Please use this identifier to cite or link to this item: doi:10.22028/D291-29365
Title: Systematic Assessment of Blood-Borne MicroRNAs Highlights Molecular Profiles of Endurance Sport and Carbohydrate Uptake
Author(s): Kern, Fabian
Ludwig, Nicole
Backes, Christina
Maldener, Esther
Fehlmann, Tobias
Suleymanov, Artur
Meese, Eckart
Hecksteden, Anne
Keller, Andreas
Meyer, Tim
Language: English
Title: Cells
Volume: 8
Issue: 9
Publisher/Platform: MDPI
Year of Publication: 2019
Free key words: microRNA
physical exercising
circulating biomarker
homeostasis
randomized cross-over study
microarray
glucose nutrition
full-blood measurements
sncRNAs
DDC notations: 004 Computer science, internet
300 Social sciences, sociology, anthropology
510 Mathematics
610 Medicine and health
796 Sports
Publikation type: Journal Article
Abstract: Multiple studies endorsed the positive effect of regular exercise on mental and physical health. However, the molecular mechanisms underlying training-induced fitness in combination with personal life-style remain largely unexplored. Circulating biomarkers such as microRNAs (miRNAs) offer themselves for studying systemic and cellular changes since they can be collected from the bloodstream in a low-invasive manner. In Homo sapiens miRNAs are known to regulate a substantial number of protein-coding genes in a post-transcriptional manner and hence are of great interest to understand differential gene expression profiles, offering a cost-effective mechanism to study molecular training adaption, and connecting the dots from genomics to observed phenotypes. Here, we investigated molecular expression patterns of 2549 miRNAs in whole-blood samples from 23 healthy and untrained adult participants of a cross-over study, consisting of eight weeks of endurance training, with several sessions per week, followed by 8 weeks of washout and another 8 weeks of running, using microarrays. Participants were randomly assigned to one of the two study groups, one of which administered carbohydrates before each session in the first training period, and switching the treatment group for the second training period. During running sessions clinical parameters as heartbeat frequency were recorded. This information was extended with four measurements of maximum oxygen uptake (VO2 max) for each participant. We observed that multiple circulating miRNAs show expression changes after endurance training, leveraging the capability to separate the blood samples by training status. To this end, we demonstrate that most of the variance in miRNA expression can be explained by both common and known biological and technical factors. Our findings highlight six distinct clusters of miRNAs, each exhibiting an oscillating expression profile across the four study timepoints, that can effectively be utilized to predict phenotypic VO2 max levels. In addition, we identified miR-532-5p as a candidate marker to determine personal alterations in physical training performance on a case-by-case analysis taking the influence of a carbohydrate-rich nutrition into account. In literature, miR-532-5p is known as a common down-regulated miRNA in diabetes and obesity, possibly providing a molecular link between cellular homeostasis, personal fitness levels, and health in aging. We conclude that circulating miRNA expression can be altered due to regular endurance training, independent of the carbohydrate (CHO) availability in the training timeframe. Further validation studies are required to confirm the role of exercise-affected miRNAs and the extraordinary function of miR-532-5p in modulating the metabolic response to a high availability of glucose.
DOI of the first publication: 10.3390/cells8091045
Link to this record: urn:nbn:de:bsz:291--ds-293657
hdl:20.500.11880/30025
http://dx.doi.org/10.22028/D291-29365
ISSN: 2073-4409
Date of registration: 16-Nov-2020
Description of the related object: Supplementary Materials
Related object: http://www.mdpi.com/2073-4409/8/9/1045/s1
Faculty: M - Medizinische Fakultät
ZE - Zentrale Einrichtungen
Department: M - Humangenetik
M - Medizinische Biometrie, Epidemiologie und medizinische Informatik
M - Sport- und Präventivmedizin
ZE - Zentrum für Bioinformatik(ZBI)
ZE - Zentrum für Human- und Molekularbiologie (ZHMB)
Professorship: M - Prof. Dr. Eckhart Meese
M - Prof. Dr. Tim Meyer
M - Keiner Professur zugeordnet
ZE - Sonstige
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
cells-08-01045-v2.pdf1,66 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons