nbn:de:bsz:291--ds-325626
hdl:20.500.11880/30453
http://dx.doi.org/10.22028/D291-32562
ISSN: 2218-273X
Date of registration: 26-Jan-2021
Description of the related object: Supplementary Materials
Related object: http://www.mdpi.com/2218-273X/10/10/1448/s1
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Physik
Professorship: NT - Prof. Dr. Christian Wagner
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
biomolecules-10-01448-v2.pdf2,81 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons