Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-32338
Titel: | Semi-discrete iteration methods in x-ray tomography |
VerfasserIn: | Vogelgesang, Jonas |
Sprache: | Englisch |
Erscheinungsjahr: | 2020 |
Freie Schlagwörter: | x-ray tomography semi-discrete iteration methods iterative reconstruction Landweber-Kaczmarz method Kaczmarz method basis functions Lewitt Blob basis function |
DDC-Sachgruppe: | 510 Mathematik |
Dokumenttyp: | Dissertation |
Abstract: | The goal of computerized tomography is to gain knowledge about the inner structure of an object by non-invasive resp.~non-destructive measurements. Therefore, X-rays are sent through the object to be inspected and the decrease in intensity of the rays after leaving the object is measured. Despite a large number of extensively studied methods for the reconstruction of the measured data exists, they can only be used to a limited extent in many practical applications due to non-regular measurement geometries or incomplete data. For the systematic investigation of this problem, iterative methods based on a semi-discrete operator model are proposed. These methods, in particular the semi-discrete Landweber-Kaczmarz method and the semi-discrete Kaczmarz method, are investigated in a general setting for solving systems of linear operator equations. Subsequently, the presented methods are applied to the reconstruction problem in CT and verified by numerical simulations with synthetic and measured data. Particularly Voxel and generalized Kaiser-Bessel window functions (Lewitt-Blobs) are investigated as possible basis functions. Finally, the incorporation of a priori information in the operator model is considered and the SART (Simultaneous Algebraic Reconstruction Technique) is discussed as a special case of the semi-discrete iteration methods.The goal of computerized tomography is to gain knowledge about the inner structure of an object by non-invasive resp.~non-destructive measurements. Therefore, X-rays are sent through the object to be inspected and the decrease in intensity of the rays after leaving the object is measured. Despite a large number of extensively studied methods for the reconstruction of the measured data exists, they can only be used to a limited extent in many practical applications due to non-regular measurement geometries or incomplete data. For the systematic investigation of this problem, iterative methods based on a semi-discrete operator model are proposed. These methods, in particular the semi-discrete Landweber-Kaczmarz method and the semi-discrete Kaczmarz method, are investigated in a general setting for solving systems of linear operator equations. Subsequently, the presented methods are applied to the reconstruction problem in CT and verified by numerical simulations with synthetic and measured data. Particularly Voxel and generalized Kaiser-Bessel window functions (Lewitt-Blobs) are investigated as possible basis functions. Finally, the incorporation of a priori information in the operator model is considered and the SART (Simultaneous Algebraic Reconstruction Technique) is discussed as a special case of the semi-discrete iteration methods. Das Ziel der Computertomographie (CT) ist es, durch nicht-invasives bzw. zerstörungsfreies Messen Erkenntnisse über die innere Struktur eines Objekts zu gewinnen. Dabei werden Röntgenstrahlen durch das zu inspizierende Objekt geschickt und die Intensitätsabnahme der Strahlen nach Verlassen des Objekts gemessen. Trotz einer Vielzahl an umfassend untersuchten Methoden zur Rekonstruktion der gemessenen Daten, können diese in vielen praktischen Anwendungen aufgrund nicht-regulärer Messgeometrien oder unvollständigen Daten nur begrenzt eingesetzt werden. Zur systematischen Untersuchung dieser Problemstellung werden in dieser Arbeit iterative Verfahren auf der Basis eines semi-diskreten Operatormodells vorgestellt. Diese Verfahren, im Speziellen das semi-diskrete Landweber-Kaczmarz Verfahren und das semi-diskrete Kaczmarz Verfahren, werden zunächst in einem allgemeinen Rahmen zur Lösung von Systemen linearer Operatorgleichungen untersucht. Anschließend werden die vorgestellten Verfahren auf das Rekonstruktionsproblem in der CT angewandt und durch numerische Simulationen mit synthetischen und gemessenen Daten verifiziert. Dabei werden speziell Voxel und verallgemeinerte Kaiser-Bessel Fensterfunktionen (Lewitt-Blobs) als mögliche Basisfunktionen untersucht. Abschließend wird die Einbeziehung von a priori Informationen in das Operatormodell betrachtet und das SART (Simultaneous Algebraic Reconstruction Technique) als Spezialfall der semi-diskreten Iterationsverfahren diskutiert.Das Ziel der Computertomographie (CT) ist es, durch nicht-invasives bzw. zerstörungsfreies Messen Erkenntnisse über die innere Struktur eines Objekts zu gewinnen. Dabei werden Röntgenstrahlen durch das zu inspizierende Objekt geschickt und die Intensitätsabnahme der Strahlen nach Verlassen des Objekts gemessen. Trotz einer Vielzahl an umfassend untersuchten Methoden zur Rekonstruktion der gemessenen Daten, können diese in vielen praktischen Anwendungen aufgrund nicht-regulärer Messgeometrien oder unvollständigen Daten nur begrenzt eingesetzt werden. Zur systematischen Untersuchung dieser Problemstellung werden in dieser Arbeit iterative Verfahren auf der Basis eines semi-diskreten Operatormodells vorgestellt. Diese Verfahren, im Speziellen das semi-diskrete Landweber-Kaczmarz Verfahren und das semi-diskrete Kaczmarz Verfahren, werden zunächst in einem allgemeinen Rahmen zur Lösung von Systemen linearer Operatorgleichungen untersucht. Anschließend werden die vorgestellten Verfahren auf das Rekonstruktionsproblem in der CT angewandt und durch numerische Simulationen mit synthetischen und gemessenen Daten verifiziert. Dabei werden speziell Voxel und verallgemeinerte Kaiser-Bessel Fensterfunktionen (Lewitt-Blobs) als mögliche Basisfunktionen untersucht. Abschließend wird die Einbeziehung von a priori Informationen in das Operatormodell betrachtet und das SART (Simultaneous Algebraic Reconstruction Technique) als Spezialfall der semi-diskreten Iterationsverfahren diskutiert. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-323385 hdl:20.500.11880/29768 http://dx.doi.org/10.22028/D291-32338 |
Erstgutachter: | Louis, Alfred K. |
Tag der mündlichen Prüfung: | 26-Jun-2020 |
Datum des Eintrags: | 29-Sep-2020 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Mathematik |
Professur: | MI - Keiner Professur zugeordnet |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
dissertation_published_2020-09-23.pdf | Dissertation | 4,86 MB | Adobe PDF | Öffnen/Anzeigen |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.