Please use this identifier to cite or link to this item: doi:10.22028/D291-32534
Title: Supporting lay users in privacy decisions when sharing sensitive data
Author(s): Raber, Frederic Christian
Language: English
Year of Publication: 2020
DDC notations: 004 Computer science, internet
Publikation type: Doctoral Thesis
Abstract: The first part of the thesis focuses on assisting users in choosing their privacy settings, by using machine learning to derive the optimal set of privacy settings for the user. In contrast to other work, our approach uses context factors as well as individual factors to provide a personalized set of privacy settings. The second part consists of a set of intelligent user interfaces to assist the users throughout the complete privacy journey, from defining friend groups that allow targeted information sharing; through user interfaces for selecting information recipients, to find possible errors or unusual settings, and to refine them; up to mechanisms to gather in-situ feedback on privacy incidents, and investigating how to use these to improve a user’s privacy in the future. Our studies have shown that including tailoring the privacy settings significantly increases the correctness of the predicted privacy settings; whereas the user interfaces have been shown to significantly decrease the amount of unwanted disclosures.
Insbesondere nach den jüngsten Datenschutzskandalen in sozialen Netzwerken wird der Datenschutz für Benutzer immer wichtiger. Obwohl die meisten Benutzer behaupten Wert auf Datenschutz zu legen, verhalten sie sich online allerdings völlig anders: Sie lassen die meisten Datenschutzeinstellungen der online genutzten Dienste, wie z. B. von sozialen Netzwerken oder Diensten zur Standortfreigabe, unberührt und passen sie nicht an ihre Datenschutzanforderungen an. In dieser Arbeit werde ich einen Ansatz zur Lösung dieses Problems vorstellen, der auf zwei verschiedenen Säulen basiert. Der erste Teil konzentriert sich darauf, Benutzer bei der Auswahl ihrer Datenschutzeinstellungen zu unterstützen, indem maschinelles Lernen verwendet wird, um die optimalen Datenschutzeinstellungen für den Benutzer abzuleiten. Im Gegensatz zu anderen Arbeiten verwendet unser Ansatz Kontextfaktoren sowie individuelle Faktoren, um personalisierte Datenschutzeinstellungen zu generieren. Der zweite Teil besteht aus einer Reihe intelligenter Benutzeroberflächen, die die Benutzer in verschiedene Datenschutzszenarien unterstützen. Dies beginnt bei einer Oberfläche zur Definition von Freundesgruppen, die im Anschluss genutzt werden können um einen gezielten Informationsaustausch zu ermöglichen, bspw. in sozialen Netzwerken; über Benutzeroberflächen um die Empfänger von privaten Daten auszuwählen oder mögliche Fehler oder ungewöhnliche Datenschutzeinstellungen zu finden und zu verfeinern; bis hin zu Mechanismen, um In-Situ- Feedback zu Datenschutzverletzungen zum Zeitpunkt ihrer Entstehung zu sammeln und zu untersuchen, wie diese verwendet werden können, um die Privatsphäreeinstellungen eines Benutzers anzupassen. Unsere Studien haben gezeigt, dass die Verwendung von individuellen Faktoren die Korrektheit der vorhergesagten Datenschutzeinstellungen erheblich erhöht. Es hat sich gezeigt, dass die Benutzeroberflächen die Anzahl der Fehler, insbesondere versehentliches Teilen von Daten, erheblich verringern.
Link to this record: urn:nbn:de:bsz:291--ds-325340
hdl:20.500.11880/29904
http://dx.doi.org/10.22028/D291-32534
Advisor: Krüger, Antonio
Date of oral examination: 23-Sep-2020
Date of registration: 27-Oct-2020
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Prof. Dr. Antonio Krüger
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
main.pdfMain article27,48 MBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.