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Abstract

The goal of computerized tomography is to gain knowledge about the inner structure of an object by
non-invasive resp. non-destructive measurements. Therefore, X-rays are sent through the object to
be inspected and the decrease in intensity of the rays after leaving the object is measured. Despite a
large number of extensively studied methods for the reconstruction of the measured data exists, they
can only be used to a limited extent in many practical applications due to non-regular measurement
geometries or incomplete data. For the systematic investigation of this problem, iterative methods
based on a semi-discrete operator model are proposed. These methods, in particular the semi-
discrete Landweber-Kaczmarz method and the semi-discrete Kaczmarz method, are investigated
in a general setting for solving systems of linear operator equations. Subsequently, the presented
methods are applied to the reconstruction problem in CT and verified by numerical simulations with
synthetic and measured data. Particularly Voxel and generalized Kaiser-Bessel window functions
(Lewitt-Blobs) are investigated as possible basis functions. Finally, the incorporation of a priori infor-
mation in the operator model is considered and the SART (Simultaneous Algebraic Reconstruction
Technique) is discussed as a special case of the semi-discrete iteration methods.
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Zusammenfassung

Das Ziel der Computertomographie (CT) ist es, durch nicht-invasives bzw. zerstörungsfreies Messen
Erkenntnisse über die innere Struktur eines Objekts zu gewinnen. Dabei werden Röntgenstrah-
len durch das zu inspizierende Objekt geschickt und die Intensitätsabnahme der Strahlen nach
Verlassen des Objekts gemessen. Trotz einer Vielzahl an umfassend untersuchten Methoden zur
Rekonstruktion der gemessenen Daten, können diese in vielen praktischen Anwendungen aufgrund
nicht-regulärer Messgeometrien oder unvollständigen Daten nur begrenzt eingesetzt werden. Zur
systematischen Untersuchung dieser Problemstellung werden in dieser Arbeit iterative Verfahren
auf der Basis eines semi-diskreten Operatormodells vorgestellt. Diese Verfahren, im Speziellen das
semi-diskrete Landweber-Kaczmarz Verfahren und das semi-diskrete Kaczmarz Verfahren, werden
zunächst in einem allgemeinen Rahmen zur Lösung von Systemen linearer Operatorgleichungen
untersucht. Anschließend werden die vorgestellten Verfahren auf das Rekonstruktionsproblem in
der CT angewandt und durch numerische Simulationen mit synthetischen und gemessenen Da-
ten verifiziert. Dabei werden speziell Voxel und verallgemeinerte Kaiser-Bessel Fensterfunktionen
(Lewitt-Blobs) als mögliche Basisfunktionen untersucht. Abschließend wird die Einbeziehung von
a priori Informationen in das Operatormodell betrachtet und das SART (Simultaneous Algebraic
Reconstruction Technique) als Spezialfall der semi-diskreten Iterationsverfahren diskutiert.
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Chapter 1

Introduction

Computerized Tomography (CT) is a very important imaging modality in analyzing the inner struc-
ture of a certain object without damaging the inspected specimen. In medical imaging, CT ap-
plications provide powerful non-invasive techniques to have insights in the human body, e.g. to
create diagnoses without the need of surgery, as a preliminary step or even during surgeries. In
non-destructive testing (NDT), a possible application could be the determination of porosity and
air inclusions in the inspected specimen [Hah+13], determining cracks in printed circuit boards
[VS16], fibers in fiber-reinforced plastics [VS17] production, etc.

Typically, a CT measurement setup in NDT consists of the X-ray source and the X-ray detector serving
as the counterpart measuring the X-ray intensity. Most likely, a rotation table is located between the
source and the detector. During the measurement X-rays are sent from the X-ray source through
the object which is placed on the rotation table to the detector measuring the intensity. Knowing
the initial intensity of the rays at the X-ray source the intensity loss can be determined. Some
applications suffer from incomplete data caused by the dimensions of the inspected object. For
example large objects or high magnification ratios prevent a full rotation of the object due to a risk
of collision with the scanning device. Moreover, some applications make it also inevitable to use
a different scanning setup as for example the inspection of large objects with extremely differing
diameters in transversal and longitudinal direction. A more general but related scanning setup is
used in Computed Laminography (CL). In contrast to the CT scanning setup, the central ray of the
CL scanning device is not perpendicular to the rotation axis of the object. Per definition this concept
leads to limited data problems.

Mathematically, these applications need a special treatment since many conventional methods
are not readily applicable, for example due to the non-regularity of the utilized scanning curves,
extremely under-determined problems [SM13], and so on. A quite widely used approach is to
model the underlying scanning process as a fully-discretized matrix vector multiplication with a
matrix 𝐴 describing the scanning procedure. The arising finite-dimensional linear system

𝐴𝑥 = 𝑏

is then solved for some measured data described by the vector 𝑏. Classical methods to solve these
finite dimensional linear systems are for example the algebraic reconstruction techniques with its
presumably most prominent example ART (Algebraic Reconstruction Technique) [GBH70], some-
times also referred to as Kaczmarz iteration, and the SART (Simultaneous Algebraic Reconstruction
Technique) [AK84]. In general, these methods yield good results and being extremely flexible to
handle thus allowing to incorporate additional or prior knowledge into the reconstruction process.
Though, a drawback of this fully-discretized model is the loss of the structure of the underlying
problem and analytical properties of the underlying operator.

In this thesis, we propose a semi-discrete framework to overcome these drawbacks but keep the
flexibility of the iteration methods. Our approach consists of three parts as follows:

1



Chapter 1: Introduction

(i) A semi-discrete data model,

(ii) formulating a semi-discrete reconstruction problem and

(iii) solving the semi-discrete problem iteratively.

Step (ii) and (iii) will be referred to as semi-discrete iteration methods. In the following, these steps
are briefly explained.

Semi-discrete data model

The problem describing the reconstruction process is classically formulated as

A 𝑓 = 𝑔

where A describes the continuous model such as the Radon transform, the X-ray transform or
the Cone Beam transform and the right-hand side 𝑔 denotes the data. For applying analytical
methods [Lou16], methods of filtered back-projection type as the FDK [FDK84] or the method of
the approximate inverse, cf. [Lou03] and [LWT08], the data 𝑔 is usually assumed to be continuous
on the detector. Moreover, there must be certain conditions on the data acquisition fulfill such as the
Tuy condition [Tuy83] or the Louis condition [Lou16]. In limited data applications, in particular the
CL applications, these conditions are not fulfilled. On the other side of the reconstruction method
spectrum there are the algebraic methods or iterative methods based on fully-discrete data.

We will proceed with an approach that assumes the data 𝑔 to be given for a discrete set of X-ray
source positions but continuously on the detector. For the scanning system above, we assume that
the data is given as

𝑔(𝑎𝑖, 𝜂𝑙) for {𝑎𝑖}𝑖∈𝐼 ⊂ Γ and {𝜂𝑙}𝑙 ⊂ 𝐸𝑎𝑖

where Γ usually denotes a great circle describing the positions of the X-ray source and 𝐸𝑎𝑖 denotes
the detector in dependence of the X-ray source positions 𝑎𝑖, 𝑖 ∈ 𝐼. Throughout the thesis, 𝐼 is of
finite dimension. Our data model will be as follows: Instead of a prescribed path on a curve Γ we
assume that the data is given for arbitrary discrete source positions 𝑎𝑖 ∈ R3. At the same time, we
assume that the data is given continuously on the detector. This yields a system of linear operator
equations,

A𝑖 𝑓 = 𝑔𝑖 𝑖 ∈ 𝐼

with 𝑔𝑖 (𝜂) B 𝑔(𝑎𝑖, 𝜂). In other words, every X-ray source position is considered as a separately taken
measurement. On one hand, we obtain a model which is completely independent of a given source
curve Γ but on the other hand still includes the characteristics of the underlying transforms.

Semi-discrete operator model

In a second step, we consider a semi-discrete model of the operators A𝑖 by approximating the
elements in the solution space, i.e., the operator domain by a finite dimensional space. In particular,
these finite dimensional spaces are generated by a set of locally supported basis functions {𝑏 𝑗} 𝑗∈𝐽
such that

𝑓 ≈
∑︁
𝑗

𝑓 𝑗𝑏 𝑗. (1.1)

2



Chapter 1: Introduction

Due to the linearity of the considered operators A, the operator can immediately be transferred to
the basis functions

A 𝑓 ≈
∑︁
𝑗

𝑓 𝑗A𝑏 𝑗

such that we obtain a mapping on the coefficient space of the basis representation (1.1). In the
context of this thesis there are two important basis functions:

(i) Voxel basis function (characteristic function),

(ii) Lewitt-Blob basis function (Generalized Kaiser-Bessel windows functions), cf. [Lew90].

Whereas the Voxel (resp. Pixel) basis function describes the classical image basis, being orthogonal
and providing fast algorithms for its use in image reconstruction and computer graphics, the Blob
basis function is designed and optimized for the application in image reconstruction problems, being
rotationally invariant and providing closed formulas for its forward transform.

Iterative methods

We discuss iterative methods within this semi-discrete framework and their application in X-ray
tomography. These iteration methods will basically consist of computing a virtual projection by
applying the forward operator 𝑨𝑖, and a correction step with applying a backward operator Ψ𝑖,

𝒇𝑚+1 = 𝒇𝑚 + Ψ𝑖

(
𝑔𝑖 − 𝑨𝑖 𝒇

𝑚
)

𝑖 ∈ 𝐼.

In particular, the

(i) the Kaczmarz method and

(ii) the Landweber–Kaczmarz method

will be considered. The Kaczmarz method, originally formulated in [Kac37] in the context of solving
systems of linear equations in finite dimensions, has been found to be a powerful method in image
reconstruction from tomographic data. It was independently introduced in image reconstruction by
[GBH70] as the Algebraic Reconstruction Technique (ART) for solving the fully discretized integral
equation and by [Hou73] where it served as reconstruction method in the first commercially avail-
able CT scanners (for more detailed information on Kaczmarz’ method in image reconstruction, we
refer to [Nat01] and the references therein). The Kaczmarz method will be defined for a positive
relaxation factor 𝜆𝑘 > 0 by the backward operator

Ψ𝑘 B 𝜆𝑘𝑨
+
𝑘 .

Using theorem 2.21 the backward operator can be written as Ψ
𝑘
= 𝜆𝑘𝑨

∗
𝑘
(𝑨

𝑘
𝑨∗
𝑘
)+ and particularly

Ψ
𝑘
= 𝜆𝑘𝑨

∗
𝑘
(𝑨

𝑘
𝑨∗
𝑘
)−1 for surjective operators 𝑨

𝑘
. The classical defintion of the Kaczmarz method as

used in [Nat01] and [NW01] thus coincides with the presented backward operator Ψ
𝑘
.

The Landweber-Kaczmarz method was proposed in the context of non-linear inverse problems in
[KS02]. The backward operators Ψ𝑘 are given by

Ψ𝑘 B 𝜆𝑘𝑨
∗
𝑘

for some positive relaxation factor 𝜆𝑘 > 0. The reconstruction problem is processed cyclically as it
is done for the classical Kaczmarz method.

3



Chapter 1: Introduction

Necessary mathematical basics and results for the studies presented in this thesis are introduced
in chapter 2. In particular, the fixed-point theory going back to Banach is introduced being a main
argument in the convergence analysis of the proposed semi-discrete iteration methods. Further, the
concept of weighted Hilbert spaces and the generalized inverse is introduced. Both concepts repre-
sent a major part of the semi-discrete framework which is introduced in chapter 4 and chapter 5.

In chapter 3, the definition of the classical Radon transform and the X-Ray transform and its closely
related Cone Beam transforms for a fixed X-Ray source position resp. direction are recalled. We
study the boundedness of the mentioned transforms with respect to weighted Hilbert spaces figuring
out similarities for all these transforms.

The main theoretical concept of this work namely the semi-discrete iteration methods is introduced
and analyzed in chapter 4 and chapter 5. Assuming the semi-discrete data model throughout the
rest of this thesis, the semi-discrete iteration methods consist of two parts:

(i) The semi-discrete model is introduced and discussed in chapter 4. The approximation and
convergence properties are analyzed in the context of the least-squares projection method.

(ii) An iteration scheme based on the semi-discrete forward operator and a backward operator is
introduced in chapter 5. The convergence properties are investigated under general assump-
tions on the backward operator. In particular, the semi-discrete Landweber-Kaczmarz and the
semi-discrete Kaczmarz methods are introduced and analyzed.

This concept is applied to X-Ray tomography in chapter 6. Based on the Voxel and the Lewitt-Blob
basis a semi-discrete model for the application in X-Ray tomography is proposed and approximation
properties investigated. The semi-discrete iteration methods are applied to the reconstruction
problem for parallel scanning geometries and Cone Beam geometries with flat detectors, respectively,
and convergence is shown. Finally, the iteration methods are applied for the parallel geometry to
synthetic data generated for the Shepp-Logan head phantom [SL74] and measured data from a
Synchrotron application. For the Cone Beam geometry the semi-discrete Landweber-Kaczmarz
method is applied to measured data of a walnut [Häm+15a; Häm+15b].

Publications

The following articles were published during the work on this thesis.

[VS16] J. Vogelgesang and C. Schorr. “A Semi-Discrete Landweber-Kaczmarz Method for
Cone Beam Tomography and Laminography Exploiting Geometric Prior Information”.
Sensing and Imaging 17(1), 2016.

[Tra+17] P. Trampert, J. Vogelgesang, C. Schorr, M. Maisl, S. Bogachev, N. Marniok, A. Louis, T.
Dahmen, and P. Slusallek. “Spherically symmetric volume elements as basis functions
for image reconstructions in computed laminography”. Journal of X-Ray Science and
Technology 25(4): 533–546, 2017.

[VS17] J. Vogelgesang and C. Schorr. “Iterative Region-of-Interest Reconstruction from Lim-
ited Data Using Prior Information”. Sensing and Imaging 18(1), 2017.

[Vog19] J. Vogelgesang. “A semi-discrete iteration method in X-ray tomography”. Oberwolfach
Reports., 2019.
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Chapter 2

Mathematical Preliminaries

2.1 The Fourier transform

In this section, we briefly introduce the Fourier transform on the space of square-integrable functions
𝐿2(R𝑑). The Fourier transform will play an important role in the analysis of the approximation
quality of the basis functions and thus their efficiency. We will first have a short look at the Bessel
function 𝐽𝜈 of the first kind and the modified Bessel function 𝐼𝜈 of the first kind. Both functions are
intensively studied in literature and play an enormously important role in mathematical physics.
In this thesis, the Bessel function appears as a key feature in the definition of the generalized
Kaiser-Bessel window functions (Lewitt-Blobs) and the computation of their Fourier transform. As
a general references for Bessel functions we give [AS65], [Wat95] and [AW05], for the Fourier
transform we give [Wer18] and [Sne95]. The use of Bessel functions and the Fourier transform in
the context of Computerized Tomography can be found in [Nat01].

Definition 2.1 (cf. [AS65, 9.6.10]). Let 𝜈 ∈ R. The Bessel function (of the first kind) of the order 𝜈 is
defined by the convergent series

𝐽𝜈(𝑥) =
( 𝑥
2

)𝜈 ∞∑︁
𝑙=0

(−1) 𝑙

𝑙! Γ(𝜈 + 𝑙 + 1)

( 𝑥
2

)2𝑙

and the modified Bessel function (of the first kind) of the order 𝜈 by

𝐼𝜈(𝑥) =
( 𝑥
2

)𝜈 ∞∑︁
𝑙=0

1
𝑙! Γ(𝜈 + 𝑙 + 1)

( 𝑥
2

)2𝑙
.

We obtain the following properties of the Bessel function and the modified Bessel function.

Lemma 2.2. (i) Let 𝑚 ∈ Z and 𝜈 ∈ R. It holds

𝐽−𝑚 (𝑧) = (−1)𝑚𝐽𝑚 (𝑧) and 𝐽𝜈(𝑖𝑧) = 𝑖𝜈 𝐼𝜈(𝑧).

(ii) Let 𝑑 ∈ N \ {0}
𝐽 𝑑

2−1

(
‖𝑥‖

)
= (2𝜋)− 𝑑

2 ‖𝑥‖
𝑑
2−1

∫
S𝑑−1

e𝑖𝑥
>𝜔 𝑑𝜔.

Proof. (i) See [AS65, Eqn. 9.1.5] and [AS65, Eqn. 9.6.3].

5



Chapter 2: Mathematical Preliminaries

(ii) The result can be shown using the identity∫
S𝑑−1

e𝑖𝜎𝜃
>𝜔 𝑌𝑙 (𝜔) 𝑑𝜔 = (2𝜋) 𝑑2 𝑖𝑙 𝜎−( 𝑑2−1) 𝐽𝑙+ 𝑑

2−1(𝜎) 𝑌𝑙 (𝜃) 𝜃 ∈ S𝑑−1

as stated in [Nat01, VII, Eqn. (3.19)] where 𝑌𝑙 denotes spherical harmonics of degree 𝑙, see
e.g. [Mül66; AW05]. For 𝑙 = 0 it holds 𝑌0 = 1 and thus

𝐽 𝑑
2−1(𝜎) = (2𝜋)− 𝑑

2 𝜎( 𝑑2−1)
∫
S𝑑−1

e𝑖𝜎𝜃
>𝜔 𝑑𝜔.

For 𝑥 B 𝜎𝜃, 𝜎 = ‖𝑥‖ , follows the result.

Lemma 2.3. (i) (Sonine’s first finite integral). Let 𝑚 ∈ N0. It holds,(
2𝑧
𝜋

) 1
2
∫ 𝜋

2

0
𝐽𝑚 (𝑧 sin 𝜃) sin𝑚+1 𝜃 𝑑𝜃 = 𝐽𝑚+ 1

2
(𝑧)

and (
2𝑧
𝜋

) 1
2
∫ 𝜋

2

0
𝐼𝑚 (𝑧 sin 𝜃) sin𝑚+1 𝜃 𝑑𝜃 = 𝐼𝑚+ 1

2
(𝑧).

(ii) (Sonine’s second finite integral). Let Re(𝜇),Re(𝜈) > −1. It holds,∫ 𝜋
2

0
cos𝜈+1 𝜃 sin𝜇+1 𝜃 𝐽𝜇 (𝑧 sin 𝜃) 𝐽𝜈(𝑍 cos 𝜃) 𝑑𝜃 =

𝑧𝜇𝑍𝜈𝐽𝜇+𝜈+1
(√
𝑍2 + 𝑧2

)(√
𝑍2 + 𝑧2

)𝜇+𝜈+1 .

Proof. (i) Putting 𝜇 = −𝑚, we obtain(
2𝑧
𝜋

) 1
2
∫ 𝜋

2

0
𝐽−𝑚 (𝑧 sin 𝜃) sin𝑚+1 𝜃 𝑑𝜃 = H−(𝑚+ 1

2 )
(𝑧)

from lemma 2.2(i) and [Wat95, 12.11, p. 374, Eqn. (3)]. H𝜈 denotes the Struve function,
cf. [AS65, Chapt. 12]. With the identity

H−(𝑚+ 1
2 )
(𝑧) = (−1)𝑚𝐽𝑚+ 1

2
(𝑧)

from [AS65, Eqn. 12.1.15] and lemma 2.2 follows Sonine’s first finite integral.

(ii) See [Wat95, 12.13, p. 376, Eqn. (1)].

Definition 2.4. The Fourier Transform of 𝑓 ∈ S (R𝑑) is defined as

F 𝑓 (𝜉) = 𝑓 (𝜉) = (2𝜋)−
𝑑
2

∫
R𝑑

𝑓 (𝑥) e−𝑖𝑥
>𝜉 𝑑𝑥.
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Theorem 2.5 ([Wer18, Thm. V.2.8]). The Fourier transform F : S (R𝑑) → S (R𝑑) is a bijection with

F−1 𝑓 (𝑥) = (2𝜋)−
𝑑
2

∫
R𝑑

𝑓 (𝜉) e𝑖𝑥
>𝜉 𝑑𝜉.

Further,
〈 𝑓 , 𝑔〉𝐿2 (R𝑑 ) = 〈 𝑓 , 𝑔〉𝐿2 (R𝑑 ) ∀ 𝑓 , 𝑔, ∈ S (R𝑑).

Based on the denseness of the Schwartz space S (R) in 𝐿2(R𝑑), cf. [Wer18, Lem. V.1.10], the Fourier
transform can be continued due to Plancharel’s equation as an isometry on 𝐿2(R𝑑), i.e.,

〈 𝑓 , 𝑔〉𝐿2 (R𝑑 ) = 〈 𝑓 , 𝑔〉𝐿2 (R𝑑 ) ∀ 𝑓 , 𝑔, ∈ 𝐿2(R𝑑).

In the following, we will identify the Fourier transform with its continuation on 𝐿2(R𝑑).

Lemma 2.6. The Fourier transform of a rotationally symmetric function 𝑓 ∈ 𝐿2(R𝑑) is computed as

𝑓 (𝜉) = ‖𝜉‖1− 𝑑
2

∫ ∞

0
𝑟
𝑑
2 𝑓 (𝑟)𝐽 𝑑

2−1(𝑟‖𝜉‖) 𝑑𝑟.

The Fourier transform 𝑓 is again rotationally symmetric.

Proof. Let 𝑓 ∈ 𝐿2(R𝑑) be rotationally symmetric. It

𝑓 (𝜉) = (2𝜋)− 𝑑
2

∫
R𝑑

𝑓 (𝑥) e−𝑖𝑥
>𝜉 𝑑𝑥

= (2𝜋)− 𝑑
2

∫ ∞

0

∫
S𝑑−1

𝑓 (𝑟) e−𝑖𝑟𝜃
>𝜉 𝑟𝑑−1 𝑑𝜃 𝑑𝑟

= (2𝜋)− 𝑑
2

∫ ∞

0
𝑟𝑑−1 𝑓 (𝑟)

∫
S𝑑−1

e−𝑖𝑟𝜃
>𝜉 𝑑𝜃 𝑑𝑟

=

∫ ∞

0
𝑟𝑑−1 𝑓 (𝑟) (𝑟‖𝜉‖)−( 𝑑2−1) 𝐽 𝑑

2−1(𝑟‖𝜉‖) 𝑑𝑟

= ‖𝜉‖1− 𝑑
2

∫ ∞

0
𝑟
𝑑
2 𝑓 (𝑟)𝐽 𝑑

2−1(𝑟‖𝜉‖) 𝑑𝑟

where we used the identity of lemma 2.2(ii).

Remark. The Fourier transform of a rotationally symmetric function 𝑓 ∈ 𝐿2(R𝑑) is closely related to
the Hankel transform defined by

𝐻𝜈 𝑓 (𝜌) =
∫ ∞

0
𝑟 𝑓 (𝑟)𝐽𝜈(𝜌𝑟) 𝑑𝑟,

cf. [Sne95, Sec. 10]. In two dimensions, i.e. 𝑑 = 2, the Fourier transform is equal to the Hankel
transform 𝐻0 𝑓 of order 0, cf. [Sne95, Sec. 11].
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2.2 Banach’s fixed-point theorem

The classical fixed-point theorem of Banach and the closely related theorem of C. Neumann play
both an important role for the convergence analysis of the studied iteration methods.

Definition 2.7 (Contraction, Lipschitz constant 𝐿). Let (M, 𝑑) be a metricc space and Φ : M → M.
Further, let 𝐿 < 1 be a constant such that

𝑑(Φ(𝑥),Φ(𝑦)) ≤ 𝐿 𝑑(𝑥, 𝑦) ∀𝑥, 𝑦 ∈ M.

Then, Φ is called a contraction.

We cite Banach’s fixed-point theorem which is also referred to as Contraction Theorem.

Theorem 2.8 (Banach’s fixed-point Theorem). Let (M, 𝑑) be a complete metric space with M ≠ ∅ and
let Φ : M → M be a contraction with constant 𝐿 < 1. Then, there exists a unique fixed-point 𝑥∗ ∈ M

of Φ and the fixed-point iteration
𝑥𝑚+1 = Φ(𝑥𝑚)

converges for 𝑚 → ∞ to 𝑥∗ for arbitrary initial values 𝑥0 ∈ M. The rate of convergence is linear and
we obtain the following error estimates:

(i) A priori error estimate:

𝑑( 𝒇𝑚, 𝒇 ∗) ≤ 𝐿𝑚

1 − 𝐿
𝑑( 𝒇 1, 𝒇 0).

(ii) A posteriori error estimate:

𝑑( 𝒇𝑚, 𝒇 ∗) ≤ 𝐿

1 − 𝐿
𝑑( 𝒇𝑚, 𝒇𝑚−1).

Proof. A proof of this result can be found in various literature on calculus and functional analysis,
see for example [Rud76, Thm. 9.23], [Kre78, Chapter 5.1] or [Wer18, Section IV.7]. For the error
estimation, we find

𝑑( 𝒇𝑚, 𝒇 ∗) ≤ 𝑑( 𝒇𝑚,Φ( 𝒇𝑚)) + 𝑑(Φ( 𝒇𝑚), 𝒇 ∗)
= 𝑑(Φ( 𝒇𝑚−1),Φ( 𝒇𝑚)) + 𝑑(Φ( 𝒇𝑚),Φ( 𝒇 ∗))
≤ 𝐿 · 𝑑( 𝒇𝑚−1, 𝒇𝑚) + 𝐿 · 𝑑( 𝒇𝑚, 𝒇 ∗)

and the a posteriori estimate follows immediately. The a priori estimate follows with

𝑑( 𝒇𝑚, 𝒇𝑚−1) = 𝑑(𝑮𝑚−1( 𝒇 1),𝑮𝑚−1( 𝒇 0)) ≤ 𝐿𝑚−1 · ( 𝒇 1, 𝒇 0).

Additionally, we need the following result which is also referred to as C. Neumann’s Theorem. We
cite a slightly modified version adapted to our needs.

8
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Theorem 2.9 (Theorem of C. Neumann). Let (X, ‖ · ‖) be a Banach space and 𝑇 ∈ L(X ) be a bounded
operator with ‖𝑇 ‖ < 1. Then, the operator id − 𝑇 has a unique bounded linear inverse which is given
by the (convergent) Neumann series

(id − 𝑇−1) =
∞∑︁
𝑘=0

𝑇𝑘.

Further, the estimate
‖(id − 𝑇)−1‖ ≤ (1 − ‖𝑇 ‖)−1

holds.

Proof. A proof can be found in [Wer18, Theorem II.1.12] and [Yos95, II.1, Thm. 2].

2.3 Weighted Hilbert spaces

Let 𝑋 and 𝑌 be real Hilbert spaces equipped with the inner products 〈·, ·〉𝑋 and 〈·, ·〉𝑌 , respectively.
The bounded linear operators from 𝑋 to 𝑌 are denoted by L(𝑋, 𝑌 ) and we define L(𝑋) B L(𝑋, 𝑋)
Further, we consider the direct sum of Hilbert spaces, cf. [Con94, I, §6] and [Aub00, Sect. 5.8]: For
a set of real Hilbert spaces

{
𝐻𝑖

}
𝑖∈𝐼 its direct sum (or also orthogonal sum) is defined as

𝐻 B
⊕
𝑖∈𝐼

𝐻𝑖 =

{
𝑔 = (𝑔𝑖)𝑖∈𝐼 ∈ (𝐻1 × . . . 𝐻 |𝐼 | ) :

∑︁
𝑖∈𝐼

‖𝑔𝑖‖2
𝐻𝑖
< ∞

}
.

Equipped with the inner product

〈𝑔, ℎ〉𝐻 B
∑︁
𝑖∈𝐼

〈
𝑔𝑖, ℎ𝑖

〉
𝐻𝑖

∀𝑔, ℎ ∈ 𝐻 (2.1)

𝐻 is again a real Hilbert space, cf. [Con94]. The norm on 𝐻 is induced by the inner product (2.1)
and is thus given as

‖𝑔‖𝐻 B
√︁
〈𝑔, 𝑔〉𝐻 =

√︄∑︁
𝑖∈𝐼

‖𝑔𝑖‖2
𝐻𝑖
. (2.2)

We introduce the concept of positive operators on Hilbert spaces which represents the prototype of
linear operators inducing weighted Hilbert spaces.

Definition 2.10 (Positive operator). Let 𝑇 ∈ L(𝑋) be self-adjoint, i.e., 𝑇∗ = 𝑇 . The operator 𝑇 is called
positive if

〈𝑥, 𝑇𝑥〉 ≥ 0 ∀𝑥 ∈ 𝑋.

Theorem 2.11. (i) For every positive operator 𝑇 exists an unique positive operator 𝑇
1
2 ∈ L(𝑋) with

(𝑇 1
2 )2 = 𝑇

1
2 𝑇

1
2 = 𝑇.

If 𝑇 is invertible then the square root operator 𝑇
1
2 is again invertible.

9
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(ii) Every bijective positive operator 𝑇 ∈ L(𝑋) induces an inner product on 𝑋 by

〈·, ·〉𝑇 B 〈·, 𝑇 ·〉 .

The Hilbert space 𝑋 equipped with the weighted inner product 〈·, ·〉𝑇 forms again a Hilbert space
and the induced norm is given by

‖ · ‖𝑇 = ‖𝑇 1
2 · ‖ .

It is called weighted Hilbert space and denoted by
(
𝑋, 〈·, ·〉𝑇

)
.

Proof. (i) See [Con94, II. Theorem 7.16] and [Rud91, Theorem 12.33].

(ii) Let 𝑇 ∈ L(𝑋) be a bijective positive operator. Thus 𝑇 is bounded, linear and self-adjoint by
definition 2.10. The weighted inner product 〈·, ·〉𝑇 fulfills the definition of an inner product
on 𝑋 , see e.g. [Con94] or [Wer18]. Following lemma 2.11(i), the unique square root operator
of 𝑇 exists and is positive. In particular, 𝑇

1
2 is self-adjoint. Thus, it yields

‖ · ‖𝑇 =
√︁
〈·, 𝑇 ·〉 =

√︃〈
𝑇

1
2 ·, 𝑇 1

2 ·
〉
= ‖𝑇 1

2 · ‖ .

Finally, it remains to show that 𝑋 together with the weighted inner product 〈·, ·〉𝑇 is again a
Hilbert space. Since

‖𝑥‖𝑇 = ‖𝑇 1
2 𝑥‖ ≤ ‖𝑇 1

2 ‖ ‖𝑥‖
holds true for all 𝑥 ∈ 𝑋 , the statement follows immediately from the fact that 𝑋 is complete
with respect to the induced norm ‖ · ‖ .

We use the following notation. Let 𝑇𝑋 ∈ L(𝑋) and 𝑇𝑌 ∈ L(𝑌 ) be bijective positive operators. The
operator norm of 𝐴 ∈ L(𝑋, 𝑌 ) and in particular the weighted operator norm are given as

‖𝐴‖𝑋→𝑌 = sup
𝑥≠0

‖𝐴𝑥‖𝑌
‖𝑥‖𝑋

= sup
‖𝑥 ‖𝑋=1

‖𝐴𝑥‖𝑌

and

‖𝐴‖ (𝑋, 𝑇𝑋 )→(𝑌, 𝑇𝑌 ) = sup
𝑥≠0

‖𝐴𝑥‖𝑇𝑌
‖𝑥‖𝑇𝑋

= sup
‖𝑥 ‖𝑇𝑋 =1

‖𝐴𝑥‖𝑇𝑌 ,

respectively. We write ‖𝐴‖ if it is clear from the context which operator norm is used.

Lemma 2.12. Let 𝑋 and 𝑌 be real Hilbert spaces and let 𝑇𝑋 and 𝑇𝑌 be bijective and positive operators
on 𝑋 and 𝑌 , respectively. For 𝐴 ∈ L(𝑋, 𝑌 ) holds

‖𝐴‖ (𝑋, 𝑇𝑋 )→(𝑌, 𝑇𝑌 ) ≤ ‖𝑇
1
2
𝑌 ‖

𝑌
‖𝐴‖𝑋→𝑌 ‖𝑇

− 1
2

𝑋 ‖
𝑋
.

Proof. Let 𝜑 ∈ 𝑋 . Then,

‖𝐴𝜑‖ (𝑌, 𝑇𝑌 ) = ‖𝑇
1
2
𝑌 𝐴𝜑‖

𝑌

≤ ‖𝑇
1
2
𝑌 ‖

𝑌
‖𝐴𝜑‖𝑌

≤ ‖𝑇
1
2
𝑌 ‖

𝑌
‖𝐴‖𝑋→𝑌 ‖𝜑‖𝑋

10
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= ‖𝑇
1
2
𝑌 ‖

𝑌
‖𝐴‖𝑋→𝑌 ‖𝑇

− 1
2

𝑋 𝑇
1
2
𝑋 𝜑‖

𝑋

≤ ‖𝑇
1
2
𝑌 ‖

𝑌
‖𝐴‖𝑋→𝑌 ‖𝑇

− 1
2

𝑌 ‖
𝑌
‖𝑇

1
2
𝑋 𝜑‖

𝑋

= ‖𝑇
1
2
𝑌 ‖

𝑌
‖𝐴‖𝑋→𝑌 ‖𝑇

− 1
2

𝑌 ‖
𝑌
‖𝜑‖ (𝑋, 𝑇𝑋 ) .

The condition number of a bounded linear operator 𝐴 ∈ L(𝑋, 𝑌 ) with bounded inverse is defined
as

𝜅(𝐴) B ‖𝐴‖ ‖𝐴−1‖ .

In section 2.4, the condition number is extended to a more general class of bounded linear operators.
The condition number with respect to weighted norms will be indicated with a subscript, e.g. 𝜅𝑇 for
the weighted norm ‖ · ‖𝑇 .

Theorem 2.13. Let 𝑇 : 𝑋 → 𝑋 be bijective and positive. For the induced operator norms ‖ · ‖ and
‖ · ‖𝑇 holds:

(i) Let 𝑙 ∈ {±1,±1
2 } be fixed. Then,

‖𝑇 𝑙‖ = ‖𝑇 𝑙‖𝑇 .

(ii) The operator norms are equivalent with

1

𝜅(𝑇 1
2 )
‖𝐴‖𝑇 ≤ ‖𝐴‖ ≤ 𝜅(𝑇 1

2 )‖𝐴‖𝑇

for all 𝐴 ∈ L(𝑋).

Proof. Since 𝑇 is a bijective and positive operator, it follows from Theorem 2.11(ii) that 𝑇 induces
an inner product and thus a weighted norm on 𝑋 by

〈·, ·〉𝑇 = 〈·, 𝑇 · 〉 and ‖ · ‖𝑇 = ‖𝑇 1
2 · ‖ ,

respectively. Further, 𝑇 is bounded. The bounded inverse theorem, cf. [Rud91], now states the
existence of the inverse operator 𝑇−1 and that 𝑇−1 is bounded. Thus, 𝑇 𝑙 is bounded for 𝑙 ∈

{
±1,±1

2

}
.

(i) Together with lemma 2.11(i) follows

‖𝑇 𝑙‖𝑇 = sup
‖𝑥 ‖𝑇=1

‖𝑇 𝑙𝑥‖𝑇

= sup
‖𝑇

1
2 𝑥 ‖=1

‖𝑇 1
2𝑇 𝑙𝑥‖

= sup
‖𝑇

1
2 𝑥 ‖=1

‖𝑇 𝑙𝑇 1
2 𝑥‖

= sup
‖𝑥 ‖=1

‖𝑇 𝑙𝑥‖

= ‖𝑇 𝑙‖ .
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(ii) Let 𝐴 ∈ L(𝑋) be a bounded operator on 𝑋 . For 𝑓 ∈ 𝑋 holds

‖𝐴 𝑓 ‖ = ‖𝑇− 1
2 𝐴 𝑓 ‖𝑇 = ‖𝑇− 1

2 𝐴𝑇
1
2𝑇− 1

2 𝑓 ‖𝑇 .

Thus,

‖𝐴‖ = sup
‖ 𝑓 ‖=1

‖𝐴 𝑓 ‖

= sup
‖ 𝑓 ‖=1

‖𝑇− 1
2 𝐴𝑇

1
2𝑇− 1

2 𝑓 ‖𝑇

= sup
‖ 𝑓 ‖𝑇=1

‖𝑇− 1
2 𝐴𝑇

1
2 𝑓 ‖𝑇

= ‖𝑇− 1
2 𝐴𝑇

1
2 ‖𝑇

and with the submultiplicativity of the norm follows

‖𝐴‖ ≤ ‖𝑇− 1
2 ‖𝑇 ‖𝑇

1
2 ‖𝑇 ‖𝐴‖𝑇 = 𝜅(𝑇 1

2 )‖𝐴‖𝑇 .

Analogously, it is
‖𝐴‖𝑇 ≤ ‖𝑇− 1

2 ‖ ‖𝑇 1
2 ‖ ‖𝐴‖ = 𝜅(𝑇 1

2 )‖𝐴‖
and the statement follows.

In the situation of finite dimensional spaces, we will mainly consider the Euclidean norm

‖𝑥‖2 B
√︁
〈𝑥, 𝑥〉 =

√︁
𝑥>𝑦 =

( 𝑛∑︁
𝑗=1

𝑥 𝑗 𝑦 𝑗

) 1
2

∀𝑥 ∈ R
𝑛.

The Euclidean norm induces the spectral norm on R𝑛 which is defined as

‖𝐴‖2 = sup
𝑥≠0

‖𝐴𝑥‖2

‖𝑥‖2
= sup

‖𝑥 ‖2=1
‖𝐴𝑥‖2 ∀𝑥 ∈ R

𝑛

for 𝐴 ∈ R𝑚×𝑛 being a 𝑚 × 𝑛-matrix. For the spectral norm holds

‖𝐴‖2 =
√︁
𝜆max(𝐴∗𝐴)

where 𝜆max(𝐴∗𝐴) denotes the largest Eigenvalue of 𝐴∗𝐴, cf. [SK11]. For a symmetric and strictly
positive definite matrix 𝑊 the Euclidean norm and the induced weighted norms ‖ · ‖𝑊 B ‖𝑊 1

2 · ‖
are equivalent with

1

‖𝑊 1
2 ‖

‖ · ‖𝑊 ≤ ‖ · ‖ ≤ ‖𝑊− 1
2 ‖ ‖ · ‖𝑊 .

In analogy to theorem 2.13 this follows immediately from the definition of the weighted Euclidean
norm: For 𝑥 ∈ R𝑛 holds

‖𝑥‖ = ‖𝑊− 1
2𝑊

1
2 𝑥‖ ≤ ‖𝑊− 1

2 ‖ ‖𝑊 1
2 𝑥‖ = ‖𝑊− 1

2 ‖ ‖𝑥‖𝑊
and

‖𝑥‖𝑊 = ‖𝑊 1
2 𝑥‖ ≤ ‖𝑊 1

2 ‖ ‖𝑥‖ .
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Corollary 2.14. Let 𝑊 be a symmetric and strictly positive definite matrix. The condition number with
respect to the spectral norm ‖ · ‖2 fulfills

𝜅2(𝑊
1
2 ) =

√︁
𝜅2(𝑊).

Proof. Since the weight matrix 𝑊 is symmetric and positive definite it holds

(𝑊 1
2 )∗𝑊 1

2 =𝑊
1
2𝑊

1
2 =𝑊 = (𝑊2) 1

2 = (𝑊∗𝑊) 1
2 .

Thus,

𝜅2
2(𝑊

1
2 ) = 𝜇max((𝑊

1
2 )∗𝑊 1

2 ) 𝜇−1
min((𝑊

1
2 )∗𝑊 1

2 )
= 𝜇max((𝑊∗𝑊) 1

2 ) 𝜇−1
min((𝑊

∗𝑊) 1
2 )

= (𝜇max(𝑊∗𝑊) 𝜇−1
min(𝑊

∗𝑊)) 1
2

= 𝜅2(𝑊).

We give some examples of weighted Hilbert spaces.

Example 2.15. (i) Let 𝑋 = R𝑛, 𝑛 ∈ N+, equipped with the Euclidean inner product,

〈𝑥, 𝑦〉 = 𝑥>𝑦 =
𝑛∑︁
𝑗=1

𝑥 𝑗 𝑦 𝑗.

In finite dimensions every symmetric and positive definite matrix 𝑊 is regular (thus a bijective
operator) and a positive operator in the sense of definition 2.10. The matrix𝑊 induces a weighted
inner product on R𝑛 by

〈𝑥, 𝑦〉𝑊 = 〈𝑥,𝑊𝑦〉 =
𝑛∑︁
𝑗=1

𝑥 𝑗 (𝑊𝑦) 𝑗 =
𝑛∑︁
𝑗=1

(
𝑊

1
2 𝑥

)
𝑗

(
𝑊

1
2 𝑦

)
𝑗
,

see theorem 2.11(ii).

(ii) Let Ω ⊂ R𝑑 be non-empty. The Lebesgue spaces of integrable functions on Ω are defined as

𝐿𝑝(Ω) B
{
𝑓 : Ω → R measurable, ‖ 𝑓 ‖𝐿𝑝 (Ω) B

( ∫
Ω
| 𝑓 (𝑥) |𝑝 𝑑𝑥

) 1
𝑝

< ∞
}
.

For 𝑝 = 2, the Lebesgue space 𝐿2(Ω) equipped with the inner product

〈 𝑓 , 𝑔〉𝐿2 (Ω) =

∫
Ω
𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥

forms a real Hilbert space, cf. [Yos95], [Wer18]. For 𝑋 = 𝐿2(Ω), the function 𝑤 ∈ 𝐿1(Ω) being
positive almost-everywhere induces a weighted inner product on 𝐿2(Ω) by

〈 𝑓 , 𝑔〉𝑤 B
∫
Ω
( 𝑓 𝑔) (𝑥)𝑤(𝑥) 𝑑𝑥.

13



Chapter 2: Mathematical Preliminaries

(iii) Now, let 𝑋 = 𝐿2(Ω) and 𝑤 ∈ 𝐿∞(Ω) be an essentially bounded function on Ω being positive
almost-everywhere. The function 𝑤 induces a weighted inner product on 𝐿2(Ω) by

〈 𝑓 , 𝑔〉𝑤 B
∫
Ω
( 𝑓 𝑔) (𝑥)𝑤(𝑥) 𝑑𝑥.

This can be shown by means of the the multiplication operator 𝑇𝑤 : 𝐿2(Ω) → 𝐿2(Ω) defined as
point-wise multiplication with the weight function 𝑤,

𝑇𝑤 𝑓 (𝑥) = (𝑤 𝑓 ) (𝑥),

and theorem 2.11(ii). First, we show that 𝑇𝑤 is positive. Following [Con94, II, Thm. 1.5], the
multiplication operator is a bounded linear operator on 𝐿2(Ω). Additionally, 𝑇𝑤 is self-adjoint,
i.e., 〈

𝑓 , 𝑇𝑤𝑔
〉
𝐿2 (Ω)

=

∫
Ω
𝑓 (𝑥)𝑔(𝑥)𝑤(𝑥) 𝑑𝑥 =

〈
𝑇𝑤 𝑓 , 𝑔

〉
𝐿2 (Ω)

,

and it holds 〈
𝑓 , 𝑇𝑤 𝑓

〉
𝐿2 (Ω)

=

∫
Ω
𝑓 2(𝑥)𝑤(𝑥) 𝑑𝑥

=

∫
Ω
(𝑤𝑓 2) (𝑥) 𝑑𝑥

= 〈𝑤 1
2 𝑓 , 𝑤

1
2 𝑓 〉𝐿2 (Ω)

= ‖𝑤 1
2 𝑓 ‖

2
𝐿2 (Ω) ≥ 0 ∀ 𝑓 ∈ 𝐿2(Ω).

Thus, 𝑇𝑤 is positive on 𝐿2(Ω) in the sense of definition 2.10. The bijectivity of 𝑇𝑤 follows
immediately from the positivity of the weight function 𝑤 almost everywhere on Ω and that 𝑤 is
essentially bounded. Applying theorem 2.11(ii) now yields that

〈 𝑓 , 𝑔〉𝑤 =
〈
𝑓 , 𝑇𝑤𝑔

〉
𝐿2 (Ω)

=

∫
Ω
( 𝑓 𝑔) (𝑥)𝑤(𝑥) 𝑑𝑥

is a weighted inner product and that 𝐿2(Ω) together with 〈·, ·〉𝑤 forms a real Hilbert space.

2.4 The generalized inverse

Let A : X → Y denote a bounded linear mapping between the real Hilbert spaces X and Y and let
𝑔 ∈ Y. Clearly, a solution of

A 𝑓 = 𝑔 (2.3)

exists only if 𝑔 is an element of the range R(A). If the operator A is non-injective, i.e., the nullspace
N(A) is non-trivial, and there are infinitely many solutions. We introduce the generalized inverse
as a concept to extend the solvability of (2.3) to right-hand sides 𝑔 ∈ Y, see for example [Lou89],
[EHN96], [Rie03].

Definition 2.16 (Generalized solution, [Lou89]). The mapping

A+ : D(A+) B R(A) ⊕ N(A∗) ⊆ Y → X

characterized by

14



Chapter 2: Mathematical Preliminaries

(i) AA+ = PR(A)𝑔 and

(ii) ‖A+𝑔‖X < ‖𝑢‖X for all 𝑢 ∈ X fulfilling

‖AA+𝑔 − 𝑔‖X = ‖A𝑢 − 𝑔‖ = min ‖A 𝑓 − 𝑔‖X

is called generalized inverse or pseudo inverse. The element 𝑓+ B A+𝑔 is called generalized solution of
the problem 𝐴 𝑓 = 𝑔.

The generalized solution 𝑓+ minimizes the defect A 𝑓 − 𝑔, i.e.,

‖A 𝑓+ − 𝑔‖Y ≤ ‖A𝜑 − 𝑔‖Y ∀𝜑 ∈ X (2.4)

and marks the solution with minimal norm, i.e., for all 𝜑 ≠ 𝑓+ minimizing the defect (2.4) holds

‖ 𝑓+‖X < ‖𝜑‖X .

Further, 𝑓+ is determined as the unique solution of the normal equation

A∗A 𝑓 = A∗𝑔

in N(A)⊥, cf. [Lou89]. If the exact solution of (2.3) exists, the generalized solution 𝑓+ clearly
coincides with the exact solution. Following [Rie03, Remark 2.1.7], the generalized solution can
also be defined with respect to a given element 𝑓∗ ∈ X . Then, 𝑓+ is defined as a minimizer of the
defect (2.4) with minimal distance to 𝑓∗,

𝑓+∗ = A+𝑔 + PN(A) 𝑓∗. (2.5)

The classical definition 2.16 is obtained for 𝑓∗ = 0. The following theorem yields a criterion for the
boundedness of the generalized inverse A+.

Theorem 2.17 ([Rie03, Theorem 2.1.8]). The generalized inverse A+ is bounded if and only if the
range of A is closed, i.e., R(A) = R(A).

In particular, a criterion for the situation of finite dimensional spaces is needed. Therefore, we use
a classical result known as Picard criterion:

Theorem 2.18 (Picard criterion, [Lou89; Rie03]). Let A ∈ L(X ,Y) be a compact operator with
singular value system

{
𝜎𝑛; 𝑣𝑛, 𝑢𝑛

}
𝑛≥0. The range of A is closed if and only if

∑︁
𝑛≥0

��〈𝑔, 𝑢𝑛〉Y ��2
𝜎2
𝑛

< ∞ ∀𝑔 ∈ R(A).

Corollary 2.19. In finite dimensions the range of A is always closed, i.e., R(A) = R(A) and the
generalized inverse A+ is bounded.

Proof. In finite dimensions, the operator A ∈ L(X ,Y) is compact. Thus, the singular system{
𝜎𝑛; 𝑣𝑛, 𝑢𝑛

}
𝑛≥0 of A exists with 𝜎𝑛 ≡ 0 for 𝑛 greater than the dimension of the finite dimensional

space. The Picard criterion 2.18 is thus always fulfilled and R(A) is closed. With theorem 2.17
follows the boundedness of A+.

15
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The Moore–Penrose axioms provide a helpful tool to derive representations of the generalized
inverse in terms of the operator A.

Theorem 2.20 (Moore–Penrose axioms, [EHN96], [Rie03]). The generalized inverse A+ is uniquely
determined by the Moore–Penrose axioms:

(i) A = AA+A

(ii) A+ = A+AA+

(iii) A+A = PN(A)⊥

(iv) AA+ = PR(A)

Corollary 2.21. It holds A+ = A∗(AA∗)+. If A is surjective, then A+ = A∗(AA∗)−1.

Proof. Since the Moore–Penrose Axioms are fulfilled, it holds A∗ = PN(A)⊥A
∗ = A+AA∗ and thus

A∗(AA∗)+ = A+(AA∗) (AA∗)+ = A+.

If A is surjective, the adjoint A∗ is injective and also AA∗ is injective. Thus (AA∗)−1 exists and

(AA∗)+ = (AA∗)−1
.

The following representation of the operator norm follows directly from the definition of the opera-
tor norm.

Lemma 2.22. Let A ∈ L(X ,Y) with A+ being bounded. Then

‖A+‖ = sup
𝜑∈N(A)⊥, ‖A𝜑 ‖Y=1

‖𝜑‖X .

16



Chapter 3

Transforms in X-Ray tomography

The mathematical model of Computerized Tomography is given by the Radon transform and its re-
lated Ray transforms namely the X-ray transform and the Cone Beam transform. We follow [Nat01]
to introduce the transforms as linear integral operators on the Schwartz space of rapidly decreasing
functions

S
(
R
𝑑
)
B

{
𝑓 ∈ 𝐶∞ (

R
𝑑
)

: sup
𝑥∈R𝑑

|𝑥𝑎𝐷𝛽𝑓 (𝑥) | < ∞ ∀𝛼, 𝛽 ∈ N
𝑑

}
.

This guarantees the existence of all integrals and thus well-definedness of all integral operators.
Since the Schwartz space of rapidly decreasing functions is dense in 𝐿2, cf. [Wer18], the operators
are then extended to 𝐿2-spaces. For all discussed transforms and operators we consider a fixed
source-detector setup.

The Radon transform is studied in a variety of publications as for example [Rad17], [Lou84],
and [Hel99]. For the X-ray and Cone (resp. Fan) Beam transform we refer to [Ham+80]. As a
general references for this chapter, we give [Nat01] and [NW01].

In the following, Ω ⊂ R𝑑 denotes the 𝑑-dimensional unit ball

Ω B 𝐵1
(
0
)
B

{
𝑥 ∈ R

𝑑 : ‖𝑥‖ ≤ 1
}

and S𝑑−1 denotes the 𝑑-dimensional unit sphere in R𝑑 given by S𝑑−1 B 𝜕Ω =
{
𝑥 ∈ R𝑑 : ‖𝑥‖ = 1

}
.

3.1 The Radon transform

Let 𝜃 ∈ S𝑑−1 and 𝑠 ∈ R. The 𝑑-dimensional hyperplane 𝐻 (𝜃, 𝑠) is defined as

𝐻 (𝜃, 𝑠) B
{
𝑥 ∈ R

𝑑 : 〈𝑥, 𝜃〉 = 𝑠
}

=
{
𝑥 ∈ R

𝑑 : 𝑥 = 𝑠𝜃 + 𝑡𝜃⊥, 𝑡 ∈ R
}
.

Definition 3.1. The 𝑑-dimensional Radon transform of 𝑓 ∈ S (R𝑑) at (𝜃, 𝑠) ∈ (S𝑑−1 ×R) is defined as

R 𝑓 (𝜃, 𝑠) =
∫
𝐻 (𝜃,𝑠)

𝑓 (𝑥) 𝑑𝑥

=

∫
R𝑑

𝑓 (𝑥)𝛿(𝑠 − 𝑥>𝜃) 𝑑𝑥.

For a fixed direction 𝜃 ∈ S𝑑−1 we write R
𝜃
𝑓 (𝑠) B R 𝑓 (𝜃, 𝑠).

17



Chapter 3: Transforms in X-Ray tomography

Proposition 3.2. Let 𝑓 ∈ S (R𝑑) and 𝜃 ∈ S𝑑−1.

(i) For 𝑎 ∈ R𝑑 holds
R𝜃( 𝑓 (· − 𝑎)) (𝑠) = R𝜃 𝑓 (𝑠 − 𝑎>𝜃).

(ii) For 𝑈 ∈ R𝑑×𝑑 being orthogonal holds

R𝜃( 𝑓 (𝑈·)) (𝑠) = R𝑈𝜃 𝑓 (𝑠).

Proof. (i) With the definition of the Radon transform follows

R𝜃( 𝑓 (· − 𝑎)) (𝑠) =
∫
R𝑑

𝑓 (𝑥 − 𝑎)𝛿(𝑠 − 𝑥>𝜃) 𝑑𝑥

=

∫
R𝑑

𝑓 (𝑦)𝛿
(
(𝑠 − 𝑎>𝜃) − 𝑦>𝜃

)
𝑑𝑦

= R𝜃 𝑓 (𝑠 − 𝑎>𝜃).

(ii) Since 𝑈 is orthogonal, substituting 𝑦 B 𝑈𝑥 yields

R( 𝑓 (𝑈·)) (𝜃, 𝑠) =
∫
R𝑑

𝑓 (𝑈𝑥)𝛿(𝑠 − 𝑥>𝜃) 𝑑𝑥

=

∫
R𝑑

𝑓 (𝑦)𝛿(𝑠 − 𝑦>𝑈𝜃) 𝑑𝑦

= R 𝑓 (𝑈𝜃, 𝑠).

Example 3.3 (Radon transform of the unit ball Ω). We cite an example from [Hel99, I.5.9(c)] regard-
ing the Radon transform of the 𝑑-dimensional unit ball Ω. Therefore, let 𝜒Ω denote the characteristic
function of Ω, i.e.,

𝜒Ω (𝑠) =
{

1, if ‖𝑥‖ ≤ 1
0, else.

The Radon transform of 𝜒Ω is computed as

R𝜃𝜒Ω (𝑠) =
|S𝑑−2 |
𝑑 − 1

(1 − 𝑠2) 𝑑−1
2 .

Note that since 𝜒Ω is rotationally invariant the Radon transform is again rotationally invariant,
cf. proposition 3.2.

The following theorem justifies the continuation of the Radon transform as a bounded linear opera-
tor on 𝐿2-spaces. Let 𝑤1 and 𝑤2 be the weight functions

𝑤1(𝑠) B
1

R
𝜃
𝜒Ω (𝑠)

and 𝑤2(𝑠) ≡ 1.

18
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Theorem 3.4. The 𝑑-dimensional Radon transform

R : 𝐿2(Ω) → 𝐿2
(
S𝑑−1 ×[−1, 1], 𝑤

)
is bounded for 𝑤 = 𝑤1 and 𝑤 = 𝑤2, respectively.

Proof. Let �̃� B
(
1 − 𝑠2

)− 𝑑−1
2 . Then, R : 𝐿2(Ω) → 𝐿2

(
S𝑑−1 ×[−1, 1], �̃�

)
is a bounded operator as

shown in [Nat01, Thm. II.1.6]. Together with the Radon transform of the unit ball, cf. example 3.3,
follows

𝑤1(𝑠) =
(
|S𝑑−2 |
𝑑 − 1

(1 − 𝑠2) 𝑑−1
2

)−1

=
𝑑 − 1

|S𝑑−2 |
(1 − 𝑠2)− 𝑑−1

2 =
𝑑 − 1

|S𝑑−2 |
�̃�(𝑠)

such that 𝑤1 is a scaled version of �̃�. Consequently, the Radon transform is bounded for the weight
𝑤1. For 𝑤2, the result follows immediately with 𝑤2 ≤ �̃�, see [Lou89, Thm. 6.1.1].

Proposition 3.5. Let 𝜃 ∈ S𝑑−1 be a fixed direction.

(i) The adjoint operator R∗
𝜃

: 𝐿2
(
[−1, 1], 𝑤

)
→ 𝐿2(Ω) is computed as

R∗
𝜃𝑔(𝑥) = (𝑤𝑔) (𝑥>𝜃).

(ii) For 𝑤 = 𝑤1, the generalized inverse R+
𝜃

: D(R+
𝜃
) ⊂ 𝐿2

(
[−1, 1], 𝑤1

)
→ 𝐿2(Ω) is bounded and

given as
R+
𝜃 = R∗

𝜃.

Further, it holds

‖R𝜃‖𝐿2 (Ω)→𝐿2 ( [−1,1], 𝑤1)
= ‖R+

𝜃‖𝐿2 ( [−1,1], 𝑤1)→𝐿2 (Ω)
= 1.

Proof. (i) Let 𝑓 ∈ 𝐿2(Ω) and 𝑔 ∈ 𝐿2
(
[−1, 1], 𝑤

)
. It holds

〈R𝜃 𝑓 , 𝑔〉𝐿2

(
[−1,1], 𝑤

) = ∫
[−1,1]

R𝜃 𝑓 (𝑠)𝑔(𝑠)𝑤(𝑠) 𝑑𝑠

=

∫
[−1,1]

∫
𝐻 (𝜃, 𝑠)∩Ω

𝑓 (𝑦) 𝑑𝑦 𝑔(𝑠)𝑤(𝑠) 𝑑𝑠

=

∫
[−1,1]

∫
𝐻 (𝜃, 𝑠)∩Ω

𝑓 (𝑦) (𝑤𝑔) (𝑠) 𝑑𝑦 𝑑𝑠

=

∫
Ω
𝑓 (𝑥) (𝑤𝑔) (𝑥>𝜃) 𝑑𝑥.

The adjoint operator is thus given by

R∗
𝜃𝑔(𝑥) = (𝑤𝑔) (𝑥>𝜃).

(ii) The representation of the generalized inverse R+
𝜃

can be shown by means of corollary 2.21.
First, we show the surjectivity of R

𝜃
for a fixed angle 𝜃 ∈ S𝑑−1. Analogously to [Nat01,

Section V.4.3.], this can be shown by considering 𝜙 ∈ 𝐿2
(
[−1, 1], 𝑤1

)
and 𝜑 ∈ 𝐿2(Ω) defined

as
𝜑(𝑥) B R∗

𝜃𝜙(𝑥) = (𝑤1𝜙) (𝑥>𝜃).
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It follows R
𝜃
𝜑 = R

𝜃
R∗
𝜃
𝜙 = 𝜙 for every 𝜙 ∈ 𝐿2

(
[−1, 1], 𝑤

)
and thus the surjectivity of R

𝜃
.

Further, it is

R𝜃R
∗
𝜃𝜙(𝑠) =

∫
𝐻 (𝜃, 𝑠)∩Ω

R∗
𝜃𝜙(𝑦) 𝑑𝑦

=

∫
𝐻 (𝜃, 𝑠)∩Ω

(𝑤1𝜙) (𝑦>𝜃) 𝑑𝑦

=

∫
𝐻 (𝜃, 𝑠)∩Ω

𝑑𝑦︸          ︷︷          ︸
=𝑤1 (𝑠)−1

(𝑤1𝜙) (𝑠)

= 𝜙(𝑠).

Hence, R
𝜃
R∗
𝜃

coincides with the identity on 𝐿2
(
[−1, 1], 𝑤1

)
and with theorem 2.21 follows

R+
𝜃 = R∗

𝜃

(
R𝜃R

∗
𝜃

)−1
= R∗

𝜃.

The norm estimation of R
𝜃

is obtained with Hölder’s inequality in analogy to [Nat01, Theo-
rem II.1.6]. Let 𝜑 ∈ S (R𝑑) be compactly supported with supp𝜑 ⊂ Ω. Then,����∫

𝐻 (𝜃, 𝑠)∩Ω
𝜑(𝑦) 𝑑𝑦

����2 ≤
∫
𝐻 (𝜃, 𝑠)∩Ω

𝑑𝑦︸          ︷︷          ︸
=𝑤1 (𝑠)−1

∫
𝐻 (𝜃, 𝑠)∩Ω

|𝜑(𝑦) |2 𝑑𝑦

= 𝑤1(𝑠)−1
∫
𝐻 (𝜃, 𝑠)∩Ω

|𝜑(𝑦) |2 𝑑𝑦,

and thus,

‖R𝜃𝜑‖2
𝐿2 ( [−1,1], 𝑤1)

=

∫
[−1,1]

|R𝜃𝜑(𝑠) |2 𝑤1(𝑠) 𝑑𝑠

=

∫
[−1,1]

����∫
𝐻 (𝜃, 𝑠)∩Ω

𝜑(𝑦) 𝑑𝑦
����2 𝑤1(𝑠) 𝑑𝑠

≤
∫
[−1,1]

𝑤1(𝑠)−1
∫
𝐻 (𝜃, 𝑠)∩Ω

|𝜑(𝑦) |2 𝑑𝑦 𝑤1(𝑠) 𝑑𝑠

=

∫
[−1,1]

∫
𝐻 (𝜃, 𝑠)∩Ω

|𝜑(𝑦) |2 𝑑𝑦 𝑑𝑠

=

∫
Ω
|𝜑(𝑥) |2 𝑑𝑥

= ‖𝜑‖2
𝐿2 (Ω) .

Since the continuity of R
𝜃

implies the continuity of its adjoint operator R∗
𝜃
, cf. [Wer18], it

yields
‖R𝜃‖ = ‖R∗

𝜃‖ = ‖R+
𝜃‖ ≤ 1.

With the Moore–Penrose axioms 2.20 follows

1 = ‖PR(R
𝜃
) ‖ = ‖R𝜃R

+
𝜃‖ ≤ ‖R𝜃‖ ‖R

+
𝜃‖ ≤ 1
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and thus the result ‖R
𝜃
‖ = ‖R+

𝜃
‖ = 1.

3.2 The X-Ray transform

For 𝜃 ∈ S𝑑−1 and 𝑥 ∈ 𝜃⊥ let

𝐿(𝜃, 𝑥) B
{
𝑦 ∈ R

𝑑 : 𝑦 = 𝑥 + 𝑡𝜃, 𝑡 ∈ R
}
.

Definition 3.6. The 𝑑-dimensional X-ray transform of 𝑓 ∈ S (R𝑑) at (𝜃, 𝑥) ∈
(
S𝑑−1 × 𝜃⊥

)
is defined as

P 𝑓 (𝜃, 𝑥) =
∫
𝐿(𝜃,𝑥)

𝑓 (𝑦) 𝑑𝑦

=

∫
R

𝑓 (𝑥 + 𝑡𝜃) 𝑑𝑡.

For a fixed direction 𝜃 ∈ S𝑑−1 we write P
𝜃
𝑓 (𝑥) B P 𝑓 (𝜃, 𝑥).

In two dimensions, i.e., 𝑑 = 2, the X-ray transform thus coincides with the Radon transform up to
parameterization.

Proposition 3.7. Let 𝜃 ∈ S𝑑−1 be fixed and 𝑓 ∈ S (R𝑑).

(i) For fixed 𝑥0 ∈ R𝑑 holds
P𝜃

(
𝑓 (· − 𝑥0)

)
(𝑥) = P𝜃 𝑓

(
𝑥 − P𝜃⊥𝑥0

)
.

(ii) For 𝑈 ∈ R𝑑×𝑑 being orthogonal holds

P𝜃
(
𝑓 (𝑈·)

)
(𝑥) = P𝑈𝜃 𝑓

(
𝑈𝑥

)
.

Proof. (i) For fixed 𝑥0 ∈ R𝑑 and 𝑥 ∈ 𝜃⊥ holds

P𝜃( 𝑓 (· − 𝑥0)) (𝑥) =
∫
R

𝑓 (𝑥 + 𝑡𝜃 − 𝑥0) 𝑑𝑡

=

∫
R

𝑓 (𝑥 − P𝜃⊥𝑥0 + (𝑡 − 𝑥>0 𝜃)𝜃) 𝑑𝑡

=

∫
R

𝑓 (𝑥 − P𝜃⊥𝑥0 + 𝑡𝜃) 𝑑𝑡

= P𝜃 𝑓 (𝑥 − P𝜃⊥𝑥0).

(ii) For 𝑈 ∈ R𝑑×𝑑 being orthogonal follows

P𝜃( 𝑓 (𝑈·)) (𝑥) =
∫
R

𝑓 (𝑈 (𝑥 + 𝑡𝜃)) 𝑑𝑡 =
∫
R

𝑓 (𝑈𝑥 + 𝑡𝑈𝜃) 𝑑𝑡 = P 𝑓 (𝑈𝜃,𝑈𝑥).
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Lemma 3.8. For 𝜃 ∈ S𝑑−1 being a fixed direction, the X-Ray transform of a radially symmetric function
𝜑 ∈ S (R𝑑) is given by

P𝜃𝜑(𝑥) = 2
∫ ∞

0
𝜑

(√︃
‖𝑥‖2 + 𝑡2

)
𝑑𝑡 ∀𝑥 ∈ 𝜃⊥.

Proof. Let 𝜑 ∈ S (R𝑑) be radially symmetric, i.e., there exists a function �̃� ∈ S (R) such that

𝜑(𝑦) = �̃�(‖𝑦‖) ∀𝑦 ∈ R
𝑑 .

For a fixed direction 𝜃 ∈ S𝑑−1 holds

P𝜃𝜑(𝑥) =
∫
R

𝜑(𝑥 + 𝑡𝜃) 𝑑𝑡 =
∫
R

�̃�(‖𝑥 + 𝑡𝜃‖) 𝑑𝑡 ∀𝑥 ∈ 𝜃⊥.

For 𝑥 ∈ 𝜃⊥ follows 〈𝑥, 𝜃〉 = 0 and thus ‖𝑥 + 𝑡𝜃‖ =

√︃
‖𝑥‖2 + |𝑡 | ‖𝜃‖2 for 𝑥 ∈ 𝜃⊥. Thus

P𝜃𝜑(𝑥) =
∫
R

�̃�

(√︃
‖𝑥‖2 + |𝑡 |

)
𝑑𝑡 = 2

∫ ∞

0
�̃�

(√︃
‖𝑥‖2 + |𝑡 |

)
𝑑𝑡.

Example 3.9. The X-ray transform of the characteristic function of the 𝑑-dimensional ball 𝐵𝑟 (0) with
radius 𝑟 > 0 centered around the origin is computed as

P𝜃𝜒𝐵𝑟 (0) (𝑥) = 2
√︃
𝑟2 − ‖𝑥‖2 𝑥 ∈ 𝜃⊥.

This follows directly from lemma 3.8 with

P𝜃𝜒𝐵𝑟 (0) (𝑥) = 2
∫ ∞

0
𝜒𝐵𝑟 (0)

(√︃
‖𝑥‖2 + 𝑡2

)
𝑑𝑡

= 2
∫ √

𝑟2−‖𝑥 ‖2

0
𝑑𝑡

= 2
√︃
𝑟2 − ‖𝑥‖2.

As for the Radon transform in the previous section, we extend the X-ray transform as a bounded
operator on 𝐿2-spaces. Therefore, let the weight functions 𝑤1

𝜃
and 𝑤2

𝜃
be defined as

𝑤1
𝜃(𝑥) B

1
P
𝜃
𝜒Ω (𝑥)

for 𝑥 ∈ 𝜃⊥ and 𝑤2
𝜃(𝑥) ≡ 1 for 𝑥 ∈ Ω.

Proposition 3.10. The X-ray transform

P𝜃 : 𝐿2(Ω) → 𝐿2
(
𝜃⊥, 𝑤𝜃

)
for fixed directions 𝜃 ∈ S𝑑−1 is a bounded and linear operator for 𝑤𝜃 = 𝑤1

𝜃
and 𝑤𝜃 = 𝑤2

𝜃
, respectively.

Its adjoint operator P∗
𝜃

: 𝐿2
(
𝜃⊥, 𝑤𝜃

)
→ 𝐿2(Ω) is computed as

P∗
𝜃𝑔(𝑥) = (𝑤𝜃𝑔) (P𝜃⊥𝑥).
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For 𝑤𝜃 = 𝑤1
𝜃
, the generalized inverse P+

𝜃
: D(P+

𝜃
) ⊂ 𝐿2

(
𝜃⊥, 𝑤1

𝜃

)
→ 𝐿2(Ω) is given by its adjoint

operator, i.e., P+
𝜃
= P∗

𝜃
, and the norm estimation

‖P𝜃‖𝐿2 (Ω)→𝐿2 (𝜃⊥, 𝑤1
𝜃
) = ‖P+

𝜃‖𝐿2 (𝜃⊥, 𝑤1
𝜃
)→𝐿2 (Ω)

= 1

holds.

Proof. Putting 𝑟 = 1 in example 3.9, the weight 𝑤1
𝜃
(𝑥) is computed as

𝑤1
𝜃(𝑥) =

1
P
𝜃
𝜒Ω (𝑥)

=
1

2
√︃

1 − ‖𝑥‖2
𝑥 ∈ 𝜃⊥.

Since P
𝜃

: 𝐿2(Ω) → 𝐿2
(
𝜃⊥, 𝑤𝜃

)
is bounded for 𝑤𝜃(𝑥) = �̃�𝜃(𝑥) B

(
1 − ‖𝑥‖2)− 1

2 , cf. [Nat01,
Theorem II.1.6], the boundedness for 𝑤𝜃 = 𝑤1

𝜃
is immediately induced. With

𝑤2
𝜃(𝑥) = 1 ≤ 1√︃

1 − ‖𝑥‖2
= �̃�𝜃(𝑥) 𝑥 ∈ 𝜃⊥

the boundedness for 𝑤2
𝜃

is also settled. The representation of the adjoint operator is computed for
𝑓 ∈ 𝐿2(Ω) and 𝑔 ∈ 𝐿2

(
𝜃⊥, 𝑤𝜃

)
by〈

P𝜃 𝑓 , 𝑔
〉
𝐿2 (𝜃⊥, 𝑤𝜃)

=

∫
𝜃⊥

P𝜃 𝑓 (𝑥)
(
𝑤𝜃𝑔

)
(𝑥) 𝑑𝑥

=

∫
𝜃⊥

P𝜃 𝑓 (𝑥)
(
𝑤𝜃𝑔

)
(P|𝜃⊥𝑥) 𝑑𝑥

=

∫
𝜃⊥

∫
𝑥+𝑡𝜃∈Ω

𝑓 (𝑥 + 𝑡𝜃)
(
𝑤𝜃𝑔

)
(P|𝜃⊥𝑥) 𝑑𝑡 𝑑𝑥

and with the substitution 𝑥 ↦→ 𝑥 + 𝑡𝜃 follows

=

∫
Ω
𝑓 (𝑥)

(
𝑤𝜃𝑔

)
(P|𝜃⊥𝑥) 𝑑𝑥.

For 𝑤𝜃 = 𝑤1
𝜃
, it yields P

𝜃
P∗
𝜃
= id on 𝐿2

(
𝜃⊥, 𝑤1

𝜃

)
as can be seen by

P𝜃P
∗
𝜃𝑔(𝑥) =

∫
𝑥+𝑡𝜃∈Ω

P∗
𝜃𝑔(𝑥 + 𝑡𝜃) 𝑑𝑥

=

∫
𝑥+𝑡𝜃∈Ω

(𝑤1
𝜃𝑔)

(
P𝜃⊥ (𝑥 + 𝑡𝜃)

)
𝑑𝑦

= (𝑤1
𝜃𝑔) (𝑥)

∫
𝑥+𝑡𝜃∈Ω

𝑑𝑦

= (𝑤1
𝜃𝑔) (𝑥)𝑤

1
𝜃(𝑥)

−1

= 𝑔(𝑥) (3.1)

for arbitrary 𝑔 ∈ 𝐿2
(
𝜃⊥, 𝑤1

𝜃

)
. Applying Hölder’s inequality further yields

‖P𝜃 𝑓 ‖
2
𝐿2 (𝜃⊥, 𝑤1

𝜃
) =

∫
𝜃⊥

|P𝜃 𝑓 (𝑥) |
2
𝑤1
𝜃(𝑥) 𝑑𝑥
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=

∫
𝜃⊥

����∫
𝐿(𝜃,𝑥)∩Ω

𝑓 (𝑦) 𝑑𝑦
����2 𝑤1

𝜃(𝑥) 𝑑𝑥

≤
∫
𝜃⊥
𝑤1
𝜃(𝑥)

−1
∫
𝐿(𝜃,𝑥)∩Ω

| 𝑓 (𝑦) |2 𝑑𝑦 𝑤1
𝜃(𝑥) 𝑑𝑥

= ‖ 𝑓 ‖2
𝐿2 (Ω) ,

such that
1 = ‖P𝜃P

∗
𝜃‖ ≤ ‖P𝜃‖ ‖P

∗
𝜃‖ ≤ 1.

Thus, it holds ‖P
𝜃
‖ = ‖P∗

𝜃
‖ = 1. Finally, we apply theorem 2.21 to obtain the representation of the

generalized inverse for 𝑤𝜃 = 𝑤1
𝜃
. The surjectivity of P

𝜃
can be shown analogously to proposition 3.5.

From P+
𝜃
= P∗

𝜃
(P

𝜃
P∗
𝜃
)−1 together with equation (3.1) follows P+

𝜃
= P∗

𝜃
(P

𝜃
P∗
𝜃
)−1 = P∗

𝜃
. Hence,

‖P
𝜃
‖ = ‖P+

𝜃
‖ = 1.

3.3 The Cone Beam transforms

The Cone Beam transform is described by the integral of a function 𝑓 supported in the reconstruction
area Ω along lines starting from a point 𝑎 ∈ R𝑑 \Ω describing the X-ray source position through the
object. We basically distinguish two different definitions of the Cone Beam transform based on the
parameterization of the lines of integration:

(i) The classical Cone Beam transform, cf. [Ham+80], is defined by integrating the function 𝑓
along lines

𝐿+(𝑎, 𝜃) B
{
𝑦 ∈ R

𝑑 : 𝑦 = 𝑎 + 𝑡𝜃, 𝑡 ∈ R+
}

resulting in

D 𝑓 (𝑎, 𝜃) =
∫
𝐿+ (𝑎, 𝜃)

𝑓 (𝑥) 𝑑𝑥.

for 𝑎 ∈ R𝑑 \ Ω and 𝜃 ∈ S𝑑−1. Since the lines are parameterized by a starting position and
the direction of integration this definition is used to describe a spherically shaped detector
around the X-ray source position 𝑎. Therefore we will refer to this transform as the Cone Beam
transform with spherically shaped detector, the classical Cone Beam transform, or simply the
Cone Beam transform.

(ii) A slightly different approach is to parameterize the lines of integration by

𝐿+(𝑎, 𝜂 − 𝑎) = {𝑦 ∈ R
𝑑 : 𝑦 = 𝑎 + 𝑡(𝜂 − 𝑎), 𝑡 ∈ R+}

with 𝜂 ∈ 𝐸𝑎 being a point on the hyperplane

𝐸𝑎 B 𝐸(n𝑎, d𝑎) =
{
𝜂 ∈ R

𝑑 :
〈
𝜂 − d𝑎, n𝑎

〉
= 0

}
where n𝑎 denotes the normal vector of 𝐸𝑎 and d𝑎 denotes the displacement vector, see fig-
ure 3.1. The hyperplane 𝐸𝑎 can be interpreted as a flat detector plane and 𝜂 as the position of
the detector pixels. We define the flat detector Cone Beam transform as

X 𝑓 (𝑎, 𝜂) =
∫
𝐿+ (𝑎, 𝜂−𝑎)

𝑓 (𝑥) 𝑑𝑥, 𝜂 ∈ 𝐸𝑎.

In general, we do not require the position vector of 𝑎 ∈ R𝑑 to be perpendicular to the detector
plane 𝐸𝑎. This will allow us to cover more general measurement geometries as for example
used in computed laminography applications.
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detector plane Ea

X-ray source a

da

na

Ω

Figure 3.1: Scheme of the Cone Beam transform with a flat detector.

Definition 3.11. Let Γ denote a curve of source positions fulfilling dist(Γ,Ω) ≥ 0 .

(i) The 𝑑-dimensional Cone Beam transform (with spherically shaped detectors) of 𝑓 ∈ S (R𝑑) at the
position (𝑎, 𝜃) ∈ (Γ, S𝑑−1) is defined as

D 𝑓 (𝑎, 𝜃) =
∫
𝐿+ (𝑎, 𝜃)

𝑓 (𝑦) 𝑑𝑦 =
∫ ∞

0
𝑓 (𝑎 + 𝑡𝜃) 𝑑𝑡.

(ii) The 𝑑-dimensional (flat detector) Cone Beam transform of 𝑓 ∈ S (R𝑑) at the position (𝑎, 𝜂) ∈
(Γ, 𝐸𝑎) is defined as

X 𝑓 (𝑎, 𝜂) =
∫
𝐿+ (𝑎, 𝜂−𝑎)

𝑓 (𝑦) 𝑑𝑦 =
∫ ∞

0
𝑓 (𝑎 + 𝑡(𝜂 − 𝑎)) 𝑑𝑡.

For a fixed source position 𝑎 ∈ R𝑑 \ {Ω} we set

D𝑎 𝑓 (𝜃) B D 𝑓 (𝑎, 𝜃) and X𝑎 𝑓 (𝜃) B X 𝑓 (𝑎, 𝜃),

respectively.

The properties of the source curve Γ plays an important role for the derivation of analytical inversion
formulas for the Cone Beam transforms. A classical result usually referred to as Tuy’s condition or
Tuy–Kirillov condition stated in [Tuy83] requires a certain regularity on Γ. A less restrictive and
therefore more general condition is referred to as Louis’ condition and can be found in [Lou16].
However, many scanning geometries used in practical applications violate these conditions. To this
end we consider the Cone Beam transform at fixed X-ray source positions not necessarily being
sampled from a source curve Γ.

Theorem 3.12. The Cone Beam transforms

D𝑎 : 𝐿2(Ω) → 𝐿2(S𝑑−1) and X𝑎 : 𝐿2(Ω) → 𝐿2(𝐸𝑎)

for fixed source positions 𝑎 ∈ R𝑑 with dist(𝑎,Ω) > 0 are bounded.
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Proof. For the boundedness of the classical Cone Beam transform D𝑎 we refer to [Nat01, Theo-
rem II.1.6]. Let 𝑎 ∈ R𝑑 be fixed with dist(𝑎,Ω) > 0 and 𝑓 ∈ S (R𝑑) supported in Ω. With Hölder’s
inequality follows for the flat detector Cone Beam transform

|X𝑎 𝑓 (𝜂) |2 =

����∫
𝐿(𝑎, 𝜂−𝑎)∩Ω

𝑓 (𝑦) 𝑑𝑦
����2

≤
∫
𝐿(𝑎, 𝜂−𝑎)∩Ω

𝑑𝑦︸            ︷︷            ︸
X𝑎𝜒Ω (𝜂)

∫
𝐿(𝑎, 𝜂−𝑎)∩Ω

| 𝑓 (𝑦) |2 𝑑𝑦

= X𝑎𝜒Ω (𝜂)
∫
𝐿(𝑎, 𝜂−𝑎)∩Ω

| 𝑓 (𝑦) |2 𝑑𝑦

≤ max
𝜂∈𝐸𝑎

X𝑎𝜒Ω (𝜂)
∫
𝐿(𝑎, 𝜂−𝑎)∩Ω

| 𝑓 (𝑦) |2 𝑑𝑦.

Thus,

‖X𝑎 𝑓 ‖2
𝐿2 (𝐸𝑎) =

∫
𝐸𝑎

|X𝑎 𝑓 (𝜂) |2 𝑑𝜂

≤ max
𝜂′∈𝐸𝑎

(
X𝑎𝜒Ω (𝜂′)

) ∫
𝐸𝑎

∫
𝐿(𝑎, 𝜂−𝑎)∩Ω

| 𝑓 (𝑦) |2 𝑑𝑦 𝑑𝜂

= max
𝜂′∈𝐸𝑎

(
X𝑎𝜒Ω (𝜂′)

) ∫
𝐸𝑎

∫
{𝑡∈R: 𝑎+𝑡 (𝜂−𝑎) ∈Ω}

| 𝑓
(
𝑎 + 𝑡(𝜂 − 𝑎)

)
|2 𝑑𝑡 𝑑𝜂. (3.2)

To obtain an estimation of the integral on the right hand side we apply the substitution 𝑥 =

𝑎 + 𝑡(𝜂 − 𝑎). With {e𝑖}𝑑−1
𝑖=1 being an orthonormal basis of the shifted detector plane 𝐸𝑎 − d𝑎 each

element 𝜂 of 𝐸𝑎 has the representation as

𝜂 =

𝑑−1∑︁
𝑖=1

𝜂𝑖 e𝑖 +d𝑎 with 𝜂𝑖 B
〈
𝜂 − d𝑎, e𝑖

〉
.

The Jacobian determinant of the substitution results in

det
��� 𝜂 − 𝑎 𝑡 e1 · · · 𝑡 e𝑑−1

��� = 𝑡𝑑−1 det

����( 𝑑−1∑︁
𝑖=1

𝜂𝑖 e𝑖 +d𝑎 − 𝑎

)
e1 · · · e𝑑−1

����
= 𝑡𝑑−1 det

���� 𝑑−1∑︁
𝑖=1

𝜂𝑖 e𝑖 e1 · · · e𝑑−1

����︸                                    ︷︷                                    ︸
=0

− 𝑡𝑑−1 det
��� P| (𝐸𝑎−d𝑎)

(
𝑎 − d𝑎

)
e1 · · · e𝑑−1

���︸                                                ︷︷                                                ︸
=0

− 𝑡𝑑−1 det
��� P| (𝐸𝑎−d𝑎)⊥

(
𝑎 − d𝑎

)
e1 · · · e𝑑−1

���.
Putting 𝑎 B P| (𝐸𝑎−d𝑎)⊥

(
𝑎 − d𝑎

)
yields

= −𝑡𝑑−1‖𝑎‖ det

���� 𝑎

‖𝑎‖ e1 · · · e𝑑−1

����︸                               ︷︷                               ︸
=±1
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= ±𝑡𝑑−1‖𝑎‖ .

Since 〈
𝜂 − 𝑎, 𝑎

〉
=

〈𝑑−1∑︁
𝑖=1

𝜂𝑖 e𝑖 −(𝑎 − d𝑎), 𝑎
〉
= ‖𝑎‖2 (3.3)

follows 𝑡 = ‖𝑎‖−2〈𝑎 − 𝑥, 𝑎〉 and

𝑑𝑡 𝑑𝜂 = ‖𝑎‖−1
( |〈𝑎 − 𝑥, 𝑎〉 |

‖𝑎‖2

)1−𝑑
𝑑𝑥 = ‖𝑎‖2𝑑−3(〈𝑎 − 𝑥, 𝑎〉)1−𝑑 𝑑𝑥. (3.4)

We obtain the integral estimation∫
𝐸𝑎

∫
{𝑡∈R: 𝑎+𝑡 (𝜂−𝑎) ∈Ω}

| 𝑓 (𝑎 + 𝑡(𝜂 − 𝑎)) |2 𝑑𝑡 𝑑𝜂 = ‖𝑎‖2𝑑−3
∫
Ω
| 𝑓 (𝑥) |2 |〈𝑎 − 𝑥, 𝑎〉 |1−𝑑 𝑑𝑥

≤ ‖𝑎‖2𝑑−3 max
𝑥′∈Ω

|〈𝑎 − 𝑥 ′, 𝑎〉 |1−𝑑
∫
Ω
| 𝑓 (𝑥) |2 𝑑𝑥

= ‖𝑎‖2𝑑−3 max
𝑥′∈Ω

|〈𝑎 − 𝑥 ′, 𝑎〉 |1−𝑑 ‖ 𝑓 ‖2
𝐿2 (Ω) (3.5)

Putting (3.5) into equation (3.2) finally yields

‖X𝑎 𝑓 ‖2
𝐿2 (𝐸𝑎) ≤ max

𝜂′∈𝐸𝑎
X𝑎𝜒Ω (𝜂′)

∫
𝐸𝑎

∫
{𝑡∈R: 𝑎+𝑡 (𝜂−𝑎) ∈Ω}

| 𝑓 (𝑎 + 𝑡(𝜂 − 𝑎)) |2 𝑑𝑡 𝑑𝜂

≤ ‖𝑎‖2𝑑−3 max
𝜂′∈𝐸𝑎

X𝑎𝜒Ω (𝜂′) max
𝑥′∈Ω

|〈𝑎 − 𝑥 ′, 𝑎〉 |1−𝑑 ‖ 𝑓 ‖2
𝐿2 (Ω) .

This states the boundedness of the flat detector Cone Beam transform X𝑎 for a fixed X-ray source
position.

In analogy to the Radon transform and the X-ray transform, the operator norm of the Cone Beam
transforms can be controlled by introducing weighted 𝐿2-spaces. Therefore, we first note that for a
given function 𝑓 ∈ S (R𝑑) supported in Ω holds

D𝑎 𝑓 (𝜃) ≡ 0, for 𝜃 ∈ S𝑑−1 with 𝐿+(𝑎, 𝜃) ∩ Ω = ∅

as well as
X𝑎 𝑓 (𝜂) ≡ 0, for 𝜂 ∈ 𝐸𝑎 with 𝐿+(𝑎, 𝜂 − 𝑎) ∩ Ω = ∅.

We thus have to restrict arguments on the detector and introduce the following operators. Again,
𝑎 ∈ R𝑑 shall denote a fixed X-ray source position with dist(𝑎,Ω) > 0.

(i) Let

S𝑑−1
𝑎 B

{
𝜃 ∈ S𝑑−1 : D𝑎𝜒Ω (𝜃) ≠ 0

}
=

{
𝜃 ∈ S𝑑−1 : {𝑎 + 𝑡𝜃 : 𝑡 ∈ R+} ∩ Ω ≠ ∅

}
⊂ S𝑑−1

denote the restricted directions for the classical Cone Beam transform and let the weights
𝑊𝑎 : Ω → R and 𝑤𝑎 : S𝑑−1

𝑎 → R be defined as

𝑊𝑎(𝑥) =
1

‖𝑥 − 𝑎‖𝑑−1
and 𝑤𝑎(𝜃) =

1
D𝑎𝜒Ω (𝜃)

.
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(ii) Let

𝐸𝑎 B
{
𝜂 ∈ 𝐸𝑎 : X𝑎𝜒Ω (𝜂) ≠ 0

}
=

{
𝜂 ∈ 𝐸𝑎 : {𝑎 + 𝑡(𝜂 − 𝑎) : 𝑡 ∈ R+} ∩ Ω ≠ ∅

}
⊂ 𝐸𝑎.

denote the restricted detector plane for the flat detector Cone Beam transform and let the
weights 𝑊𝑎 : Ω → R and 𝑤𝑎 : 𝐸𝑎 → R be defined as

𝑊𝑎(𝑥) = ‖𝑎‖−1
(

‖𝑎‖2

〈𝑎 − 𝑥, 𝑎〉

)𝑑−1

= ‖𝑎‖2𝑑−3(〈𝑎 − 𝑥, 𝑎〉)1−𝑑 and 𝑤𝑎(𝜂) =
1

X𝜒Ω (𝜂)
.

Proposition 3.13. Let 𝑎 ∈ R𝑑 \ {Ω}. The Cone Beam operators

D𝑎 : 𝐿2(Ω, 𝑊𝑎) → 𝐿2(S𝑑−1
𝑎 , 𝑤𝑎)

and
X𝑎 : 𝐿2(Ω, 𝑊𝑎) → 𝐿2(𝐸𝑎, 𝑤𝑎)

are bounded with ‖D𝑎‖ = 1 and ‖X𝑎‖ = 1, respectively. The adjoint operators are computed as

D∗
𝑎𝑔(𝑥) = (𝑤𝑎𝑔)

(
𝑥 − 𝑎

‖𝑥 − 𝑎‖

)
and X∗

𝑎𝑔(𝑥) =
(
𝑤𝑎𝑔

) (
𝑎 + ‖𝑎‖2

〈𝑎 − 𝑥, 𝑎〉 (𝑥 − 𝑎)
)

where 𝑎 B P| (𝐸𝑎−d𝑎)⊥
(
𝑎 − d𝑎

)
.

Proof. (i) Boundedness: For both operators, the boundedness follows with Hölder’s inequality.
Let 𝑓 ∈ S (R𝑑) be supported in Ω. Then,

|X𝑎 𝑓 (𝜂) |2 =

����∫
𝐿(𝑎, 𝜂−𝑎)∩Ω

𝑓 (𝑦) 𝑑𝑦
����2

≤
∫
𝐿(𝑎, 𝜂−𝑎)∩Ω

𝑑𝑦︸            ︷︷            ︸
X𝑎𝜒Ω (𝜂)=𝑤𝑎 (𝜂)−1

∫
𝐿(𝑎, 𝜂−𝑎)∩Ω

| 𝑓 (𝑦) |2 𝑑𝑦

= 𝑤𝑎(𝜂)−1
∫
𝐿(𝑎, 𝜂−𝑎)∩Ω

| 𝑓 (𝑦) |2 𝑑𝑦

and thus

‖X𝑎 𝑓 ‖2
𝐿2 (𝐸𝑎, 𝑤𝑎)

=

∫
𝐸𝑎

|X𝑎 𝑓 (𝜂) |2𝑤𝑎(𝜂) 𝑑𝜂

≤
∫
𝐸𝑎

∫
𝐿(𝑎, 𝜂−𝑎)∩Ω

| 𝑓 (𝑦) |2 𝑑𝑦 𝑑𝜂

=

∫
𝐸𝑎

∫
{𝑡∈R: 𝑎+𝑡 (𝜂−𝑎) ∈Ω}

| 𝑓 (𝑎 + 𝑡(𝜂 − 𝑎)) |2 𝑑𝑡 𝑑𝜂.

Substituting 𝑥 = 𝑎 + 𝑡(𝜂 − 𝑎), cf. equation (3.4), yields

=

∫
Ω
| 𝑓 (𝑥) |2 ‖𝑎‖−1

(
‖𝑎‖2

〈𝑎 − 𝑥, 𝑎〉

)𝑑−1

︸                      ︷︷                      ︸
=𝑊𝑎 (𝑥)

𝑑𝑥
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= ‖ 𝑓 ‖2
𝐿2 (Ω,𝑊𝑎) .

For the classical Cone Beam transform the estimation is obtained analogously. With Hölder’s
inequality follows

|D𝑎 𝑓 (𝜃) |2 ≤ 𝑤𝑎(𝜃)−1
∫
𝐿(𝑎,𝜃)∩Ω

| 𝑓 (𝑦) |2 𝑑𝑦.

Thus,

‖D𝑎 𝑓 ‖2
𝐿2 (S𝑑−1

𝑎 , 𝑤𝑎)
=

∫
S𝑑−1
𝑎

|D𝑎 𝑓 (𝜃) |2𝑤𝑎(𝜃) 𝑑𝜃

≤
∫
S𝑑−1
𝑎

∫
{𝑡∈R:𝑎+𝑡𝜃∈Ω}

| 𝑓 (𝑎 + 𝑡𝜃) |2 𝑑𝑡 𝑑𝜃.

Substituting 𝑥 = 𝑎 + 𝑡𝜃, 𝑑𝑡 𝑑𝜃 = ‖𝑥 − 𝑎‖1−𝑑 𝑑𝑥, yields

=

∫
Ω
| 𝑓 (𝑥) |2 ‖𝑥 − 𝑎‖1−𝑑︸       ︷︷       ︸

=𝑊𝑎 (𝑥)

𝑑𝑥

= ‖ 𝑓 ‖2
𝐿2 (Ω,𝑊𝑎) .

(ii) Adjoint operator: Since the weighted Cone Beam operators are bounded, the adjoint operators
exist and are uniquely given. Let 𝑓 ∈ S (R𝑑) be supported in Ω and let 𝑔 ∈ 𝐿2

(
S𝑑−1
𝑎 , 𝑤𝑎

)
. Then,〈

D𝑎 𝑓 , 𝑔
〉
𝐿2(S𝑑−1

𝑎 ,𝑤𝑎) =
∫
S𝑑−1
𝑎

D𝑎 𝑓 (𝜃)𝑔(𝜃)𝑤𝑎(𝜃) 𝑑𝜃

=

∫
S𝑑−1
𝑎

∫
𝐿(𝑎,𝜃)∩Ω

𝑓 (𝑦) 𝑑𝑦 𝑔(𝜃)𝑤𝑎(𝜃) 𝑑𝜃

=

∫
S𝑑−1
𝑎

∫{
𝑡∈R+: 𝑎+𝑡𝜃∈Ω

} 𝑓 (𝑎 + 𝑡𝜃) 𝑑𝑡 𝑔(𝜃)𝑤𝑎(𝜃) 𝑑𝜃.

With the substitution 𝑥 = 𝑎 + 𝑡𝜃, 𝑑𝑡 𝑑𝜃 = ‖𝑥 − 𝑎‖1−𝑑 𝑑𝑥, follows

=

∫
Ω
𝑓 (𝑥) (𝑤𝑎𝑔)

(
𝑥 − 𝑎

‖𝑥 − 𝑎‖

)
‖𝑥 − 𝑎‖1−𝑑︸       ︷︷       ︸

=𝑊𝑎 (𝑥)

𝑑𝑥

and the representation of the adjoint operator follows:

D∗
𝑎𝑔(𝑥) = (𝑤𝑔)

(
𝑥 − 𝑎

‖𝑥 − 𝑎‖

)
.

Now, let 𝑔 ∈ 𝐿2(𝐸𝑎, 𝑤𝑎). Then,〈
X𝑎 𝑓 , 𝑔

〉
𝐿2(𝐸𝑎,𝑤𝑎) =

∫
𝐸𝑎

X𝑎 𝑓 (𝜂)𝑔(𝜂)𝑤𝑎(𝜂) 𝑑𝜂

=

∫
𝐸𝑎

∫
{𝑡∈R: 𝑎+𝑡 (𝜂−𝑎) ∈Ω}

𝑓 (𝑎 + 𝑡(𝜂 − 𝑎))
(
𝑤𝑎𝑔

)
(𝜂) 𝑑𝑡 𝑑𝜂.
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Again, putting 𝑥 = 𝑎 + 𝑡(𝜂 − 𝑎), see equation (3.4), yields

=

∫
Ω
𝑓 (𝑥)

(
𝑤𝑎𝑔

) (
𝑎 + ‖𝑎‖2

〈𝑎 − 𝑥, 𝑎〉 (𝑥 − 𝑎)
)
‖𝑎‖−1

(
〈𝑎 − 𝑥, 𝑎〉
‖𝑎‖2

)1−𝑑
𝑑𝑥

=

∫
Ω
𝑓 (𝑥)

(
𝑤𝑎𝑔

) (
𝑎 + ‖𝑎‖2

〈𝑎 − 𝑥, 𝑎〉 (𝑥 − 𝑎)
)
𝑊𝑎(𝑥) 𝑑𝑥.

Thus, we obtain the adjoint operator

X∗
𝑎𝑔(𝑥) =

(
𝑤𝑎𝑔

) (
𝑎 + ‖𝑎‖2

〈𝑎 − 𝑥, 𝑎〉 (𝑥 − 𝑎)
)
.

(iii) Norm estimate: For the determination of the operator norm, we make use of the relations
‖D𝑎‖ = ‖D∗

𝑎‖ and ‖D𝑎‖ = ‖D∗
𝑎‖ . For 𝑔 ∈ 𝐿2(S𝑑−1

𝑎 , 𝑤𝑎) holdsD∗
𝑎𝑔

2
𝐿2 (Ω,𝑊𝑎)

=

∫
Ω

��D∗
𝑎𝑔(𝑥)

��2‖𝑥 − 𝑎‖1−𝑑 𝑑𝑥

=

∫
Ω

����(𝑤𝑎𝑔)
(
𝑥 − 𝑎

‖𝑥 − 𝑎‖

)����2‖𝑥 − 𝑎‖1−𝑑 𝑑𝑥.

Substituting 𝑥 = 𝑎 + 𝑡𝜃, 𝑑𝑡 𝑑𝜃 = ‖𝑥 − 𝑎‖1−𝑑 𝑑𝑥, yields

=

∫
S𝑎

∫{
𝑡∈R+: 𝑎+𝑡 (𝜂−𝑎) ∈Ω

} ��(𝑤𝑎𝑔) (𝜃)
��2 𝑑𝑡 𝑑𝜃

=

∫
S𝑎

∫{
𝑡∈R+: 𝑎+𝑡 (𝜂−𝑎) ∈Ω

} 𝑑𝑡︸                     ︷︷                     ︸
𝑤𝑎 (𝜃)−1≥0

��(𝑤𝑎𝑔) (𝜃)
��2 𝑑𝜃

=

∫
S𝑎

|𝑔(𝜃) |2 𝑤𝑎(𝜃) 𝑑𝜃

= ‖𝑔‖2
𝐿2 (S𝑑−1

𝑎 , 𝑤𝑎)
.

For 𝑔 ∈ 𝐿2(𝐸𝑎, 𝑤𝑎) further holdsX∗
𝑎𝑔

2
𝐿2 (Ω,𝑊𝑎)

=

∫
Ω

��X∗
𝑎𝑔(𝑥)

��2 ‖𝑎‖2𝑑−3 (
〈𝑎 − 𝑥, 𝑎〉

)1−𝑑
𝑑𝑥

=

∫
Ω

���� (𝑤𝑎𝑔
) (
𝑎 + ‖𝑎‖2

〈𝑎 − 𝑥, 𝑎〉 (𝑥 − 𝑎)
)����2 ‖𝑎‖2𝑑−3 (

〈𝑎 − 𝑥, 𝑎〉
)1−𝑑

𝑑𝑥.

Substituting 𝑥 = 𝑎 + 𝑡(𝜂 − 𝑎) with 𝑑𝑡 𝑑𝜂 = ‖𝑎‖2𝑑−3 (〈𝑎 − 𝑥, 𝑎〉
)1−𝑑

𝑑𝑥 and 𝑡 = ‖𝑎‖−2〈𝑎 − 𝑥, 𝑎〉 ,
see equation (3.4), yields

=

∫
𝐸𝑎

∫
{𝑡∈R: 𝑎+𝑡 (𝜂−𝑎) ∈Ω}

�� (𝑤𝑎𝑔
)
(𝜂)

��2 𝑑𝑡 𝑑𝜂
=

∫
𝐸𝑎

∫
{𝑡∈R: 𝑎+𝑡 (𝜂−𝑎) ∈Ω}

𝑑𝑡︸                   ︷︷                   ︸
𝑤𝑎 (𝜂)−1≥0

�� (𝑤𝑎𝑔
)
(𝜂)

��2 𝑑𝜂
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=

∫
𝐸𝑎

𝑤𝑎(𝜂) |𝑔(𝜂) |2 𝑑𝜂

= ‖𝑔‖2
𝐿2 (𝐸𝑎, 𝑤𝑎)

.

Proposition 3.14. The generalized inverse operators

D+
𝑎 : D

(
D+
𝑎

)
⊂ 𝐿2(S𝑑−1

𝑎 , 𝑤𝑎) → 𝐿2(Ω, 𝑊𝑎)

and
X+
𝑎 : D

(
X+
𝑎

)
⊂ 𝐿2(𝐸𝑎, 𝑤𝑎) → 𝐿2(Ω, 𝑊𝑎)

are given by the adjoint operators

D+
𝑎 = D∗

𝑎 and X+
𝑎 = X∗

𝑎,

respectively. Further, it holds ‖D+
𝑎 ‖𝐿2 (S𝑑−1

𝑎 , 𝑤𝑎)→𝐿2 (Ω,𝑊𝑎) = 1 and ‖X+
𝑎 ‖𝐿2 (𝐸𝑎, 𝑤𝑎)→𝐿2 (Ω,𝑊𝑎) = 1.

Proof. The Cone Beam operators are surjective for fixed X-ray source positions 𝑎 ∈ R𝑑 \ {Ω}. First,
let 𝑔 ∈ 𝐿2(S𝑑−1

𝑎 , 𝑤𝑎) and 𝜑 ∈ 𝐿2(Ω, 𝑊𝑎) be defined as

𝜑(𝑥) B D∗
𝑎𝑔(𝑥) = (𝑤𝑎𝑔)

(
𝑥 − 𝑎

‖𝑥 − 𝑎‖

)
.

Then,

D𝑎𝜑(𝜃) =
∫{

𝑡∈R+: 𝑎+𝑡𝜃∈Ω
} 𝜑(𝑎 + 𝑡𝜃) 𝑑𝑡

=

∫{
𝑡∈R+: 𝑎+𝑡𝜃∈Ω

} (𝑤𝑎𝑔) (𝜃) 𝑑𝑡

=

∫{
𝑡∈R+: 𝑎+𝑡𝜃∈Ω

} 𝑑𝑡︸                ︷︷                ︸
𝑤𝑎 (𝜃)−1

(𝑤𝑎𝑔) (𝜃)

= 𝑔(𝜃).

Besides the surjectivity of D𝑎 the identity D𝑎D
∗
𝑎 = id|𝐿2 (S𝑑−1

𝑎 , 𝑤𝑎) follows from

D𝑎D
∗
𝑎𝑔(𝜃) = D𝑎𝜑(𝜃) = 𝑔(𝜃)

for all 𝑔 ∈ 𝐿2(S𝑑−1
𝑎 , 𝑤𝑎). Applying theorem 2.21 yields

D+
𝑎 = D∗

𝑎(D𝑎D
∗
𝑎)−1 = D∗

𝑎

and with proposition 3.13 follows ‖D𝑎‖ = ‖D+
𝑎 ‖ = 1. For the flat detector Cone Beam transform

we proceed analogously and define

𝜑(𝑥) B X∗
𝑎𝑔(𝑥) =

(
𝑤𝑎𝑔

) (
𝑎 + ‖𝑎‖2

〈𝑎 − 𝑥, 𝑎〉 (𝑥 − 𝑎)
)
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for 𝑔 ∈ 𝐿2(𝐸𝑎, 𝑤𝑎). With equation (3.3) we obtain

X𝑎𝜑(𝜂) =
∫{

𝑡∈R+: 𝑎+𝑡 (𝜂−𝑎) ∈Ω
} 𝜑(𝑎 + 𝑡(𝜂 − 𝑎)) 𝑑𝑡

=

∫{
𝑡∈R+: 𝑎+𝑡𝜃∈Ω

} 𝑑𝑡︸                ︷︷                ︸
𝑤𝑎 (𝜂)−1

(𝑤𝑎𝑔) (𝜂)

= 𝑔(𝜂).

The surjectivity follows immediately and further X𝑎X
∗
𝑎 = id|𝑔∈𝐿2 (𝐸𝑎,𝑤𝑎) since

X𝑎X
∗
𝑎𝑔(𝑥) = X𝑎𝜑(𝜂) = 𝑔(𝑥).

Form theorem 2.21 follows the identity D+
𝑎 = D∗

𝑎 and with ‖X𝑎‖ = ‖X+
𝑎 ‖ follows the operator norm

estimate from 3.13.

3.4 Discussion

In this chapter we discussed the Radon transform, the X-ray transform and the related Cone Beam
transforms for the situation of a fixed first argument, i.e., fixed scanning direction and fixed X-
ray source positions, respectively, as bounded operators between weighted 𝐿2-spaces. All these
operators have in common that

(i) ‖𝑇 ‖ = 1 and

(ii) 𝑇+ = 𝑇∗ with ‖𝑇+‖ = 1,

for a suitable choice of weight functions, cf. proposition 3.5 for the Radon transform, proposi-
tion 3.10 for the X-ray transform and propositions 3.13 and 3.14 for the Cone Beam transforms. For
the Radon transform, this is indirectly discussed in [Nat01, section V.4.3.] in the context of the Kacz-
marz method. For the classical Cone Beam transform some results can be found in [Ham+80].

As a direct consequence, all of these operators are well-posed on the specified weighted spaces and
the pseudo inverse can be directly computed via the adjoint operators. Moreover, it holds

𝑇𝑇∗ = id and 𝑇∗𝑇 = PN(𝑇)⊥ .

Having a closer look at the involved weight functions a certain pattern is observable. Let 𝑇 :
𝐿2(Ω,𝑊) → 𝐿2(Λ, 𝑤) denote one of the above discussed operators.

(i) 𝑇 = R
𝜃
, Λ = [−1, 1], with weights

𝑊 ≡ 1 and 𝑤𝜃(𝑠) =
1

R
𝜃
𝜒Ω (𝑠)

(ii) 𝑇 = P
𝜃
, Λ = 𝜃⊥, with weights

𝑊 ≡ 1 and 𝑤𝜃(𝑥) =
1

P
𝜃
𝜒Ω (𝑥)
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(iii) 𝑇 = D𝑎, Λ = S𝑑−1
𝑎 , with weights

𝑊𝑎(𝑥) =
𝑥 − 𝑎

1−𝑑
and 𝑤𝑎(𝜃) =

1
D𝑎𝜒Ω (𝜃)

(iv) 𝑇 = X𝑎, Λ = 𝐸𝑎, with weights

𝑊𝑎(𝑥) = ‖𝑎‖2𝑑−3 (〈𝑎 − 𝑥, 𝑎〉
)1−𝑑 and 𝑤𝑎(𝜂) =

1
X𝜒Ω (𝜂)

The weight functions 𝑤 in the image domain are defined as the forward projection of the recon-
struction area respectively the unit ball Ω. These weights compensate the ray length of the X-rays
through the reconstruction area. The weights 𝑊 in the operator domain are chosen as the Jaco-
bian of the change of variables from Cartesian coordinates to the coordinates of the measurement
geometry.
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Chapter 4

A semi-discrete operator model

In this chapter, we derive a semi-discrete framework to solve finite dimensional systems of bounded
linear operator equations with common domain. Let X be a real Hilbert space. Further, let 𝐼 ⊂ N

be a finite set of indices and let {Y𝑖}𝑖∈𝐼 be a set of real Hilbert spaces. The direct sum of {Y𝑖}𝑖∈𝐼 is
defined as

Y B
⊕
𝑖∈𝐼

Y𝑖.

By means of (2.1), Y is again a real Hilbert space with the inner product 〈·, ·〉Y defined by

〈𝑔, ℎ〉Y B
∑︁
𝑖∈𝐼

〈
𝑔𝑖, ℎ𝑖

〉
Y𝑖

∀𝑔, ℎ ∈ Y .

We consider a set of linear operators {A𝑖}𝑖∈𝐼 where each operator is a bounded mapping

A𝑖 : X → Y𝑖, ∀𝑖 ∈ 𝐼

and define the linear operator A : X → Y as

(A 𝑓 ) 𝑖 B A𝑖 𝑓 .

By means of equation (2.2), the boundedness of A follows with

‖A 𝑓 ‖2
Y =

∑︁
𝑖∈𝐼

‖A𝑖 𝑓 ‖2
Y𝑖

≤
(∑︁
𝑖∈𝐼

‖A𝑖‖2
)
‖ 𝑓 ‖2

from the boundedness of the operators A𝑖.

We consider the following prototype problem: For a given right-hand side 𝑔 ∈ Y, find 𝑓 ∈ X such
that

A 𝑓 = 𝑔.

This is clearly equivalent to solving the system

A𝑖 𝑓 = 𝑔𝑖 (∀𝑖 ∈ 𝐼) (4.1)

since

A 𝑓 =
©«
A1
...

A |𝐼 |

ª®®¬ 𝑓 =
©«
A1 𝑓
...

A |𝐼 | 𝑓

ª®®¬ and 𝑔 =
©«
𝑔1
...
𝑔 |𝐼 |

ª®®¬.
To solve this problem, we proceed as follows. First, we introduce a discretization scheme for the
operator domain by approximation with a finite-dimensional set of basis elements {𝑏 𝑗} ⊂ X . In
a second step, the operators {A𝑖}𝑖∈𝐼 are restricted to a finite dimensional Hilbert space which we
will use to compute an approximated solution to the reconstruction problem (5.2). Finally, the
convergence of the finite dimensional solution to the solution of (4.1) is investigated.
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4.1 Finite-dimensional approximation

Let 𝐵 B {𝑏 𝑗} 𝑗∈𝐽 a set of linearly independent elements {𝑏 𝑗} 𝑗∈𝐽 ⊂ X for a finite dimensional set of
indices 𝐽 ⊂ N. We call 𝐵 ⊂ X a basis and its elements 𝑏 𝑗 ∈ 𝐵 the basis elements. The subspace

X𝐵 B span 𝐵 ⊆ X

is called the generated subspace. Together with the inner product 〈·, ·〉X , X𝐵 is a finite-dimensional
real Hilbert space with dimension

dimX𝐵 = |𝐽 | .
Every element 𝑓 ∈ X𝐵 has a unique representation in terms of 𝐵, i.e., for every 𝑓 ∈ X𝐵 exists the
basis representation

𝑓 =
∑︁
𝑗∈𝐽

𝑓 𝑗𝑏 𝑗, (4.2)

where the coefficients { 𝑓 𝑗} 𝑗∈𝐽 are uniquely determined, cf. [Lan87]. Thus, the mapping

𝑓 ↦→ 𝒇 =
©«
𝑓1
...
𝑓 |𝐽 |

ª®®¬ ∈ R
|𝐽 | (4.3)

which maps an element 𝑓 ∈ X𝐵 to its basis coefficient vector 𝒇 ∈ R |𝐽 | is a bijection between X𝐵 and
the coefficient space R |𝐽 | .

Further, let𝑊 be a symmetric positive definite |𝐽 |×|𝐽 | matrix which we call weight matrix. Following
example 2.15, the matrix 𝑊 induces a weighted inner product and a weighted norm on R |𝐽 | by

〈·, ·〉𝑊 B 〈·,𝑊 · 〉 and ‖ · ‖𝑊 = ‖𝑊 1
2 · ‖ ,

respectively, where 𝑊
1
2 denotes the square root of 𝑊, cf. theorem 2.11(i).

The following definition is used to extend linear operators to the coefficient space R |𝐽 | .

Definition 4.1. The linear operator

E𝐵 :
(
R

|𝐽 | , 〈·, ·〉𝑊
)
→ X𝐵, E𝐵 𝒇 B

∑︁
𝑗∈𝐽

𝒇 𝑗𝑏 𝑗

is called (weighted) evaluation operator for the basis 𝐵.

Proposition 4.2. The evaluation operator is bounded and its (weighted) adjoint operator

E
♯
𝐵 : X𝐵 → (R |𝐽 | , 〈·, ·〉𝑊)

is computed as

E
♯
𝐵𝜑 =𝑊−1

©«
〈
𝑏1, 𝜑

〉
X

...〈
𝑏 |𝐽 | , 𝜑

〉
X

ª®®¬.
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Proof. Since X𝐵 is finite dimensional the evaluation operator E𝐵 is bounded as can be seen by the
following estimation. For 𝒇 ∈ R |𝐽 | holds

‖E𝐵 𝒇 ‖X𝐵
=

∑︁
𝑗∈𝐽

𝒇 𝑗𝑏 𝑗


X𝐵

≤
∑︁
𝑗∈𝐽

| 𝒇 𝑗 | ‖𝑏 𝑗‖X𝐵

≤ max
𝑗∈𝐽

‖𝑏 𝑗‖X𝐵

∑︁
𝑗∈𝐽

| 𝒇 𝑗 |

≤ max
𝑗∈𝐽

‖𝑏 𝑗‖X𝐵

√︁
|𝐽 | ‖ 𝒇 ‖

≤ max
𝑗∈𝐽

‖𝑏 𝑗‖X𝐵

√︁
|𝐽 | ‖𝑊− 1

2 ‖ ‖ 𝒇 ‖𝑊 ,

where the equivalence of the Euclidean norm ‖ · ‖2 and the norm ‖ · ‖1 as well as the equivalence
of the Euclidean norm and its weighted version ‖ · ‖𝑊 is used. To compute the weighted adjoint, let
𝒇 ∈ R |𝐽 | and 𝜑 ∈ X𝐵. We obtain〈

E𝐵 𝒇 , 𝜑
〉
X =

〈∑︁
𝑗∈𝐽

𝒇 𝑗𝑏 𝑗𝜑

〉
X

=
∑︁
𝑗∈𝐽

𝒇 𝑗 〈𝑏 𝑗, 𝜑〉X

=

〈
𝒇 ,

©«
〈𝑏1, 𝜑〉X

...
〈𝑏 |𝐽 | , 𝜑〉X

ª®®¬
〉

=

〈
𝒇 , 𝑊−1

©«
〈𝑏1, 𝜑〉X

...
〈𝑏 |𝐽 | , 𝜑〉X

ª®®¬
〉
𝑊

.

Thus the representation of the weighted adjoint E♯𝐵 follows.

The evaluation operator E𝐵 is defined as the inverse operator of (4.3), thus mapping a coefficient
vector to its corresponding element in X𝐵 by evaluating the representation (4.2).

It may also be of interest to recover the basis coefficients of a given element 𝑓 ∈ X , i.e., evaluating
the mapping (4.3). To this end, we consider the normal equation

E
♯
𝐵E𝐵 𝒇 = E

♯
𝐵 𝑓

which yields the interpolation problem

Φ𝐵 𝒇 =
©«
〈
𝑏1, 𝑓

〉
X

...〈
𝑏 |𝐽 | , 𝑓

〉
X

ª®®¬
where Φ𝐵 is a regular |𝐽 | × |𝐽 | matrix given by

Φ𝐵 =
(〈
𝑏 𝑗, 𝑏𝑘

〉
X
)
𝑗,𝑘∈𝐽 .
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Chapter 4: A semi-discrete operator model

For 𝑓 ∈ X𝐵, the interpolation problem is uniquely solvable since E
𝐵,𝑘

and thus also its adjoint
operators are bijections on X𝐵. For the more general case 𝑓 ∈ X the interpolation problem yields
the basis coefficients of the best approximation in X𝐵.

Assuming that 𝐵 forms an orthonormal basis of X𝐵, i.e.,

〈𝑏𝑖, 𝑏 𝑗〉X = 𝛿𝑖 𝑗 ∀𝑖, 𝑗 ∈ 𝐽

with 𝛿𝑖 𝑗 being the Kronecker delta, the interpolation matrix is equal to the identity matrix. The basis
coefficients can thus be computed by evaluating the inner products 〈 𝑓 , 𝑏 𝑗〉X .

4.2 Semi-discrete operators

Let 𝑓 ∈ X𝐵 be fixed and let 𝒇 ∈ R |𝐽 | denote its coefficient vector with respect to the basis 𝐵. For any
bounded linear operator T defined on X holds

T 𝑓 = TE𝐵 𝒇 = T

(∑︁
𝑗∈𝐽

𝒇 𝑗𝑏 𝑗

)
=

∑︁
𝑗∈𝐽

𝒇 𝑗

(
T𝑏 𝑗

)
with E𝐵 being the evaluation operator for the basis 𝐵. Due to the bijection property of E𝐵 the image
of T |X𝐵

is completely characterized by the image of the basis elements {T𝑏 𝑗} 𝑗∈𝐽 .

Let A and {A𝑖}𝑖∈𝐼 be defined as above: {A𝑖}𝑖∈𝐼 are bounded linear operators A𝑖 : X → Y𝑖 and
A : X → Y =

⊕
𝑖∈𝐼 Y𝑖 with (A 𝑓 )𝑖 = A𝑖 𝑓 . The operator A is again bounded since

‖A 𝑓 ‖2
Y =

∑︁
𝑖∈𝐼

‖A𝑖 𝑓 ‖2
Y𝑖

≤
∑︁
𝑘∈𝐼

‖A𝑖 𝑓 ‖2
Y𝑖

holds for all 𝑓 ∈ X . The adjoint operator A∗ : Y → X is computed by

A∗𝜑 =
∑︁
𝑖∈𝐼

A∗
𝑖𝜑𝑖 (4.4)

as can be seen for 𝑓 ∈ X and 𝜑 ∈ Y by

〈A 𝑓 , 𝜑〉Y =
∑︁
𝑖∈𝐼

〈
A𝑖 𝑓 , 𝜑𝑖

〉
Y𝑖

=
∑︁
𝑖∈𝐼

〈
𝑓 ,A∗

𝑖𝜑𝑖

〉
X =

〈
𝑓 ,

∑︁
𝑖∈𝐼

A∗
𝑖𝜑𝑖

〉
X
.

Further, we introduce a partition 𝑃 of the index set 𝐼, 𝑃 B {𝐼𝑘}𝑘∈𝐼𝑃 , where the subsets 𝐼𝑘 are
mutually disjoint with

𝐼 =
⋃
𝑘∈𝐼𝑃

𝐼𝑘 and 𝐼𝑃 B {1, . . . |𝑃 | }.

The partitioned operators {𝐴
𝑘
}
𝑘∈𝐼𝑃

with respect to the partition 𝐼𝑃 are defined as

𝐴𝑘 : X → 𝑌𝑘, 𝐴𝑘 𝑓 B
(
A𝑖 𝑓

)
𝑖∈𝐼𝑘

,
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Chapter 4: A semi-discrete operator model

and the Hilbert spaces 𝑌𝑘 are defined by the orthogonal sum

𝑌𝑘 B
⊕
𝑖∈𝐼𝑘

Y𝑖.

In analogy to equation (4.4), the adjoint partitioned operator 𝐴∗
𝑘

is computed as

𝐴∗𝑘𝜑 =
∑︁
𝑖∈𝐼𝑘

A∗
𝑖𝜑𝑖 ∀𝜑 ∈ 𝑌𝑘. (4.5)

Definition 4.3. The linear operator

𝑨
𝐵,𝑘

:
(
R

|𝐽 | , 〈·, ·〉𝑘
)
→ 𝑌𝑘, 𝑨

𝐵,𝑘
𝒇 B

(
𝐴𝑘E𝐵,𝑘

)
𝒇 =

∑︁
𝑗∈𝐽

𝒇 𝑗𝐴𝑘𝑏 𝑗

is called the semi-discrete operator of 𝐴
𝑘

with respect to the basis 𝐵.

Proposition 4.4. (i) 𝑨
𝐵,𝑘

is bounded and its (weighted) adjoint operator

𝑨♯
𝐵,𝑘

: 𝑌𝑘 →
(
R

|𝐽 | , 〈·, ·〉𝑘
)

is computed as

𝑨♯
𝐵,𝑘
𝜑 =𝑊−1

𝑘

∑︁
𝑖∈𝐼𝑘

©«
〈
A𝑖𝑏1, 𝜑𝑖

〉
Y𝑖

...〈
A𝑖𝑏 |𝐽 | , 𝜑𝑖

〉
Y𝑖

ª®®®¬.
(ii) The generalized inverse 𝑨+

𝐵,𝑘
: D(𝑨+

𝐵,𝑘
) = 𝑌𝑘 →

(
R |𝐽 | , 〈·, ·〉𝑘

)
is bounded.

Proof. (i) Since 𝑨
𝐵,𝑘

is defined as the concatenation of the bounded linear operators 𝐴
𝑘

and E
𝐵,𝑘

,
it is again bounded. Consequently, its adjoint operator exists and is uniquely determined.
From the definition of 𝑨

𝐵,𝑘
it yields

𝑨♯
𝐵,𝑘

=
(
𝐴𝑘E𝐵,𝑘

) ♯
= E

♯

𝐵,𝑘
𝐴∗𝑘.

Let 𝜑 ∈ 𝑌𝑘. From proposition 4.2 follows

𝑨♯
𝐵,𝑘
𝜑 = E

♯

𝐵,𝑘
𝐴∗𝑘𝜑 = 𝑊−1

𝑘

©«
〈
𝑏1, 𝐴

∗
𝑘
𝜑
〉
X

...〈
𝑏 |𝐽 | , 𝐴

∗
𝑘
𝜑
〉
X

ª®®¬
(4.5)
= 𝑊−1

𝑘

©«
〈
𝑏1,

∑
𝑖∈𝐼𝑘 A

∗
𝑖
𝜑𝑖

〉
X

...〈
𝑏 |𝐽 | ,

∑
𝑖∈𝐼𝑘 A

∗
𝑖
𝜑𝑖

〉
X

ª®®¬
= 𝑊−1

𝑘

∑︁
𝑖∈𝐼𝑘

©«
〈
𝑏1,A

∗
𝑖
𝜑𝑖

〉
X

...〈
𝑏 |𝐽 | ,A

∗
𝑖
𝜑𝑖

〉
X

ª®®¬
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= 𝑊−1
𝑘

∑︁
𝑖∈𝐼𝑘

©«
〈
A𝑖𝑏1, 𝜑𝑖

〉
Y𝑖

...〈
A𝑖𝑏 |𝐽 | , 𝜑𝑖

〉
Y𝑖

ª®®®¬.
(ii) This follows immediately from corollary 2.19.

The injectivity of the semi-discrete operators 𝑨
𝐵,𝑘

plays an important role in the next chapter when

analyzing iterative methods. The following lemma gives a characterization of 𝑨
𝐵,𝑘

with respect to
its injectivity.

Lemma 4.5. The following statements are equivalent.

(i) 𝑨
𝐵,𝑘

is injective,

(ii) {𝐴
𝑘
𝑏 𝑗} 𝑗∈𝐽 is linearly independent,

(iii) X𝐵 ⊥ N(𝐴
𝑘
).

Proof. (i) ⇔ (ii) Let 𝑨
𝐵,𝑘

be injective. Then, the nullspace N(𝑨
𝐵,𝑘

) is trivial and it is

𝑨
𝐵,𝑘

𝒇 =
∑︁
𝑗∈𝐽

𝒇 𝑗𝐴𝑘𝑏 𝑗 = 0 ⇔ 𝒇 = 0.

This is equivalent to {𝐴
𝑘
𝑏 𝑗} 𝑗∈𝐽 being mutually linearly independent.

(ii) ⇔ (iii) Let {𝐴
𝑘
𝑏 𝑗} 𝑗∈𝐽 be linearly independent. Thus,∑︁

𝑗∈𝐽
𝒇 𝑗𝐴𝑘𝑏 𝑗 = 0 ⇔ 𝑓 𝑗 ≡ 0 ∀ 𝑗 ∈ 𝐽.

Since E
𝐵,𝑘

is bijective, this is again equivalent to

𝐴𝑘 𝑓 = 0 ⇔ 𝑓 = 0 ∀ 𝑓 ∈ X𝐵.

Lemma 4.6. Let 𝛼 > 0.

(i) (
id − 𝛼2𝑨♯

𝐵,𝑘
𝑨
𝐵,𝑘

)
is positive semi-definite w.r.t. 〈·, ·〉𝑘 ⇔ ‖𝑨

𝐵,𝑘
‖

op
≤ 1
𝛼

(ii) (
id − 𝛼2𝑨♯

𝐵,𝑘
𝑨
𝐵,𝑘

)
is negative semi-definite w.r.t. 〈·, ·〉𝑘

⇔ ‖𝑨
𝐵,𝑘

𝒇 ‖
𝑌𝑘

≥ 1
𝛼
‖ 𝒇 ‖𝑘 ∀ 𝒇 ∈ N(𝑨

𝐵,𝑘
)⊥
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Both norm estimations hold strictly if and only if the operators are strictly definite.

Proof. For 𝒇 ∈ R |𝐽 | holds〈
𝒇 , (id − 𝛼2𝑨♯

𝐵,𝑘
𝑨
𝐵,𝑘

) 𝒇
〉
𝑘
= ‖ 𝒇 ‖2

𝑘 − 𝛼2‖𝑨
𝐵,𝑘

𝒇 ‖
2

𝑌𝑘
. (4.6)

(i) First, let (id − 𝛼2𝑨♯
𝐵,𝑘

𝑨
𝐵,𝑘

) be positive semi-definite with respect to 〈·, ·〉𝑘. Using (4.6), this is
equivalent to

‖𝑨
𝐵,𝑘

𝒇 ‖
𝑌𝑘

≤ 1
𝛼
‖ 𝒇 ‖𝑘

such that we obtain the norm estimation

‖𝑨
𝐵,𝑘

‖
op

= max
‖ 𝒇 ‖𝑘=1

‖𝑨
𝐵,𝑘

𝒇 ‖
𝑌𝑘

≤ 1
𝛼
.

Now, let ‖𝑨
𝐵,𝑘

‖
op

be bounded by 1
𝛼

. From (4.6) follows

‖ 𝒇 ‖2
𝑘 − 𝛼2‖𝑨

𝐵,𝑘
𝒇 ‖

2

𝑌𝑘
≥ ‖ 𝒇 ‖2

𝑘 − 𝛼2‖𝑨
𝐵,𝑘

‖
2

op
‖ 𝒇 ‖2

𝑘

= (1 − 𝛼2‖𝑨
𝐵,𝑘

‖
2

op
)‖ 𝒇 ‖2

𝑘

≥ 0.

Thus (id − 𝛼2𝑨♯
𝐵,𝑘

𝑨
𝐵,𝑘

) is positive semi-definite with respect to 〈·, ·〉𝑘.

(ii) For (id − 𝛼2𝑨♯
𝐵,𝑘

𝑨
𝐵,𝑘

) being negative semi-definite the statement follows immediately with
equation (4.6) since

‖ 𝒇 ‖2
𝑘 − 𝛼2‖𝑨

𝐵,𝑘
𝒇 ‖

2

𝑌𝑘
≤ 0 ⇔ 1

𝛼
‖ 𝒇 ‖𝑘 ≤ ‖𝑨

𝐵,𝑘
𝒇 ‖

𝑌𝑘

for all 𝒇 ∈ N(𝑨
𝐵,𝑘

)⊥.

The parameter 𝛼 in lemma 4.6 (ii) can be interpreted as a norm estimate for the inverse operator
of 𝑨𝐵,𝑘 restricted to its range R(𝑨𝐵,𝑘) ⊆ 𝑌𝑘.

Proposition 4.7. The matrix representation of 𝑨♯
𝐵,𝑘

𝑨
𝐵,𝑘

with respect to the canonical orthonormal

basis in R |𝐽 | is given by the symmetric and positive semi-definite |𝐽 | × |𝐽 |-matrix

Φ𝑊
𝐵,𝑘 =𝑊

−1
𝑘

∑︁
𝑖∈𝐼𝑘

(〈
A𝑖𝑏 𝑗,A𝑖𝑏𝑙

〉
Y𝑖

) |𝐽 |
𝑗,𝑙=1

.

The matrix Φ𝑊
𝐵,𝑘

is strictly positive definite with respect to the weighted inner product 〈·, ·〉𝑘 if and only

if 𝑨
𝐵,𝑘

is injective.
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Proof. For arbitrary 𝒇 ∈ R |𝐽 | holds

𝑨♯
𝐵,𝑘

𝑨
𝐵,𝑘

𝒇 =𝑊−1
𝑘

(〈
𝐴𝑘𝑏 𝑗,

∑︁
𝑙∈𝐽

𝒇 𝑙𝐴𝑘𝑏𝑙

〉
𝑌𝑘

)
𝑗∈𝐽

=𝑊−1
𝑘

(∑︁
𝑙∈𝐽

𝒇 𝑙
〈
𝐴𝑘𝑏 𝑗, 𝐴𝑘𝑏𝑙

〉
𝑌𝑘

)
𝑗∈𝐽

=𝑊−1
𝑘

∑︁
𝑙∈𝐽

𝒇 𝑙

(〈
𝐴𝑘𝑏 𝑗, 𝐴𝑘𝑏𝑙

〉
𝑌𝑘

)
𝑗∈𝐽

=
∑︁
𝑙∈𝐽

𝒇 𝑙 ·𝑊−1
𝑘

(〈
𝐴𝑘𝑏 𝑗, 𝐴𝑘𝑏𝑙

〉
𝑌𝑘

)
𝑗∈𝐽

=
∑︁
𝑙∈𝐽

𝒇 𝑙 ·𝑊−1
𝑘

(∑︁
𝑖∈𝐼𝑘

〈
A𝑖𝑏 𝑗,A𝑖𝑏𝑙

〉
Y𝑖

)
𝑗∈𝐽

=
∑︁
𝑙∈𝐽

𝒇 𝑙 ·𝑊−1
𝑘

∑︁
𝑖∈𝐼𝑘

(〈
A𝑖𝑏 𝑗,A𝑖𝑏𝑙

〉
Y𝑖

)
𝑗∈𝐽

= Φ𝑊
𝐵,𝑘 𝒇 .

The positive definiteness of Φ𝑊
𝐵,𝑘

follows from〈
𝒇 ,Φ𝑊

𝐵,𝑘 𝒇
〉
𝑘
=

〈
𝒇 , 𝑨♯

𝐵,𝑘
𝑨
𝐵,𝑘

𝒇
〉
𝑘
= ‖𝑨

𝐵,𝑘
𝒇 ‖

2

𝑌𝑘
≥ 0.

Moreover Φ𝑊
𝐵,𝑘

is strictly positive definite if and only if 𝑨
𝐵,𝑘

is injective.

To close this section, we give an example of suitable weight matrices which will be used later on.
Therefore, we first introduce the concept of diagonally dominant matrices. For a detailed discussion
on diagonally dominant matrices, see e.g. [Lan87].

Definition 4.8. Let 𝐴 be a quadratic real-valued 𝑀×𝑀 matrix. 𝐴 is called weakly diagonally dominant
if

|𝑎𝑖𝑖 | ≥
𝑀∑︁
𝑗=1
𝑗≠𝑖

|𝑎𝑖 𝑗 | ∀𝑖 ∈ {1, . . . , 𝑀}. (4.7)

It is called strictly diagonally dominant if (4.7) holds strictly for all 𝑖 ∈ {1, . . . , 𝑀}.

Lemma 4.9. Let 𝐴 ∈ R𝑀×𝑀 be symmetric with non-negative diagonal. If 𝐴 is (weakly) diagonally
dominant then it is positive (semi-)definite.

Proof. Let 𝑥 ∈ R𝑀 . It holds,

〈𝑥, 𝐴𝑥〉 =
𝑀∑︁
𝑗=1

𝑥 𝑗

𝑀∑︁
𝑘=1

𝑎 𝑗𝑘𝑥𝑘
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=

𝑀∑︁
𝑗=1

𝑥 𝑗

(
𝑎 𝑗 𝑗𝑥 𝑗 +

𝑀∑︁
𝑘=1
𝑘≠ 𝑗

𝑎 𝑗𝑘𝑥𝑘

)

=

𝑀∑︁
𝑗=1

𝑎 𝑗 𝑗𝑥
2
𝑗 +

𝑀∑︁
𝑗=1

𝑀∑︁
𝑘=1
𝑘≠ 𝑗

𝑎 𝑗𝑘𝑥 𝑗𝑥𝑘

≥
𝑀∑︁
𝑗=1

𝑎 𝑗 𝑗𝑥
2
𝑗 −

𝑀∑︁
𝑗=1

𝑀∑︁
𝑘=1
𝑘≠ 𝑗

|𝑎 𝑗𝑘 | |𝑥 𝑗 | |𝑥𝑘 |

≥
𝑀∑︁
𝑗=1

𝑎 𝑗 𝑗𝑥
2
𝑗 −

1
2

𝑀∑︁
𝑗=1

𝑀∑︁
𝑘=1
𝑘≠ 𝑗

|𝑎 𝑗𝑘 |
(
𝑥2
𝑗 + 𝑥2

𝑘

)
=

𝑀∑︁
𝑗=1

𝑎 𝑗 𝑗𝑥
2
𝑗 −

1
2

𝑀∑︁
𝑗=1

( 𝑀∑︁
𝑘=1
𝑘≠ 𝑗

|𝑎 𝑗𝑘 |
)
𝑥2
𝑗 −

1
2

𝑀∑︁
𝑗=1

𝑀∑︁
𝑘=1
𝑘≠ 𝑗

|𝑎 𝑗𝑘 |𝑥2
𝑘

and with the symmetry of 𝐴,

=

𝑀∑︁
𝑗=1

𝑎 𝑗 𝑗𝑥
2
𝑗 −

𝑀∑︁
𝑗=1

( 𝑀∑︁
𝑘=1
𝑘≠ 𝑗

|𝑎 𝑗𝑘 |
)
𝑥2
𝑗 .

We only consider the situation of 𝐴 being weakly diagonally dominant. The result for strictly
diagonally dominant matrices is shown analogously. Thus, let 𝐴 be weakly diagonally dominant
with non-negative diagonal elements, i.e.,

|𝑎 𝑗 𝑗 | = 𝑎 𝑗 𝑗 ≥
𝑀∑︁
𝑗=1
𝑗≠𝑘

|𝑎 𝑗𝑘 | ∀ 𝑗 ∈ {1, . . . , 𝑀}.

It follows 〈
𝑥, 𝐴𝑥

〉
≥

𝑀∑︁
𝑗=1

𝑎 𝑗 𝑗𝑥
2
𝑗 −

𝑀∑︁
𝑗=1

( 𝑀∑︁
𝑘=1
𝑘≠ 𝑗

|𝑎 𝑗𝑘 |
)
𝑥2
𝑗

≥
𝑀∑︁
𝑗=1

𝑎 𝑗 𝑗𝑥
2
𝑗 −

𝑀∑︁
𝑗=1

|𝑎 𝑗 𝑗 |𝑥2
𝑗

= 0,

and 𝐴 is positive semi-definite.

Example 4.10. (i) Let 𝑊𝑘 be a diagonal matrix defined as(
𝑊𝑘

)
𝑗 𝑗
B

∑︁
𝑙∈𝐽

���〈𝐴𝑘𝑏 𝑗, 𝐴𝑘𝑏𝑙〉𝑌𝑘 ��� = ∑︁
𝑙∈𝐽

����∑︁
𝑖∈𝐼𝑘

〈
A𝑖𝑏 𝑗,A𝑖𝑏𝑙

〉
Y𝑖

���� ∀ 𝑗 ∈ 𝐽. (4.8)
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Basically, lemma 4.6 is applied to obtain a norm estimation of the semi-discrete operators 𝑨𝐵,𝑘
by showing that id − 𝛼2𝑨♯

𝐵,𝑘
𝑨
𝐵,𝑘

is positive (semi-)definite for some positive parameter 𝛼. With

the matrix representation Φ𝑊
𝐵,𝑘

of 𝑨♯
𝐵,𝑘

𝑨
𝐵,𝑘

from proposition 4.7 we define the matrices

Φ𝛼 B (id − 𝛼2Φ𝑊
𝐵,𝑘) 𝛼 > 0.

With lemma 4.6 follows the norm estimation ‖𝑨
𝐵,𝑘

‖
op

≤ 𝛼−1 if Φ𝛼 is diagonally dominant.

Putting 𝛼 = 1, it follows ���(Φ1) 𝑗 𝑗
��� = ���1 −

(
Φ𝑊
𝐵,𝑘

)
𝑗 𝑗

���
=

���1 −
(
𝑊𝑘

)−1
𝑗 𝑗

〈
𝐴𝑘𝑏 𝑗, 𝐴𝑘𝑏 𝑗

〉
𝑌𝑘︸            ︷︷            ︸

=‖𝐴
𝑘
𝑏 𝑗 ‖2

𝑌𝑘
≥0

���
=

(
𝑊𝑘

)−1
𝑗 𝑗

��� (𝑊𝑘

)
𝑗 𝑗
−

〈
𝐴𝑘𝑏 𝑗, 𝐴𝑘𝑏 𝑗

〉
𝑌𝑘

���
=

(
𝑊𝑘

)−1
𝑗 𝑗

���∑︁
𝑙≠ 𝑗

��〈𝐴𝑘𝑏 𝑗, 𝐴𝑘𝑏𝑙〉𝑌𝑘 �����
=

∑︁
𝑙≠ 𝑗

(
𝑊𝑘

)−1
𝑗 𝑗

���〈𝐴𝑘𝑏 𝑗, 𝐴𝑘𝑏𝑙〉𝑌𝑘 ���
=

∑︁
𝑙≠ 𝑗

��� (𝑊𝑘

)−1
𝑗 𝑗

〈
𝐴𝑘𝑏 𝑗, 𝐴𝑘𝑏𝑙

〉
𝑌𝑘

���
=

∑︁
𝑙≠ 𝑗

���(Φ1) 𝑗𝑙
���.

Hence, Φ𝛼 is weakly diagonally dominant and the norm estimation ‖𝑨
𝐵,𝑘

‖
op

≤ 1 follows.

(ii) Assuming additionally ���〈𝐴𝑘𝑏 𝑗, 𝐴𝑘𝑏𝑙〉𝑌𝑘 ��� = 〈
𝐴𝑘𝑏 𝑗, 𝐴𝑘𝑏𝑙

〉
𝑌𝑘

∀ 𝑗, 𝑙 ∈ 𝐽

the weight matrices (4.8) are computed as(
𝑊𝑘

)
𝑗 𝑗
=

∑︁
𝑙∈𝐽

∑︁
𝑖∈𝐼𝑘

〈
A𝑖𝑏 𝑗,A𝑖𝑏𝑙

〉
Y𝑖

=
∑︁
𝑖∈𝐼𝑘

〈
A𝑖𝑏 𝑗,

∑︁
𝑙∈𝐽

A𝑖𝑏𝑙

〉
Y𝑖

.

With the same argument as in (i), the matrix −Φ1 is positive semi-definite with respect to 〈·, ·〉𝑘.
Thus for 𝒇 ∈ R |𝐽 | holds

−
〈
𝒇 ,

(
id − Φ𝑊

𝐵,𝑘

)
𝒇
〉
𝑘
≥ 0 ⇔ ‖𝑨

𝐵,𝑘
𝒇 ‖

𝑌𝑘
≥ ‖ 𝒇 ‖𝑘,

cf. lemma 4.6. Together with (i) follows

‖𝑨
𝐵,𝑘

‖
op

≤ 1 and ‖𝑨
𝐵,𝑘

𝒇 ‖
𝑌𝑘
= ‖ 𝒇 ‖𝑘 ∀ 𝒇 ∈ N(𝑨

𝐵,𝑘
)⊥.
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4.3 Convergence and regularization properties of the
semi-discrete model

In the final section of this chapter, we treat the convergence and regularization properties of the
semi-discrete operator model. The main question is under which conditions does the solution of the
semi-discrete problem

𝑨𝐵,𝑘 𝒇 = 𝑔𝑘 𝑘 ∈ 𝐼𝑃

converges to the solution of the continuous problem A 𝑓 = 𝑔 for a given right-hand side 𝑔 ∈ 𝑌 .
Moreover, what impact does the presence of noise, i.e., only a disturbed version of the data 𝑔 is
available, have on the semi-discrete solution. To answer these questions, we will investigate the
semi-discrete problem in the context of projection methods, in particular, the semi-discretization
is treated within the scope of the least-squares projection method. Projection methods are widely-
studied in literature. For an overview see [Kin16], [Lou89], [EHN96] and the references therein.
We adapt the notation of [Nat77] and [Lou89].

Let A : X → 𝑌 be a bounded linear operator between the Hilbert spaces X and Y. For 𝑔 ∈ Y, we
aim at finding a solution of

A 𝑓 = 𝑔. (4.9)

Since A is not further specified, we naturally consider the minimum-norm solution 𝑓 † ∈ N(A)⊥.
Further, we consider the sequences {X𝑙}𝑙 ⊂ X and {Y𝑙}𝑙 ⊂ Y of finite dimensional subspaces
defining a projection method to solve (4.9). In other words, we solve the problem

𝑓𝑙 ∈ X𝑙 ∩ N(A)⊥ :
〈
𝜓,A 𝑓𝑙

〉
= 〈𝜓, 𝑔〉 ∀𝜓 ∈ Y𝑙 . (4.10)

We are now confronted with the question under which conditions the solution of (4.10) does
converge to 𝑓+. To settle this question, we reformulate (4.10) as the following equivalent problem:
Find 𝑓𝑙 ∈ N

(
A𝑙

)⊥ such that
A𝑙 𝑓𝑙 = PY𝑙

𝑔

with A𝑙 B PY𝑙
APX𝑙

and PX𝑙
and PY𝑙

denoting the orthogonal projectors onto X𝑙 and Y𝑙, respectively.

The generalized inverse of A𝑙 is denoted by A𝑙,+ . We obtain the following estimation which can be
found e.g. in [Rie03, section 6.1.2].

Lemma 4.11. It holds

‖ 𝑓+ − 𝑓+𝑙 ‖X ≤
(
1 + ‖A𝑙,+ PY𝑙

A‖
)

dist
(
𝑓+,X𝑙

)
+ ‖PN(A𝑙) 𝑓

+‖X

with 𝑓+
𝑙
B A𝑙,+ PY𝑙

𝑔.

Proof. Since X𝑙 and Y𝑙 are finite dimensional subspaces, the generalized inverse A𝑙,+ is bounded,
cf. corollary 2.19, and with the boundedness of A follows ‖A𝑙,+ PY𝑙

A‖ < ∞. For arbitrary 𝜑 ∈ X𝑙

follows
A𝑙,+ PY𝑙

A𝜑 = A𝑙,+A𝑙𝜑 = PN(A𝑙)⊥𝜑 ⇔
(
PN(A𝑙)⊥ − A𝑙,+ PY𝑙

A
)
𝜑 = 0.

Thus, it yields

𝑓+ − 𝑓+𝑙 =
(
id − A𝑙,+ PY𝑙

A
)
𝑓+

=
(
PN(A𝑙)⊥ − A𝑙,+ PY𝑙

A
)
𝑓+ + PN(A𝑙) 𝑓

+
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=
(
PN(A𝑙)⊥ − A𝑙,+ PY𝑙

A
) (
𝑓+ − 𝜑

)
+ PN(A𝑙) 𝑓

+

and further

‖ 𝑓+ − 𝑓+𝑙 ‖X ≤
(
1 + ‖A𝑙,+ PY𝑙

A‖
)
‖ 𝑓+ − 𝜑‖X + ‖PN(A𝑙) 𝑓

+‖X ∀𝜑 ∈ X𝑙 .

In particular, this estimation still holds true when considering the infimum over all 𝜑 ∈ X𝑙 of the
right-hand side such that we obtain

‖ 𝑓+ − 𝑓+𝑙 ‖X ≤
(
1 + ‖A𝑙,+ PY𝑙

A‖
)

inf
𝜑∈X𝑙

‖ 𝑓+ − 𝜑‖X + ‖PN(A𝑙) 𝑓
+‖X

=
(
1 + ‖A𝑙,+ PY𝑙

A‖
)

dist
(
𝑓+,X𝑙

)
+ ‖PN(A𝑙) 𝑓

+‖X .

With this lemma, we are able to formulate the following result which is basically an adaption of a
result from [Nat77], see also [Lou89, theorem 4.5.4].

Theorem 4.12. Let 𝜀 > 0. For 𝑔, 𝑔𝜀 ∈ Y with ‖𝑔 − 𝑔𝜀‖Y < 𝜀 and 𝑓+
𝑙,𝜀

= A𝑙,+ PY𝑙
𝑔𝜀 holds,

‖ 𝑓+ − 𝑓+𝑙,𝜀‖X ≤
(
1 + ‖A𝑙,+ PY𝑙

A‖
)

dist
(
𝑓 ,X𝑙

)
+ ‖PN(A𝑙) 𝑓

+‖X + 𝜀‖A𝑙,+ PY𝑙
‖ .

Proof. The error can be split into an approximation error term and a data error term as

‖ 𝑓+ − 𝑓+𝑙,𝜀‖X ≤ ‖ 𝑓+ − 𝑓+𝑙 ‖X + ‖ 𝑓+𝑙 − 𝑓+𝑙,𝜀‖X .

Lemma 4.11 yields the estimation

‖ 𝑓+ − 𝑓+𝑙 ‖X ≤
(
1 + ‖A𝑙,+ PY𝑙

A‖
)

dist
(
𝑓 ,X𝑙

)
+ ‖PN(A𝑙) 𝑓

+‖X
for the approximation error. The data error term is estimated with

‖ 𝑓+𝑙 − 𝑓+𝑙,𝜀‖X = ‖A𝑙,+ PY𝑙
(𝑔 − 𝑔𝜀)‖X ≤ ‖A𝑙,+ PY𝑙

‖ ‖𝑔 − 𝑔𝜀‖Y ≤ 𝜀‖A𝑙,+ PY𝑙
‖

yielding the conclusion.

We now have a closer look at the least squares projection method. Let {𝐵𝑙}𝑙∈N ⊆ X be a sequence
of finite dimensional basis sets 𝐵𝑙 B {𝑏𝑙

𝑗
} 𝑗∈𝐽𝑙 denoting the sets of basis elements. The least-squares

projection method is defined by the choice

X𝑙 B span
𝑙∈N

{
𝐵𝑙

}
and Y𝑙 B AX𝑙 = span

𝑙∈N

{
A𝑏𝑙𝑗

}
𝑗∈𝐽𝑙

.

To obtain convergence for the least squares method, we have to formulate the following denseness
assumption of the basis sets {𝐵𝑙}𝑙∈N:

lim
𝑙→∞

dist
(
𝑓 ,X𝑙

)
= 0 ∀ 𝑓 ∈ X . (4.11)

Lemma 4.13. For {𝐵𝑙}𝑙∈N ⊆ X fulfilling the denseness condition (4.11) holds

lim
𝑙→∞

PN(A𝑙)⊥𝜑 = 0 ∀𝜑 ∈ N(A)⊥.
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Proof. We first state that
A𝑙 = PY𝑙

APX𝑙
= APX𝑙

.

Thus, the nullspace of A𝑙 is given by

N
(
A𝑙

)
=

{
𝜑 ∈ X : PX𝑙

𝜑 = 0
}
∪

{
𝜑 ∈ X𝑙 : A𝜑 = 0

}
= N(PX𝑙

) ∪
{
𝜑 ∈ N

(
PX𝑙

)
: A𝜑 = 0

}
= X⊥

𝑙 ⊕
(
X𝑙 ∩ N(A)

)
.

For arbitrary 𝜑 ∈ N(A)⊥ follows

PN(A𝑙)𝜑 = PX⊥
𝑙
𝜑 + PX⊥

𝑙
∩N(A)𝜑 = PX⊥

𝑙
𝜑 = 𝜑 − PX𝑙

𝜑.

With condition (4.11) follows

lim
𝑙→∞

‖PN(A𝑙)𝜑‖X = lim
𝑙→∞

‖𝜑 − PX𝑙
𝜑‖X = 0.

Lemma 4.14. Let |𝐼 | < ∞. It holds:

‖A+
𝑖 ‖ < ∞ ∀𝑖 ∈ 𝐼 ⇒ ‖A+‖ < ∞ ⇒ ‖A𝑙,+ ‖ ≤ ‖A+‖ ∀𝑙 ∈ 𝑙 ∈ N.

Proof. (i) Let the generalized inverse operators A+
𝑖

be bounded for all 𝑖 ∈ 𝐼. Thus, following
theorem 2.17, the operators A𝑖 have closed range, i.e.,

R
(
A𝑖

)
= R

(
A𝑖

)
∀𝑖 ∈ 𝐼.

Since (A 𝑓 ) 𝑖 = A𝑖 𝑓 , it is

R(A) =
⊕
𝑖∈𝐼

R
(
A𝑖

)
=

⊕
𝑖∈𝐼

R
(
A𝑖

)
=

⊕
𝑖∈𝐼

R
(
A𝑖

)
and the range of A is closed. Theorem 2.17 now yields the boundedness of A+.

(ii) For arbitrary 𝑙 ∈ N holds{
𝜑 ∈ N(A𝑙)⊥ :

A𝑙𝜑

Y = 1

}
=

{
𝜑 ∈ X𝑙 ∩ N(A)⊥ :

A𝑙𝜑

Y = ‖A𝜑‖Y = 1

}
=

{
𝜑 ∈ X𝑙 : ‖A𝜑‖Y = 1

}
∩

{
𝜑 ∈ N(A)⊥ : ‖A𝜑‖Y = 1

}
⊆

{
𝜑 ∈ N(A)⊥ : ‖A𝜑‖Y = 1

}
.

Thus, lemma 2.22 yields

‖A𝑙,+ ‖ = sup
𝜑∈N(A𝑙)⊥, ‖A𝑙𝜑 ‖Y=1

‖𝜑‖Y

≤ sup
𝜑∈N(A)⊥, ‖A𝜑 ‖Y=1

‖𝜑‖Y

≤ ‖A+‖ .
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Theorem 4.15. Let {𝐵𝑙}𝑙∈N ⊆ X such that condition (4.11) is fulfilled and 𝑔, 𝑔𝜀 ∈ Y with ‖𝑔 − 𝑔𝜀‖Y <

𝜀 for 𝜀 > 0. If the operator A =
(
A1, . . . ,A |𝐼 |

)> fulfills ‖(A𝑖)+‖ < ∞ for all 𝑖 ∈ 𝐼, then

lim
𝑙→∞
𝜀→0

‖ 𝑓+ − 𝑓+𝑙,𝜀‖X = 0.

Proof. To show this result we use the norm estimation of theorem 4.12. It holds,

‖A𝑙,+ ‖ ≤ ‖A+‖ ∀𝑙 ∈ 𝑙 ∈ N

with ‖A+‖ < ∞, cf. lemma 4.14. It follows

‖A𝑙,+ PY𝑙
A‖ = ‖A+‖ ‖A‖ and ‖A𝑙,+ PY𝑙

‖ ≤ ‖A+‖ .

Applying the norm estimation from theorem 4.12 yields

‖ 𝑓+ − 𝑓+𝑙,𝜀‖X ≤
(
1 + ‖A𝑙,+ PY𝑙

A‖
)

dist
(
𝑓 ,X𝑙

)
+ ‖PN(A𝑙) 𝑓

+‖X + 𝜀‖A𝑙,+ PY𝑙
‖

≤
(
1 + ‖A+‖ ‖A‖

)
dist

(
𝑓 ,X𝑙

)
+ ‖PN(A𝑙) 𝑓

+‖X + 𝜀‖A+‖ .

Together with lemma 4.13, stating lim𝑙→∞ PN(A)⊥𝜑 = 0 for 𝜑 ∈ N(A)⊥, and the approximation
property (4.11) follows

lim
𝑙→∞

‖ 𝑓+ − 𝑓+𝑙,𝜀‖X ≤ 𝜀‖A+‖ 𝜀→0−→ 0.
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Chapter 5

Semi-discrete iteration methods

Let the operators
A : X → Y and A𝑖 : X → Y𝑖 𝑖 ∈ 𝐼

be defined as bounded linear operators A ∈ L(X ,Y) and A𝑖 ∈ L(X ,Y𝑖), respectively. The Hilbert
space Y is defined as the direct sum of the real Hilbert spaces {Y𝑖}𝑖∈𝐼 , cf. chapter 4, for 𝐼 ⊂ N being
a finite set of indices. We further consider the basis 𝐵 to be fixed throughout the rest of this chapter.
For convenience, we will drop the subscript 𝐵 in the notation. Let

𝑨 B
©«
𝑨1
...

𝑨 |𝐼𝑃 |

ª®®¬ :
(
R

|𝐽 | , 〈·, ·〉𝑘
)
→ Y (5.1)

denote the semi-discrete operators of 𝐴
𝑘

:
(
R |𝐽 | , 〈·, ·〉𝑘

)
→ 𝑌𝑘, 𝑘 ∈ 𝐼𝑃, with respect to the basis 𝐵.

In this chapter, we propose an iteration scheme to solve the inverse problem

A 𝑓 = 𝑔 𝑔 ∈ Y (5.2)

by computing an approximation to 𝑓 in X𝐵 via solving the semi-discrete problem

𝑨 𝑓 = 𝑔.

Together with the semi-discrete operator model (5.1), the iteration schemes are called semi-discrete
iteration methods for solving problem (5.2). In particular, the following iteration scheme is consid-
ered: Let 𝒇 0 ∈ R |𝐽 | be an arbitrary initial value. For 𝑚 ≥ 0 compute

𝒇𝑚,1 B 𝒇𝑚

𝒇𝑚,𝑘+1 = 𝒇𝑚,𝑘 + Ψ𝑘

(
𝑔𝑘 − 𝑨𝑘 𝒇

𝑚,𝑘
)

for 𝑘 ∈ 𝐼𝑃

𝒇𝑚+1 B 𝒇𝑚, |𝐼𝑃 |+1.

(5.3)

The backward operators
Ψ𝑘 : 𝑌𝑘 →

(
R

|𝐽 | , 〈·, ·〉𝑘
)

𝑘 ∈ 𝐼𝑃

map from the data space 𝑌𝑘 to the coefficient space R |𝐽 | and characterize the specific iteration
methods. In particular we consider:

(i) The Landweber-Kaczmarz iteration

Ψ𝑘 = 𝜆𝑘𝑨
∗
𝑘 𝜆𝑘 > 0
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Chapter 5: Semi-discrete iteration methods

(ii) The Kaczmarz iteration
Ψ𝑘 = 𝜆𝑘𝑨

+
𝑘 𝜆𝑘 > 0

The parameters {𝜆𝑘}𝑘∈𝐼𝑃 are called relaxation parameter.

Before having a closer look at the convergence properties of the general iteration scheme (5.3) and
the specific choices of Ψ𝑘 we introduce some notation. Let 𝑮𝑘 : R |𝐽 | → R |𝐽 | be finite dimensional
linear operators defined as

𝑮𝑘 B id − Ψ𝑘𝑨𝑘 𝑘 ∈ 𝐼𝑃 .

The operators 𝑮𝑘 summarize all mappings applied to the coefficient vector 𝒇𝑚,𝑘 such that we can
write the iteration steps as

𝒇𝑚,𝑘+1 = 𝒇𝑚,𝑘 + Ψ𝑘

(
𝑔𝑘 − 𝑨𝑘 𝒇

𝑚,𝑘
)
= 𝑮𝑘 𝒇

𝑚,𝑘 + Ψ𝑘𝑔𝑘.

Lemma 5.1. Let 𝑝, 𝑞 ∈ 𝐼𝑃 with 𝑝 ≤ 𝑞. It holds

𝑮𝑞 ◦ 𝑮𝑞−1 ◦ · · · ◦ 𝑮𝑝 = id −
(
Ψ𝑞𝑨𝑞 +

𝑞−1∑︁
𝑘=𝑝

(
𝑮𝑞 ◦ · · · ◦ 𝑮𝑘+1

)
Ψ𝑘𝑨𝑘

)
. (5.4)

Proof. Let 𝑝 ∈ 𝐼𝑃 be fixed. We show the result by induction over 𝑞. For 𝑞 = 𝑝 the statement is trivial
since the left-hand side of (5.4) reduces to 𝑮𝑞 and the sum of the right-hand side is empty,

𝑮𝑞 = id −
(
Ψ𝑞𝑨𝑞 +

𝑞−1∑︁
𝑘=𝑞

(
𝑮𝑞 ◦ · · · ◦ 𝑮𝑘+1

)
Ψ𝑘𝑨𝑘︸                            ︷︷                            ︸

=0

)
= id − Ψ𝑞𝑨𝑞.

Now let 𝑞 > 𝑝 and equation (5.4) be true for (𝑞 − 1), i.e.,

𝑮𝑞−1 ◦ · · · ◦ 𝑮𝑝 = id −
(
Ψ𝑞−1𝑨𝑞−1 +

𝑞−2∑︁
𝑘=𝑝

(
𝑮𝑞−1 ◦ · · · ◦ 𝑮𝑘+1

)
Ψ𝑘𝑨𝑘

)
. (5.5)

It follows

𝑮𝑞 ◦ 𝑮𝑞−1 ◦ · · · ◦ 𝑮𝑝

(5.5)
= 𝑮𝑞

(
id −

(
Ψ𝑞−1𝑨𝑞−1 +

𝑞−2∑︁
𝑘=𝑝

(
𝑮𝑞−1 ◦ · · · ◦ 𝑮𝑘+1

)
Ψ𝑘𝑨𝑘

))
= 𝑮𝑞 −

(
𝑮𝑞Ψ𝑞−1𝑨𝑞−1 +

𝑞−2∑︁
𝑘=𝑝

(
𝑮𝑞 ◦ · · · ◦ 𝑮𝑘+1

)
Ψ𝑘𝑨𝑘

)
=

(
id − Ψ𝑞𝑨𝑞

)
−

𝑞−1∑︁
𝑘=𝑝

(
𝑮𝑞 ◦ · · · ◦ 𝑮𝑘+1

)
Ψ𝑘𝑨𝑘

= id −
(
Ψ𝑞𝑨𝑞 +

𝑞−1∑︁
𝑘=𝑝

(
𝑮𝑞 ◦ · · · ◦ 𝑮𝑘+1

)
Ψ𝑘𝑨𝑘

)
where we made use of the linearity of 𝑮𝑘. Thus, the representation of 𝑮𝑞 ◦ 𝑮𝑞−1 ◦ · · · ◦ 𝑮𝑝 is shown
for 𝑞, 𝑝 ∈ 𝐼𝑃.
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To derive a closed form of the iteration scheme (5.3), we introduce the operators

𝑸𝑘 B 𝑮 |𝐼𝑃 | ◦ · · · ◦ 𝑮𝑘+1 for 𝑘 = 0, . . . , |𝐼𝑃 |

with 𝑸 |𝐼𝑃 | B id and 𝑮 B 𝑮 |𝐼𝑃 | ◦ · · · ◦ 𝑮1.

Lemma 5.2. For 𝑘 ∈ 𝐼𝑃 holds

𝑸𝑘 = id −
|𝐼𝑃 |∑︁
𝑙=𝑘+1

𝑸𝑙Ψ𝑙𝑨𝑙 and 𝑮 = id −
∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑨𝑘.

Proof. Putting 𝑞 = |𝐼𝑃 | and 𝑝 = 𝑘 + 1 in lemma 5.1 yields

𝑸𝑘 = 𝑮 |𝐼𝑃 | ◦ · · · ◦ 𝑮𝑘+1

= id −
(
Ψ|𝐼𝑃 | 𝑨 |𝐼𝑃 | +

|𝐼𝑃 |−1∑︁
𝑙=𝑘+1

(
𝑮 |𝐼𝑃 | ◦ · · · ◦ 𝑮 𝑙+1

)
Ψ𝑙𝑨𝑙

)
= id −

(
𝑸 |𝐼𝑃 |Ψ|𝐼𝑃 | 𝑨 |𝐼𝑃 | +

|𝐼𝑃 |−1∑︁
𝑙=𝑘+1

𝑸𝑙Ψ𝑙𝑨𝑙

)
= id −

|𝐼𝑃 |∑︁
𝑙=𝑘+1

𝑸𝑙Ψ𝑙𝑨𝑙 .

For 𝑝 = 0 follows

𝑮 = 𝑸0 = id −
∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑨𝑘.

We obtain the following closed form representations of the iteration scheme (5.3).

Proposition 5.3. The following schemes are equivalent formulations of the iteration scheme (5.3).

(i) (Closed form)

𝒇𝑚+1 = 𝒇𝑚 +
∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘

(
𝑔𝑘 − 𝑨𝑘 𝒇

𝑚
)

𝑚 = 0, 1, . . .

(ii) (Fixed-point form)
𝒇𝑚+1 = Φ 𝒇𝑚 𝑚 = 0, 1, . . .

with the affine linear fixed-point operator

Φ : R |𝐽 | → R
|𝐽 | , Φ 𝒇 B 𝑮 𝒇 +

∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘.
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(iii) (Direct form) It holds

𝒇𝑚 = 𝑮𝑚 𝒇 0 +
𝑚−1∑︁
𝑙=0

𝑮 𝑙

( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

)
𝑚 = 1, 2, . . .

with 𝑮0 B id.

Proof. (i) With 𝒇𝑚+1 being defined as 𝒇𝑚+1 = 𝒇𝑚, |𝐼𝑃 |+1, see (5.3), we have to verify

𝒇𝑚, |𝐼𝑃 |+1 = 𝒇𝑚,0 +
∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘

(
𝑔𝑘 − 𝑨𝑘 𝒇

𝑚,0) .
We show by induction over the number of indices that

𝒇𝑚,𝑙+1 = 𝒇𝑚,0 +
∑︁

0≤𝑘≤𝑙

(
𝑮 𝑙 ◦ · · · ◦ 𝑮𝑘+1

)
Ψ𝑘

(
𝑔𝑘 − 𝑨𝑘 𝒇

𝑚,0)
holds for 𝑙 ≥ 0 where

(
𝑮 𝑙 ◦ · · · ◦𝑮𝑝

)
B id for 𝑝 > 𝑙. For 𝑙 = 0 the statement is trivially fulfilled.

Now let the statement be true for some 𝑙 > 0. We obtain

𝒇𝑚,𝑙+1 = 𝒇𝑚,𝑙 + Ψ𝑙

(
𝑔𝑙 − 𝑨𝑙 𝒇

𝑚,𝑙
)

= 𝑮 𝑙 𝒇
𝑚,𝑙 + Ψ𝑙𝑔𝑙

= 𝑮 𝑙

(
𝒇𝑚,0 +

∑︁
0≤𝑘≤𝑙−1

(
𝑮 𝑙−1 ◦ · · · ◦ 𝑮𝑘+1

)
Ψ𝑘

(
𝑔𝑘 − 𝑨𝑘 𝒇

𝑚,0) ) + Ψ𝑙𝑔𝑙

= 𝑮 𝑙 𝒇
𝑚,0 +

∑︁
0≤𝑘≤𝑙−1

(
𝑮 𝑙 ◦ 𝑮 𝑙−1 ◦ · · · ◦ 𝑮𝑘+1

)
Ψ𝑘

(
𝑔𝑘 − 𝑨𝑘 𝒇

𝑚,0) + Ψ𝑙𝑔𝑙

= 𝒇𝑚,0 +
∑︁

0≤𝑘≤𝑙−1

(
𝑮 𝑙 ◦ · · · ◦ 𝑮𝑘+1

)
Ψ𝑘

(
𝑔𝑘 − 𝑨𝑘 𝒇

𝑚,0) + Ψ𝑙

(
𝑔𝑙 − 𝑨𝑘 𝒇

𝑚,𝑙
)

= 𝒇𝑚,0 +
∑︁

0≤𝑘≤𝑙

(
𝑮 𝑙 ◦ · · · ◦ 𝑮𝑘+1

)
Ψ𝑘

(
𝑔𝑘 − 𝑨𝑘 𝒇

𝑚,0) .
The closed form follows by putting 𝑙 = |𝐼𝑃 | .

(ii) Together with the closed form (i) and lemma 5.2 follows

𝒇𝑚+1 = 𝒇𝑚 +
∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘

(
𝑔𝑘 − 𝑨𝑘 𝒇

𝑚
)

=

(
id −

∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑨𝑘

)
𝒇𝑚 +

∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

= 𝑮 𝒇𝑚 +
∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

= Φ 𝒇𝑚.

(iii) The direct form is shown by induction. For 𝑚 = 1 the statement is trivially fulfilled as a
consequence of the fixed-point form (ii). Let the statement be true for some 𝑚 > 0. From the
fixed-point formulation follows

𝒇𝑚+1 = 𝑮 𝒇𝑚 +
∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘
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= 𝑮

(
𝑮𝑚 𝒇 0 +

( 𝑚−1∑︁
𝑙=0

𝑮 𝑙

( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

)))
+

∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

= 𝑮𝑚+1 𝒇 0 +
𝑚−1∑︁
𝑙=0

𝑮 𝑙+1
( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

)
+

∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

= 𝑮𝑚+1 𝒇 0 +
𝑚∑︁
𝑙=0

𝑮 𝑙

( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

)
.

5.1 Convergence properties

Let ||| · ||| denote an arbitrary vector norm on R |𝐽 | as well as its induced operator norm, respectively.
With the fixed-point formulation from proposition 5.3, we aim at showing convergence of the
iteration scheme (5.3) by applying Banach’s fixed-point theorem, cf. theorem 2.8: Whenever the
fixed-point operator Φ is a contraction, i.e., there exists a constant 𝐿 ∈ [0, 1) such that

|||Φ 𝒇 1 − Φ 𝒇 2 ||| ≤ 𝐿 ||| 𝒇 1 − 𝒇 2 ||| ∀ 𝒇 1, 𝒇 2 ∈ R
|𝐽 |

the iteration scheme converges to its uniquely determined fixed-point. The contraction condition
on Φ can be directly passed to the operator 𝑮 since

|||Φ 𝒇 1 − Φ 𝒇 2 ||| = |||𝑮 𝒇 1 + 𝜂 − (𝑮 𝒇 2 + 𝜂) ||| ≤ |||𝑮 ||| ||| 𝒇 1 − 𝒇 2 |||

holds for all 𝒇 1, 𝒇 2 ∈ R |𝐽 | . It obviously follows that Φ is a contraction if 𝑮 is bounded with |||𝑮 ||| < 1.
We will therefore concentrate our convergence analysis on the operator norm of 𝑮.

Proposition 5.4. If |||𝑮 ||| < 1 then 𝑨 is injective.

Proof. We show the statement by contradiction: Let |||𝑮 ||| < 1 and assume that the operator 𝑨 is
non-injective. Thus, there exists a non-trivial element

0 ≠ �̃� ∈ N(𝑨) =
⋂
𝑘∈𝐼𝑃

N
(
𝑨𝑘

)
with |||�̃�||| = 1. With lemma 5.2 follows

𝑮�̃� =

(
id −

∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑨𝑘

)
�̃� = �̃�

and therefore
|||𝑮 ||| = max

|||𝜑 |||=1
|||𝑮𝜑||| ≥ |||𝑮�̃�||| = |||�̃�||| = 1

This clearly contradicts the premiss |||𝑮 ||| < 1. Consequently, the operator 𝑨 has to be injective.
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As a direct consequence from Banach’s fixed-point theorem, the injectivity of 𝑨 is necessary for the
existence of a unique fixed-point of Φ and thus also for the convergence of the iteration scheme.

The situation becomes clearer when we assume for the moment that 𝑨 is non-injective and that a
fixed-point 𝒇 ∗ ∈ R |𝐽 | of Φ exists. Then, 𝒇 ∗ + 𝜑0 with 𝜑 ∈ N(id − 𝑮) (i.e. 𝜑 being a fixed-point of
𝑮) is also a fixed-point of Φ since

Φ( 𝒇 ∗ + 𝜑) = 𝑮( 𝒇 ∗ + 𝜑) +
∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

= 𝑮 𝒇 ∗ +
∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘 + 𝜑

= Φ 𝒇 ∗ + 𝜑
= 𝒇 ∗ + 𝜑.

Further, the definition of 𝑮 induces immediately that all elements of the nullspace of 𝑨 are fixed-
points of 𝑮, i.e., N(𝑨) ⊆ N(id − 𝑮). More specifically, it holds

N(id − 𝑮) = N(𝑨) ⊕ N
(
(id − 𝑮)PN(𝑨)⊥

)
as can be seen with lemma 5.2 from

id − 𝑮 = (id − 𝑮)PN(𝑨) + (id − 𝑮)PN(𝑨)⊥ = (id − 𝑮)PN(𝑨)⊥ .

To establish convergence of the iteration scheme, we need to require additional assumptions on the
restricted operator |||𝑮PN(𝑨)⊥ ||| and the specific backward operators Ψ𝑘.

Lemma 5.5. Let R(Ψ𝑘) ⊆ N(𝑨)⊥ for all 𝑘 ∈ 𝐼𝑃. Then,

R

( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘

)
⊆ N(𝑨)⊥.

Proof. Let 𝜙 ∈ Y. We show the statement recursively. For 𝑘 = |𝐼𝑃 | holds

𝑸 |𝐼𝑃 |Ψ|𝐼𝑃 |𝜙 |𝐼𝑃 | = Ψ|𝐼𝑃 |𝜙 |𝐼𝑃 | ∈ N(𝑨)⊥.

Let the statement be true for some 𝑘 with 2 ≤ 𝑘 ≤ |𝐼𝑃 | . With lemma 5.2 we have

𝑸𝑘−1Ψ𝑘−1𝜙𝑘−1 =

(
id −

|𝐼𝑃 |∑︁
𝑙=𝑘

𝑸𝑙Ψ𝑙𝑨𝑙

)
Ψ𝑘−1𝜙𝑘−1

= Ψ𝑘−1𝜙𝑘−1 −
|𝐼𝑃 |∑︁
𝑙=𝑘

𝑸𝑙Ψ𝑙𝑨𝑙Ψ𝑘−1𝜙𝑘−1 ∈ N(𝑨)⊥

since both terms are elements of N(𝑨)⊥. Consequently, it is 𝑸𝑘Ψ𝑘𝜙𝑘 ∈ N(𝑨)⊥ for all 𝑘 ∈ 𝐼𝑃. For
𝜙 ∈ Y follows ∑︁

𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝜙𝑘 ∈ N(𝑨)⊥.
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The previous lemma gives a sufficient condition for 𝑮PN(𝑨)⊥ being a mapping from R |𝐽 | to N(𝑨)⊥,
i.e.,

𝑮PN(𝑨)⊥ : R |𝐽 | → R(𝑮PN(𝑨)⊥) ⊆ N(𝑨)⊥. (5.6)

We are now able to show the convergence of the iteration scheme for 𝑚 → ∞.

Theorem 5.6. Let the backward operators
{
Ψ𝑘

}
𝑘∈𝐼𝑃

be given such that R(Ψ𝑘) ⊆ N(𝑨)⊥ for all 𝑘 ∈ 𝐼𝑃
and that

|||𝑮PN(𝑨)⊥ ||| < 1. (5.7)

For 𝑚 → ∞, the iteration scheme (5.3) converges linearly with

�̃� = PN(𝑨) 𝒇
0 +

( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑨𝑘

)−1 ( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

)
.

The rate of convergence is bounded by 𝐿 B |||𝑮PN(𝑨)⊥ ||| and the following error estimates hold:

(i) (Prior estimate)

||| 𝒇𝑚 − �̃� ||| ≤ 𝐿𝑚

1 − 𝐿
||| 𝒇 0 − 𝒇 1 ||| + 1

1 − 𝐿
|||PN(𝑨)⊥ 𝒇 0 ||| (5.8)

(ii) (Posterior estimate)

||| 𝒇𝑚 − �̃� ||| ≤ 𝐿

1 − 𝐿
||| 𝒇𝑚−1 − 𝒇𝑚 ||| + 1

1 − 𝐿
|||PN(𝑨)⊥ 𝒇 0 ||| (5.9)

Proof. First, we verify that 𝑮PN(𝑨)⊥ is a contraction on PN(𝑨)⊥ . With lemma 5.5 follows

𝑮PN(𝑨)⊥𝜑 = PN(𝑨)⊥𝜑 −
∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑨𝑘𝜑 ∈ N(𝑨)⊥ ∀𝜑 ∈ R
|𝐽 |

cf. equation (5.6). Together with assumption (5.7), the restricted operator 𝐺PN(𝑨)⊥ is a contraction
on PN(𝑨)⊥ . From the direct form of proposition 5.3(iii) follows

𝒇𝑚 = 𝑮𝑚 𝒇 0 +
𝑚−1∑︁
𝑙=0

𝑮 𝑙

( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

)
= 𝑮𝑚PN(𝑨) 𝒇

0 + 𝑮𝑚PN(𝑨)⊥ 𝒇 0 +
𝑚−1∑︁
𝑙=0

𝑮 𝑙

( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

)
= PN(𝑨) 𝒇

0 + 𝑮𝑚PN(𝑨)⊥ 𝒇 0 +
𝑚−1∑︁
𝑙=0

𝑮 𝑙

( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

)
= PN(𝑨) 𝒇

0 +
(
𝑮PN(𝑨)⊥

)𝑚
𝒇 0 +

𝑚−1∑︁
𝑙=0

(
𝑮PN(𝑨)⊥

) 𝑙 ( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

)
. (5.10)

Banach’s fixed-point Theorem 2.8 yields the convergence of
(
𝑮PN(𝑨)⊥

)𝑚
𝒇 0 for 𝑚 → ∞ to the unique

fixed-point of 𝑮PN(𝑨)⊥ . This fixed-point is given by 𝒇 ∗ = 0, since from the linearity of 𝑮 follows
directly

𝑮PN(𝑨)⊥ 𝒇 ∗ = 0.
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Thus,
lim
𝑚→∞

(
𝑮PN(𝑨)⊥

)𝑚
𝒇 0 = 0.

With C. Neumann’s theorem, cf. theorem 2.9, follows for the second term on the right-hand side

lim
𝑚→∞

𝑚∑︁
𝑙=0

(
𝑮PN(𝑨)⊥

) 𝑙
=

(
id|N(𝑨)⊥ − 𝑮PN(𝑨)⊥

)−1
.

This settles also the the existence and boundedness of the inverse operator. Plugging both limits
into (5.10) yields together with the representation of 𝑮 from lemma 5.2 the convergence result

lim
𝑚→∞

𝒇𝑚 = PN(𝑨) 𝒇
0 +

(
id|N(𝑨)⊥ − 𝑮PN(𝑨)⊥

)−1
( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

)
= PN(𝑨) 𝒇

0 +
(
id|N(𝑨)⊥ −

(
id|N(𝑨)⊥ −

∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑨𝑘

))−1 ( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

)
= PN(𝑨) 𝒇

0 +
( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑨𝑘

)−1 ( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

)
.

Note, that
( ∑

𝑘∈𝐼𝑃 𝑸𝑘Ψ𝑘𝑨𝑘
)−1 ( ∑

𝑘∈𝐼𝑃 𝑸𝑘Ψ𝑘𝑔𝑘
)
∈ N(𝑨)⊥ holds, cf. 5.5 To show that the convergence

rate is linear, we note that
𝒇𝑚 − �̃� ∈ N(𝑨)⊥

holds for all 𝑚 > 0 as can be seen by

𝒇𝑚 − �̃� = PN(𝑨) 𝒇
0 +

(
𝑮PN(𝑨)⊥

)𝑚
𝒇 0 +

𝑚−1∑︁
𝑙=0

(
𝑮PN(𝑨)⊥

) 𝑙 ( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

)
−

(
PN(𝑨) 𝒇

0 +
( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑨𝑘

)−1 ( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

))
=

(
𝑮PN(𝑨)⊥

)𝑚
𝒇 0 +

𝑚−1∑︁
𝑙=0

(
𝑮PN(𝑨)⊥

) 𝑙 ( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

)
−

( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑨𝑘

)−1 ( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

)
.

Thus,

‖ 𝒇𝑚+1 − �̃� ‖ = ‖Φ 𝒇𝑚 − Φ �̃� ‖
= ‖𝑮

(
𝒇𝑚 − �̃�

)
‖

= ‖𝑮PN(𝑨)⊥
(
𝒇𝑚 − �̃�

)
‖

≤ ‖𝑮PN(𝑨)⊥ ‖ ‖ 𝒇𝑚 − �̃� ‖

and it follows
‖ 𝒇𝑚+1 − �̃� ‖
‖ 𝒇𝑚 − �̃� ‖

≤ ‖𝑮PN(𝑨)⊥ ‖ < 1.

Accordingly, the convergence rate is linear and is bounded by ‖𝑮PN(𝑨)⊥ ‖ . The error estimates follow
with the representation

𝒇𝑚 = Φ𝑚 𝒇 0 = PN(𝑨) 𝒇
0 + Φ𝑚PN(𝑨)⊥ 𝒇 0

directly from Banach’s fixed-point theorem.
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Corollary 5.7. Let 𝑨 be injective and let |||𝑮 ||| < 1. The iteration scheme (5.3) converges linearly for
𝑚 → ∞ and the limit is given by

�̃� =

( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑨𝑘

)−1 ( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

)
.

Further, the error estimates of theorem 5.6 hold.

Proof. For 𝑨 being injective, the nullspace of 𝑨 is trivial, i.e., N(𝑨) = {0} it obviously holds
𝑮PN(𝑨)⊥ = 𝑮. The result follows immediately from theorem 5.6 since R

(
Ψ𝑘

)
⊂ N(𝑨)⊥ = R |𝐽 | is

naturally fulfilled.

Now that the convergence of the iteration scheme is settled, we have a brief look at its limit �̃� and
give a result on its interpretation.

Proposition 5.8. Let the requirements of theorem 5.6 be fulfilled and let �̃� denote the limit of the
iteration scheme (5.3) given as

�̃� = PN(𝑨) 𝒇
0 +

( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑨𝑘

)−1 ( ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑔𝑘

)
.

(i) If 𝑨 𝒇 = 𝑔 is consistent, it holds
�̃� = PN(𝑨) 𝒇

0 + 𝒇 +.

(ii) If 𝑨 𝒇 = 𝑔 is not consistent, the limit �̃� is a solution of∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘

(
𝑔𝑘 − 𝑨𝑘 �̃�

)
= 0

with PN(𝑨)⊥ �̃� being uniquely determined.

Proof. First, we assume that 𝑨 𝒇 = 𝑔 is consistent, i.e., there exists a solution for any given right-hand
side 𝑔 ∈ Y. If there is more than one solution, all solutions are of the form

𝒇 = 𝒇 + + 𝜑0

with 𝒇 + ∈ N(𝑨)⊥ denoting the minimum-norm solution of 𝑨 𝒇 = 𝑔 and 𝜑0 ∈ N(𝑨) is arbitrary. If 𝑨
is injective, the nullspace element 𝜑0 is equally zero and the solution is unique. Since 𝑨 𝒇 = 𝑔 is
consistent, the generalized solution 𝒇 + is also a solution of 𝑨𝑘 𝒇

+ = 𝑔𝑘 for 𝑘 ∈ 𝐼𝑃. It follows

�̃� = PN(𝑨) 𝒇
0 +

( ∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘Ψ𝑘𝑨𝑘

)−1 ( ∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘Ψ𝑘𝑨𝑘
(
𝒇 + + 𝜑0

) )
= PN(𝑨) 𝒇

0 +
( ∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘Ψ𝑘𝑨𝑘

)−1 ( ∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘Ψ𝑘𝑨𝑘

)
𝒇 +

= PN(𝑨) 𝒇
0 + 𝒇 +.

Hence, the limit �̃� of iteration scheme (5.3) is equal to the solution of 𝑨 𝒇 = 𝑔 with minimal distance
to the initial value 𝒇 0, cf. equation(2.5).

56



Chapter 5: Semi-discrete iteration methods

If the system is inconsistent, there exists no exact solution for a given right-hand side 𝑔 ∈ Y. With
lemma 5.2 and the fixed-point property of �̃� we obtain

�̃� = Φ �̃� = 𝑮 �̃� +
∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘Ψ𝑘𝑔𝑘

=

(
id −

∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑨𝑘

)
�̃� +

∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘Ψ𝑘𝑔𝑘

= �̃� −
∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘𝑨𝑘 �̃� +
∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘Ψ𝑘𝑔𝑘.

Hence, the limit �̃� is a solution of ∑︁
𝑘∈𝐼𝑃

𝑸𝑘Ψ𝑘 (𝑔𝑘 − 𝑨𝑘 �̃� ) = 0

with PN(𝑨)⊥ �̃� being uniquely determined.

Following theorem 5.6, the crucial point in verifying the convergence of the iteration scheme for
specific choices of {Ψ𝑘}𝑘∈𝐼𝑃 is the verification of the norm condition

|||𝑮PN(𝑨)⊥ ||| < 1. (5.11)

Especially for solving large systems A 𝑓 = 𝑔, i.e., a large number of operators A𝑖, it may be difficult
to verify this norm condition. To this end, we give a sufficient condition on the operator norm
|||𝑮𝑘PN(𝑨)⊥ ||| to induce the norm condition (5.11). Assuming that the requirements of theorem 5.6
are fulfilled, i.e., R

(
Ψ𝑘

)
⊆ N(𝑨)⊥ for all 𝑘 ∈ 𝐼𝑃, we obtain

𝑮PN(𝑨)⊥ =
(
𝑮 |𝐼𝑃 | ◦ · · · ◦ 𝑮1

)
PN(𝑨)⊥ =

(
𝑮 |𝐼𝑃 |PN(𝑨)⊥

)
◦ · · · ◦

(
𝑮1PN(𝑨)⊥

)
.

and the estimation
|||𝑮PN(𝑨)⊥ ||| ≤

∏
𝑘∈𝐼𝑃

|||𝑮𝑘PN(𝑨)⊥ ||| (5.12)

follows immediately. Thus, equation (5.12) provides a sufficient condition.

Proposition 5.9. Let N(𝑨𝑘) ∩ N(𝑨)⊥ be non-trivial for all 𝑘 ∈ 𝐼𝑃. Then∏
𝑘∈𝐼𝑃

|||𝑮𝑘PN(𝑨)⊥ ||| ≥ 1.

Proof. For N(𝑨𝑘) ∩ N(𝑨)⊥ being non-trivial, there exists an element 𝜑𝑘 ∈ N(𝑨𝑘) ∩ N(𝑨)⊥ with
𝜑𝑘 = 1 and

𝑮𝑘PN(𝑨)⊥𝜑𝑘 =
(
id − Ψ𝑘𝑨𝑘

)
PN(𝑨)⊥𝜑𝑘 = PN(𝑨)⊥𝜑𝑘.

It follows

|||𝑮𝑘PN(𝑨)⊥ ||| = max
|||𝜑 |||=1

|||𝑮𝑘PN(𝑨)⊥𝜑|||

≥ |||𝑮𝑘PN(𝑨)⊥𝜑𝑘 |||
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= |||
(
id − Ψ𝑘𝑨𝑘

)
𝜑𝑘 |||

= |||𝜑𝑘 |||
= 1

and thus
∏

𝑘∈𝐼𝑃 |||𝑮𝑘PN(𝑨)⊥ ||| ≥ 1.

Proposition 5.9 provides a necessary condition to conclude the norm condition |||𝑮PN(𝑨)⊥ ||| < 1 from
equation (5.12). The existence of an index 𝑘 ∈ 𝐼𝑃 such that

N
(
𝑨𝑘

)
∩ N(𝑨)⊥ = {0} (5.13)

is required to obtain
∏

𝑘∈𝐼𝑃 |||𝑮𝑘PN(𝑨)⊥ ||| < 1. For the convergence study of specific choices of Ψ𝑘 we
summarize all indices satisfying (5.13) as

𝐼∗𝑃 B
{
𝑙 ∈ 𝐼𝑃 : N

(
𝑨𝑙

)
∩ N(𝑨)⊥ = {0}

}
⊆ 𝐼𝑃 .

5.2 The Landweber-Kaczmarz method

In this section, we deal with the semi-discrete Landweber-Kaczmarz iteration scheme, defined by
the backward operators

Ψ𝑘 B 𝜆𝑘𝑨
♯

𝑘
∀𝑘 ∈ 𝐼𝑃

with strictly positive relaxation parameters {𝜆𝑘}𝑘∈𝐼𝑃 . {𝑨𝑘}𝑘∈𝐼𝑃 denote the semi-discrete operators

of A𝑘 with respect to the basis 𝐵 on the weighted coefficient spaces
(
R |𝐽 | , 〈·, ·〉𝑘

)
. The weighted

adjoint operators 𝑨♯
𝑘

are given by

𝑨♯
𝑘
𝜑 =𝑊−1

𝑘

∑︁
𝑖∈𝐼𝑘

©«
〈
A𝑖𝑏1, 𝜑𝑖

〉
Y𝑖

...〈
A𝑖𝑏 |𝐽 | , 𝜑𝑖

〉
Y𝑖

ª®®®¬
cf. proposition 4.4. The Landweber-Kaczmarz iteration scheme thus reads

𝒇𝑚,1 B 𝒇𝑚

𝒇𝑚,𝑘+1 = 𝒇𝑚,𝑘 + 𝜆𝑘𝑨
♯

𝑘

(
𝑔𝑘 − 𝑨𝑘 𝒇

𝑚,𝑘
)

for 𝑘 ∈ 𝐼𝑃

𝒇𝑚+1 B 𝒇𝑚, |𝐼𝑃 |+1.

(5.14)

Corollary 5.10. The following schemes are equivalent formulations of the Landweber-Kaczmarz itera-
tion scheme (5.14).

(i) (Closed form)
𝒇𝑚+1 = 𝒇𝑚 +

∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘𝑨
♯

𝑘

(
𝑔𝑘 − 𝑨𝑘 𝒇

𝑚
)

𝑚 = 0, 1, . . .

(ii) (Fixed-point form)
𝒇𝑚+1 = Φ 𝒇𝑚 𝑚 = 0, 1, . . .

with the affine linear fixed-point operator

Φ : R |𝐽 | → R
|𝐽 | , Φ 𝒇 B 𝑮 𝒇 +

∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘𝑨
♯

𝑘
𝑔𝑘.
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(iii) (Direct form)

𝒇𝑚 = 𝑮𝑚 𝒇 0 +
𝑚−1∑︁
𝑙=0

𝑮 𝑙

( ∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘𝑨
♯

𝑘
𝑔𝑘

)
with 𝑮0 B id.

Proof. This result follows immediately from proposition 5.3 with Ψ𝑘 = 𝜆𝑘𝑨
♯

𝑘
.

For the following convergence analysis, we consider the spectral norm and the weighted spectral
norm denoted by

‖𝑮‖ = max
‖ 𝒇 ‖=1

‖𝑮 𝒇 ‖ and ‖𝑮‖𝑘 = max
‖ 𝒇 ‖𝑘=1

‖𝑮 𝒇 ‖𝑘,

respectively, induced by the Euclidean norm ‖ · ‖ B ‖ · ‖2 and the weighted Euclidean norms

‖ · ‖𝑘 B ‖𝑊
1
2
𝑘
·‖2 on R |𝐽 | . Further, we denote the weighted operator norm of 𝑨𝑘 by

‖𝑨𝑘‖𝑘 = max
‖ 𝒇 ‖𝑘=1

‖𝑨𝑘 𝒇 ‖𝑌𝑘 .

Proposition 5.11. (i) Let 𝑘 ∈ 𝐼∗𝑃, i.e, N(𝑨𝑘) ∩ N(𝑨)⊥ = {0}, and let 𝛽𝑘 > 0 such that

1
𝛽𝑘

‖ 𝒇 ‖𝑘 ≤ ‖𝑨𝑘 𝒇 ‖𝑌𝑘 (5.15)

holds for all 𝒇 ∈ N(𝑨)⊥. For the relaxation parameters

𝜆𝑘 ∈
(
1 −

( (
𝐶2
𝑘
− 1

)
𝜏4
𝑘
+ 1

) 1
2

𝜏2
𝑘
‖𝑨𝑘‖2

𝑘

,
1 +

( (
𝐶2
𝑘
− 1

)
𝜏4
𝑘
+ 1

) 1
2

𝜏2
𝑘
‖𝑨𝑘‖2

𝑘

)
(5.16)

with 𝐶𝑘 ∈
(√︃

1 − 𝜏−4
𝑘
, 1

]
and 𝜏𝑘 B 𝛽𝑘‖𝑨𝑘‖𝑘 follows

‖𝑮𝑘PN(𝑨)⊥ ‖𝑘 < 𝐶𝑘.

(ii) Let N(𝑨𝑘) ∩ N(𝑨)⊥ ≠ {0}. For all relaxation parameters

𝜆𝑘 ∈
(
0,

2

𝜏2
𝑘
‖𝑨𝑘‖2

𝑘

)
holds

‖𝑮𝑘PN(𝑨)⊥ ‖𝑘 = 1.

Proof. (i) With �̃� B PN(𝑨)⊥ 𝒇 follows

‖𝑮𝑘PN(𝑨)⊥ 𝒇 ‖2
𝑘
= ‖(id − 𝜆𝑘𝑨

♯

𝑘
𝑨𝑘) �̃� ‖

2

𝑘

= ‖ �̃� ‖2
𝑘 − 2𝜆𝑘

〈
�̃� , 𝑨♯

𝑘
𝑨𝑘 �̃�

〉
𝑘
+ 𝜆2

𝑘‖𝑨
♯

𝑘
𝑨𝑘 �̃� ‖

2

𝑘

= ‖ �̃� ‖2
𝑘 − 2𝜆𝑘‖𝑨𝑘 �̃� ‖

2
𝑌𝑘
+ 𝜆2

𝑘‖𝑨
♯

𝑘
𝑨𝑘 �̃� ‖

2

𝑘
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≤ ‖ �̃� ‖2
𝑘 − 2𝜆𝑘‖𝑨𝑘 �̃� ‖

2
𝑌𝑘
+ 𝜆2

𝑘‖𝑨𝑘‖
4
𝑘‖ �̃� ‖

2
𝑘

(5.15)
≤ ‖ �̃� ‖2

𝑘 − 2
𝜆𝑘

𝛽2
𝑘

‖ �̃� ‖2
𝑘 + 𝜆2

𝑘‖𝑨𝑘‖
4
𝑘‖ �̃� ‖

2
𝑘

=

(
𝜆2
𝑘‖𝑨𝑘‖

4
𝑘 − 2

𝜆𝑘

𝛽2
𝑘

+ 1

)
‖ �̃� ‖2

𝑘 . (5.17)

For the relaxation parameter 𝜆𝑘 as specified in (5.16) the inequality

𝜆2
𝑘‖𝑨𝑘‖

4
𝑘 − 2

𝜆𝑘

𝛽2
𝑘

+ 1 < 𝐶2
𝑘

is fulfilled. Hence, we obtain

‖𝑮𝑘PN(𝑨)⊥ ‖𝑘 = max
‖ 𝒇 ‖𝑘=1

‖𝑮𝑘PN(𝑨)⊥ 𝒇 ‖
𝑘

= max
𝒇 ∈N(𝑨)⊥
‖ 𝒇 ‖𝑘=1

‖𝑮𝑘 𝒇 ‖𝑘

< 𝐶𝑘 · max
𝒇 ∈N(𝑨)⊥
‖ 𝒇 ‖𝑘=1

‖ 𝒇 ‖𝑘

= 𝐶𝑘.

(ii) Since N(𝑨𝑘) ∩ N(𝑨)⊥ ≠ {0}, it holds

𝑮𝑘PN(𝑨)⊥𝜑 =
(
id − 𝜆𝑘𝑨

♯

𝑘
𝑨𝑘

)
PN(𝑨)⊥𝜑 = 𝜑.

for all elements 𝜑 ∈ N(𝑨𝑘) ∩ N(𝑨)⊥ with ‖𝜑‖𝑘 = 1 and thus

‖𝑮𝑘PN(𝑨)⊥𝜑‖
𝑘
= ‖𝜑‖𝑘.

The result follows together with (i).

We have a closer look at all relevant parameters of proposition 5.11.

• The parameter 𝛽𝑘 > 0 can be regarded as a norm estimate of the generalized inverse 𝑨+
𝑘
.

Since the generalized inverse of 𝑨𝑘 is bounded, see proposition 4.4, the norm

‖𝑨+
𝑘 ‖𝑘 = max

‖𝜙‖𝑌𝑘=1
‖𝑨+

𝑘𝜙‖𝑘 < ∞

exists. For 𝜙 = 𝑨𝑘 𝒇 with 𝒇 ∈ N
(
𝑨𝑘

)⊥ follows

‖ 𝒇 ‖𝑘 = ‖𝑨+
𝑘𝑨𝑘 𝒇 ‖𝑘 ≤ ‖𝑨+

𝑘 ‖𝑘‖𝑨𝑘 𝒇 ‖𝑌𝑘 .

By definition, the operator norm ‖𝑨+
𝑘
‖
𝑘

is equal to the smallest number such that this state-
ment holds true. Thus,

‖𝑨+
𝑘 ‖𝑘 ≤ 𝛽𝑘.
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• 𝜏𝑘 can be regarded as an estimation of the condition number of the operator 𝑨𝑘,

𝜅
(
𝑨𝑘

)
= ‖𝑨+

𝑘 ‖𝑘‖𝑨𝑘‖𝑘 ≤ 𝛽𝑘‖𝑨𝑘‖𝑘 = 𝜏𝑘.

Since the condition number fulfills 𝜅
(
𝑨𝑘

)
> 1 per definition, it holds

𝜏𝑘 ∈ [1,∞).

• It is easy to see that

𝐶𝑘 ∈
(√︃

1 − 𝜏−4
𝑘
, 1

]
⊆ (0, 1]

since lim𝜏𝑘→∞

√︃
1 − 𝜏−4

𝑘
= 1. We assume for the moment that ‖𝑨+

𝑘
‖
𝑘

is known exactly. Then,

the condition number 𝜅(𝑨𝑘) is also known exactly and we can put 𝜏𝑘 = 𝜅(𝑨𝑘). If 𝑨𝑘 is
well-conditioned, i.e. 𝜏𝑘 ≈ 1, 𝐶𝑘 can be chosen close to zero which results in the operator
norm of 𝑮𝑘 being close to zero as well. On the other hand, if the operator is ill-conditioned,
i.e., 𝜏𝑘 � 1, the lower bound for 𝐶𝑘 is close to 1 and so is the norm of 𝑮. Consequently, the
parameter 𝐶𝑘 cannot be arbitrarily and depends heavily on the condition of the semi-discrete
operators 𝑨𝑘 and the chosen basis 𝐵.

• The feasible relaxation parameters 𝜆𝑘 for 𝑘 ∈ 𝐼∗𝑃 as specified in (5.16) are symmetric in an
interval around

𝜆∗𝑘 B
1

𝜏2
𝑘
‖𝑨𝑘‖2

𝑘

.

and this interval is bounded by the interval
(
0, 2

𝜏2
𝑘
‖𝑨𝑘 ‖2

𝑘

)
, i.e.,

(
1 −

( (
𝐶2
𝑘
− 1

)
𝜏4
𝑘
+ 1

) 1
2

𝜏2
𝑘
‖𝑨𝑘‖2

𝑘

,
1 +

( (
𝐶2
𝑘
− 1

)
𝜏4
𝑘
+ 1

) 1
2

𝜏2
𝑘
‖𝑨𝑘‖2

𝑘

)
⊆

(
0,

2

𝜏2
𝑘
‖𝑨𝑘‖2

𝑘

)
.

Equality of the interval boundaries holds for the maximum 𝐶𝑘 = 1. The parameter choice
𝜆𝑘 = 𝜆∗

𝑘
is optimal in the sense of the minimal upper bound for ‖𝑮𝑘PN(𝑨)⊥ ‖𝑘. This can be seen

by minimizing (5.17),

‖𝑮𝑘PN(𝑨)⊥ 𝒇 ‖2
𝑘
≤

(
𝜆2
𝑘‖𝑨𝑘‖

4
𝑘 − 2

𝜆𝑘

𝛽2
𝑘

+ 1
)

︸                       ︷︷                       ︸
C𝐹 (𝜆𝑘)

‖ �̃� ‖2
𝑘

with respect to the relaxation parameter 𝜆𝑘. Since 𝐹(𝜆𝑘) is a quadratic function with respect
to 𝜆𝑘, the minimum is uniquely given and obtained for

0 = 𝐹 ′(𝜆𝑘) = 2𝜆𝑘‖𝑨𝑘‖4
𝑘 −

2

𝛽2
𝑘

⇔ 𝜆𝑘 = 𝜆∗𝑘 =
1

𝜏2
𝑘
‖𝑨𝑘‖2

𝑘

with
√︁
𝐹(𝜆∗

𝑘
) =

√︃
1 − 𝜏4

𝑘
.

Theorem 5.12. Let 𝐼∗𝑃 ≠ ∅ and the relaxation parameters 𝜆𝑘 be defined as follows:
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• For 𝑘 ∈ 𝐼∗𝑃 let

𝜆𝑘 ∈
(
1 −

( (
𝐶2
𝑘
− 1

)
𝜏4
𝑘
+ 1

) 1
2

𝜏2
𝑘
‖𝑨𝑘‖2

𝑘

,
1 +

( (
𝐶2
𝑘
− 1

)
𝜏4
𝑘
+ 1

) 1
2

𝜏2
𝑘
‖𝑨𝑘‖2

𝑘

)
with 𝐶𝑘 and 𝜏𝑘 being defined as in proposition 5.11 such that∏

𝑘∈𝐼𝑃

√︁
𝜅(𝑊𝑘)

∏
𝑘∈𝐼∗

𝑃

𝐶𝑘 ≤ 1.

• For 𝑘 ∈ 𝐼𝑃 \ 𝐼∗𝑃 let

𝜆𝑘 ∈
(
0,

2

𝜏2
𝑘
‖𝑨𝑘‖2

𝑘

)
.

Then, the Landweber-Kaczmarz iteration (5.14) converges linearly for any initial value 𝒇 0 ∈ R |𝐽 | and
the limit is given by

𝒇 ∗ = PN(𝑨) 𝒇
0 +

( ∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘𝑨
♯

𝑘
𝑨𝑘

)−1 ( ∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘𝑨
♯

𝑘
𝑔𝑘

)
.

The rate of convergence is bounded by
∏

𝑘∈𝐼𝑃 𝜅𝑘
(
𝑊𝑘

) ∏
𝑘∈𝐼∗

𝑃
𝐶𝑘 and the error estimates (5.8) and (5.9)

of theorem 5.6 hold.

Proof. Following the convergence theorem 5.6, we have to verify the range condition R
(
Ψ𝑘

)
⊆

N(𝑨)⊥, 𝑘 ∈ 𝐼𝑃, for Ψ𝑘 = 𝑨♯
𝑘

and the norm condition |||𝑮PN(𝑨)⊥ ||| < 1. With 𝑨𝑘 being defined on the
finite dimensional coefficient space R |𝐽 | we obtain

R(Ψ𝑘) = R(𝑨♯
𝑘
) = R(𝑨♯

𝑘
) = N(𝑨𝑘)⊥

from corollary 2.19. Since the relaxation parameters 𝜆𝑘 fulfill the requirements of proposition 5.11
it follows

‖𝑮PN(𝑨)⊥ ‖ ≤
∏
𝑘∈𝐼𝑃

‖𝑮𝑘PN(𝑨)⊥ ‖

≤
∏
𝑘∈𝐼𝑃

𝜅(𝑊
1
2
𝑘
)‖𝑮𝑘PN(𝑨)⊥ ‖𝑘

=
∏
𝑘∈𝐼𝑃

√︁
𝜅(𝑊𝑘)

∏
𝑘∈𝐼𝑃

‖𝑮𝑘PN(𝑨)⊥ ‖𝑘

<
∏
𝑘∈𝐼𝑃

√︁
𝜅(𝑊𝑘)

∏
𝑘∈𝐼∗

𝑃

𝐶𝑘

≤ 1

such that the norm condition ‖𝑮PN(𝑨)⊥ ‖ ≤ 1 is fulfilled. The convergence 𝒇𝑚 → 𝒇 ∗ for 𝑚 → ∞ as
well as the error estimates follow immediately from theorem 5.6.
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To end this section, we give an interpretation of the limit 𝒇 ∗ in the sense of proposition 5.8. If the
semi-discrete system 𝑨 𝒇 = 𝑔 is consistent the limit 𝒇 ∗ is given as

𝒇 ∗ = 𝒇 + + PN(𝑨) 𝒇
0

where 𝒇 + is uniquely determined in N(𝑨)⊥. If the system is not consistent, the limit 𝒇 ∗ is a solution
of a modified normal equation ∑︁

𝑘∈𝐼𝑃

𝑸𝑘𝑨
♯

𝑘

(
𝑔𝑘 − 𝑨𝑘 𝒇

∗) = 0

with PN(𝑨)⊥ 𝒇 ∗ being uniquely determined.

5.3 The Kaczmarz method

We will now analyze the semi-discrete Kaczmarz iteration methods defined by the backward opera-
tors

Ψ𝑘 = 𝜆𝑘𝑨
+
𝑘 𝑘 ∈ 𝐼𝑃 (5.18)

with strictly positive relaxation parameters {𝜆𝑘}𝑘∈𝐼𝑃 . As above, let 𝑨𝑘 denote the semi-discrete
operators of A𝑘 with respect to the fixed basis 𝐵. The Kaczmarz iteration scheme is thus given by

𝒇𝑚,1 B 𝒇𝑚

𝒇𝑚,𝑘+1 = 𝒇𝑚,𝑘 + 𝜆𝑘𝑨+
𝑘 (𝑔𝑘 − 𝑨𝑘 𝒇

𝑚,𝑘) for 𝑘 = 1, . . . , |𝐼𝑃 |
𝒇𝑚+1 B 𝒇𝑚, |𝐼𝑃 |+1.

(5.19)

In literature, the Kaczmarz iteration scheme is also defined by putting Ψ𝑘 = 𝜆𝑘𝑨
∗
𝑘
(𝑨𝑘𝑨∗

𝑘
)−1 for

𝑨𝑘 being surjective. Following theorem 2.21 this is identical to equation (5.18). In the intended
application of the semi-discrete Kaczmarz method, the operators 𝑨𝑘 are in general not surjective.
Then, the inverse operator (𝑨𝑘𝑨∗

𝑘
)−1 does not exist and we have to go over to the generalized

inverse. Again with theorem 2.21, this is identical to (5.18).

Corollary 5.13. The Kaczmarz iteration scheme (5.19) is equivalent to the following schemes.

(i) (Closed form)
𝒇𝑚+1 = 𝒇𝑚 +

∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘𝑨
+
𝑘

(
𝑔𝑘 − 𝑨𝑘 𝒇

𝑚
)

𝑚 = 0, 1, . . .

(ii) (Fixed-point form)
𝒇𝑚+1 = Φ 𝒇𝑚 𝑚 = 0, 1, . . .

with the affine linear fixed-point operator

Φ : R |𝐽 | → R
|𝐽 | , Φ 𝒇 B 𝑮 𝒇 +

∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘𝑨
+
𝑘𝑔𝑘.

(iii) (Direct form)

𝒇𝑚 = 𝑮𝑚 𝒇 0 +
𝑚−1∑︁
𝑙=0

𝑮 𝑙

( ∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘𝑨
+
𝑘𝑔𝑘

)
with 𝑮0 B id.
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Proof. This result follows directly from proposition 5.3 with Ψ𝑘 = 𝜆𝑘𝑨
+
𝑘
.

For the following convergence analysis, we consider again the spectral norm and the weighted
spectral norm denoted by

‖𝑮‖ = max
‖ 𝒇 ‖=1

‖𝑮 𝒇 ‖ and ‖𝑮‖𝑘 = max
‖ 𝒇 ‖𝑘=1

‖𝑮 𝒇 ‖𝑘,

respectively, induced by the Euclidean norm ‖ · ‖ B ‖ · ‖2 and the weighted Euclidean norms

‖ · ‖𝑘 B ‖𝑊
1
2
𝑘
·‖2 on R |𝐽 | .

Proposition 5.14. (i) Let 𝑘 ∈ 𝐼∗𝑃, i.e., N(𝑨𝑘) ∩ N(𝑨)⊥ = {0}. Then,

‖𝑮𝑘PN(𝑨)⊥ ‖𝑘 = |1 − 𝜆𝑘 | .

(ii) Let N(𝑨𝑘) ∩ N(𝑨)⊥ ≠ {0}. Then,

‖𝑮𝑘PN(𝑨)⊥ ‖𝑘 = max
{
1, |1 − 𝜆𝑘 |

}
.

Proof. With the Moore–Penrose axioms, cf. theorem 2.20, follows

𝑮𝑘 = id − 𝜆𝑘𝑨
+
𝑘𝑨𝑘 = id − 𝜆𝑘P|N(𝑨𝑘)⊥ = P|N(𝑨𝑘) +

(
1 − 𝜆𝑘

)
P|N(𝑨𝑘)⊥ .

For 𝜑 ∈ N(𝑨𝑘)⊥ ∩ N(𝑨)⊥ = N(𝑨𝑘)⊥ we obtain

‖𝑮𝑘PN(𝑨)⊥𝜑‖
𝑘
= ‖𝑮𝑘𝜑‖𝑘
= ‖

(
P|N(𝑨𝑘) +

(
1 − 𝜆𝑘

)
P|N(𝑨𝑘)⊥

)
𝜑‖

𝑘

= ‖(1 − 𝜆𝑘)P|N(𝑨𝑘)⊥𝜑‖
𝑘

= |1 − 𝜆𝑘 | ‖𝜑‖𝑘.

(i) For N(𝑨𝑘) ∩ N(𝑨)⊥ = {0} follows

‖𝑮𝑘PN(𝑨)⊥ ‖𝑘 = |1 − 𝜆𝑘 | .

(ii) For N(𝑨𝑘) ∩ N(𝑨)⊥ ≠ {0}, every element 𝜑 ∈ N(𝑨𝑘) ∩ N(𝑨)⊥ with ‖𝜑‖𝑘 = 1 fulfills

‖𝑮𝑘PN(𝑨)⊥𝜑‖
𝑘
= ‖

(
P|N(𝑨𝑘) + (1 − 𝜆𝑘)P|N(𝑨𝑘)⊥

)
PN(𝑨)⊥𝜑‖

𝑘

= ‖P|N(𝑨𝑘)PN(𝑨)⊥𝜑‖
𝑘

= ‖𝜑‖𝑘
= 1.

With (i) follows
‖𝑮𝑘PN(𝑨)⊥ ‖𝑘 = max

{
1, |1 − 𝜆𝑘 |

}
.
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Theorem 5.15. Let 𝐼∗𝑃 ≠ ∅ and the relaxation parameters {𝜆𝑘}𝑘∈𝐼𝑃 be such that∏
𝑘∈𝐼∗

𝑃

|1 − 𝜆𝑘 |
∏

𝑘∈𝐼𝑃\𝐼∗𝑃

max
{
1, |1 − 𝜆𝑘 |

}
< 1. (5.20)

The Kaczmarz iteration (5.19) converges linearly for arbitrary initial values 𝒇 0 ∈ R |𝐽 | and the limit is
given as

𝒇 ∗ = PN(𝑨) 𝒇
0 +

( ∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘PN(𝑨)⊥

)−1 ( ∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘𝑨
+
𝑘𝑔𝑘

)
.

The rate of convergence is bounded by
∏

𝑘∈𝐼∗
𝑃
|1 − 𝜆𝑘 |

∏
𝑘∈𝐼𝑃\𝐼∗𝑃 max

{
1, |1 − 𝜆𝑘 |

}
and the error esti-

mates (5.8) and (5.9) of theorem 5.6 hold.

Proof. Again, we have to verify the range condition R
(
Ψ𝑘

)
⊆ N(𝑨)⊥, 𝑘 ∈ 𝐼𝑃, for Ψ𝑘 = 𝑨+

𝑘
and the

norm condition |||𝑮PN(𝑨)⊥ ||| < 1. Then, the convergence result follows from theorem 5.6.

The range condition is trivially fulfilled since R(Ψ𝑘) = R(𝑨+
𝑘
) = R(𝑨+

𝑘
) = N(𝑨𝑘)⊥. Further we obtain

with proposition 5.14,

‖𝑮PN(𝑨)⊥ ‖ ≤
∏
𝑘∈𝐼𝑃

‖𝑮𝑘PN(𝑨)⊥ ‖𝑘

=
∏
𝑘∈𝐼∗

𝑃

‖𝑮𝑘PN(𝑨)⊥ ‖𝑘
∏

𝑘∈𝐼𝑃\𝐼∗𝑃

‖𝑮𝑘PN(𝑨)⊥ ‖𝑘

=
∏
𝑘∈𝐼∗

𝑃

|1 − 𝜆𝑘 |
∏

𝑘∈𝐼𝑃\𝐼∗𝑃

max
{
1, |1 − 𝜆𝑘 |

}
=

∏
𝑘∈𝐼∗

𝑃

|1 − 𝜆𝑘 |

< 1.

Condition (5.20) for the relaxation parameters 𝜆𝑘 is trivially fulfilled for

𝜆𝑘 ∈ (0, 2) ∀𝑘 ∈ 𝐼𝑃

since |1 − 𝜆𝑘 | < 1 holds for all 𝑘. Further, the operator norm ‖𝑮PN(𝑨)⊥ ‖𝑘 is bounded and this
estimation is independent of the chosen ceoefficient weight matrices 𝑊𝑘, cf. proposition 5.14.

Corollary 5.16. Let 𝐼∗𝑃 ≠ ∅ and
𝜆𝑘 ∈ (0, 2) ∀𝑘 ∈ 𝐼𝑃 .

Then, the Kaczmarz iteration (5.19) converges linearly for arbitrary initial values 𝒇 0 ∈ R |𝐽 | and the
limit is given as

𝒇 ∗ = PN(𝑨) 𝒇
0 +

( ∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘PN(𝑨)⊥

)−1 ( ∑︁
𝑘∈𝐼𝑃

𝜆𝑘𝑸𝑘𝑨
+
𝑘𝑔𝑘

)
.

The rate of convergence is bounded by
∏

𝑘∈𝐼∗
𝑃
|1 − 𝜆𝑘 | < 1.
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According to proposition 5.8, the limit 𝒇 ∗ can be interpreted as follows. If 𝑨 𝒇 = 𝑔 is consistent, it
clearly holds

𝒇 ∗ = 𝒇 + + P|N(𝑨) 𝒇
0.

For the non-consistent case, we obtain∑︁
𝑘∈𝐼𝑃

𝑸𝑘𝑨
+
𝑘

(
𝑔𝑘 − 𝑨𝑘 𝒇

∗) = ∑︁
𝑘∈𝐼𝑃

𝑸𝑘

(
𝒇 +𝑘 − P|N(𝑨𝑘)⊥ 𝒇 ∗

)
= 0.

To end this section we give a strategy to apply the semi-discrete Kaczmarz iteration scheme. To
evaluate the iteration steps the generalized inverse 𝑨+

𝑘
has to be applied to the residual 𝑔𝑘 − 𝑨𝑘 𝒇

explicitly. In general, we cannot assume that the generalized inverse 𝑨+
𝑘

is explicitly known or
available for computation. Moreover, even if it is known its application may be numerically unstable.
To apply the semi-discrete Kaczmarz method anyway we make use of an idea stemming from the
method of the approximate inverse which was first proposed in [LM90]: Instead of applying the
pseudo inverse operator directly the so-called auxiliary problem

𝑨♯
𝑘
𝜓𝑘, 𝑗 = e 𝑗

is solved for an orthonormal basis {e 𝑗} 𝑗∈𝐽 ∈ R |𝐽 | . The solution of 𝑨𝑘 𝒇 = 𝑔𝑘 can then be computed

by evaluating the inner products
〈
𝑔𝑘, 𝜓𝑘, 𝑗

〉
𝑌𝑘

.

Definition 5.17. Let {e 𝑗} 𝑗∈𝐽 be an orthonormal basis of R |𝐽 | . For a fixed index 𝑘 ∈ 𝐼𝑃 the solutions

𝜓𝑘, 𝑗 ∈ N(𝑨♯
𝑘
)⊥, 𝑗 ∈ 𝐽, of the auxiliary problem

𝑨♯
𝑘
𝜓𝑘, 𝑗 = P|N(𝑨𝑘)⊥ e 𝑗

are called the associated reconstruction kernels.

The following result shows how the application of the pseudo inverse can be evaluated by using
reconstruction kernels.

Proposition 5.18. Let {e 𝑗} 𝑗∈𝐽 ⊂ R |𝐽 | be an orthonormal basis with respect to 〈·, ·〉𝑘 and {𝜓𝑘, 𝑗} 𝑗∈𝐽 be
the corresponding reconstruction kernels for a fixed 𝑘 ∈ 𝐼𝑃. Then,

𝑨+
𝑘𝜙 =

∑︁
𝑗∈𝐽

〈
𝜓𝑘, 𝑗, 𝜙

〉
𝑌𝑘

e 𝑗 for 𝜙 ∈ 𝑌𝑘.

Proof. Let 𝜙 ∈ 𝑌𝑘 and
𝒇 +𝑘 B 𝑨+

𝑘𝜙 ∈ N
(
𝑨𝑘

)⊥
.

denote the generalized solution of 𝑨𝑘 𝒇 = 𝑔𝑘. By definition of the reconstruction kernels it is
𝜓𝑘, 𝑗 ∈ N(𝑨♯

𝑘
)⊥ and thus 〈

𝜓𝑘, 𝑗, P|N(𝑨♯
𝑘
)𝜙

〉
𝑌𝑘

= 0.

We obtain 〈
𝜓𝑘, 𝑗, 𝜙

〉
𝑌𝑘
=

〈
𝜓𝑘, 𝑗, P|R(𝑨𝑘)𝜙

〉
𝑌𝑘
+

〈
𝜓𝑘, 𝑗, P|N(𝑨♯

𝑘
)𝜙

〉
𝑌𝑘
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=
〈
𝜓𝑘, 𝑗, 𝑨𝑘 𝒇

+
𝑘

〉
𝑌𝑘

=
〈
𝑨♯
𝑘
𝜓𝑘, 𝑗, 𝒇

+
𝑘

〉
𝑘

=
〈
P|N(𝑨𝑘)⊥ e 𝑗, 𝒇

+
𝑘

〉
𝑘

=
〈
e 𝑗, 𝒇

+
𝑘

〉
𝑘
.

Since {e 𝑗} 𝑗∈𝐽 forms an orthonormal basis on R |𝐽 | it follows

𝑨+
𝑘𝜙 = 𝒇 +𝑘 =

∑︁
𝑗∈𝐽

〈
e 𝑗, 𝒇

+
𝑘

〉
𝑘

e 𝑗 =
∑︁
𝑗∈𝐽

〈
𝜓𝑘, 𝑗, 𝜙

〉
𝑌𝑘

e 𝑗 .

Example 5.19. Let {e 𝑗} 𝑗∈𝐽 be the canonical basis of the coefficient space R |𝐽 | , i.e.,(
e 𝑗

)
𝑙
= 𝛿 𝑗𝑙 ∀ 𝑗, 𝑙 ∈ 𝐽.

We obtain
𝑨𝑘 e 𝑗 =

∑︁
𝑙∈𝐽

𝛿 𝑗𝑙 𝐴𝑘𝑏𝑙 = 𝐴𝑘𝑏 𝑗 and
〈
𝒇 , e 𝑗

〉
= 𝒇 𝑗 ∀ 𝒇 ∈ R

|𝐽 | .

With {𝜓𝑘, 𝑗} 𝑗∈𝐽 being the associated reconstruction kernels of {e 𝑗} 𝑗∈𝐽 , proposition 5.18 yields the
representation

𝑨+
𝑘𝜙 =

∑︁
𝑗∈𝐽

〈
𝜓𝑘, 𝑗, 𝜙

〉
𝑌𝑘

e 𝑗 =
(〈
𝜓𝑘, 𝑗, 𝜙

〉
𝑌𝑘

)
𝑗∈𝐽

for the application of the generalized inverse 𝑨+
𝑘
.

With example 5.19 follows immediately:

Corollary 5.20. Let {e 𝑗} 𝑗∈𝐽 be the canonical basis in R |𝐽 | and {𝜓𝑘, 𝑗} 𝑗,𝑘 the associated reconstruction
kernels for all 𝑘 ∈ 𝐼𝑃. The Kaczmarz iteration scheme (5.19) reads

𝒇𝑚,1 B 𝒇𝑚

𝒇𝑚,𝑘+1 = 𝒇𝑚,𝑘 + 𝜆𝑘
(〈
𝜓𝑘, 𝑗, 𝑔𝑘 − 𝑨𝑘 𝒇

𝑚,𝑘
〉
𝑌𝑘

)
𝑗∈𝐽

for 𝑘 ∈ 𝐼𝑃

𝒇𝑚+1 B 𝒇𝑚, |𝐼𝑃 |+1.
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Chapter 6

Application in X-ray tomography

Let Ω be the 𝑛-dimensional unit ball and let S𝑛−1 B 𝜕Ω be the 𝑛-dimensional unit sphere. Further,
we use 𝜔 and𝑤 to denote weight functions on the domain and the range of the operator, respectively.
We focus on the Hilbert space setting of square-integrable functions on the unit ball Ω denoted by
𝐿2(Ω). Using the notation of Chapter 4 the model operators are of the form

A𝑖 : 𝐿2(Ω, 𝜔) → 𝐿2(Ξ𝑖, 𝑤𝑖)

and
A : 𝐿2(Ω, 𝜔) → Y

with 𝐼 being a finite set of indices. The Hilbert space Y is given as the direct sum of weighted 𝐿2
spaces,

Y =
⊕
𝑖

𝐿2(Ξ𝑖, 𝑤𝑖).

The reconstruction problem is formulated as follows: For a given set of finitely many measurements
{𝑔𝑖}𝑖∈𝐼 , with 𝑔𝑖 ∈ 𝐿2(Ξ𝑖, 𝑤𝑖) find 𝑓 ∈ 𝐿2(Ω, 𝜔) such that

A𝑖 𝑓 = 𝑔𝑖 ∀𝑖 ∈ 𝐼.

6.1 Local basis functions

So far, we considered sets of mutually linearly independent basis elements 𝐵 ⊂ X . In the context of
iterative reconstruction methods, we are interested in a fast evaluation of the forward projection of
the basis elements as well as suitable approximation properties in the image space.

An important class of basis functions is thus the class of local (or locally supported) basis functions:
Starting from a compactly supported initial function 𝑏 the basis 𝐵 is generated by scaling and shifting
of the initial function 𝑏 on a (regular) grid. We consider two important initial basis functions, namely,
the Pixel resp. Voxel basis function and the Lewitt-Blob basis function. A comparison of both basis
functions with respect to image quality of the reconstructions can be found in [Tra+17].

6.1.1 The Pixel and Voxel basis functions

Definition 6.1. Let

�𝑑 (𝑥) B 𝜒[− 1
2 ,

1
2 ]𝑑 (𝑥) =


1, if ‖𝑥‖∞ ≤ 1

2
0, else
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Figure 6.1: Fourier transform of the unit cube. Left: F�1, right: F�2.

denote the characteristic function of the 𝑑-dimensional unit cube centered around the origin. For 𝑑 = 2
we call �𝑑 the Pixel basis function and for 𝑑 = 3 the Voxel basis function.

Proposition 6.2. The Frourier transform of �𝑑 is given by

F�𝑑 (𝜉) = (2𝜋)−
𝑑
2

𝑑∏
𝑖=1

sinc
(𝜉𝑖

2

)
where sinc 𝑠 = sin 𝑠

𝑠
for 𝑠 ∈ R.

Proof. We start with the one-dimensional Fourier transform of the unit cube �1 in R, i.e., the box
function. For 𝜎 ∈ R it yields

F1�
1(𝜎) = 1

√
2𝜋

∫
R

�1(𝑠) e−𝑖𝑠𝜎 𝑑𝑠

=
1

√
2𝜋

∫ 1
2

− 1
2

e−𝑖𝑠𝜎 𝑑𝑠

=
1

√
2𝜋

(∫ 1
2

− 1
2

cos(𝑠𝜎) 𝑑𝑠 − 𝑖

∫ 1
2

− 1
2

sin(𝑠𝜎) 𝑑𝑠︸            ︷︷            ︸
=0

)

=

√︂
2
𝜋

∫ 1
2

0
cos(𝑠𝜎) 𝑑𝑠

=
1

√
2𝜋

sinc
(𝜎
2

)
.

With this result we can compute the 𝑑-dimensional Fourier transform of the cube �𝑑 as follows. For
𝜉 ∈ R𝑑 holds

F𝑑�
𝑑 (𝜉) = (2𝜋)−

𝑑
2

∫
R𝑑

�𝑑 (𝑥) e−𝑖𝑥
>𝜉 𝑑𝑥

= (2𝜋)−
𝑑
2

∫
[− 1

2 ,
1
2 ]𝑑

e−𝑖𝑥
>𝜉 𝑑𝑥
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= (2𝜋)−
𝑑
2

∫
[− 1

2 ,
1
2 ]𝑑

𝑑∏
𝑖=1

e−𝑖𝑥𝑖𝜉𝑖 𝑑𝑥

= (2𝜋)−
𝑑
2

𝑑∏
𝑖=1

∫ 1
2

− 1
2

e−𝑖𝑥𝑖𝜉𝑖 𝑑𝑥𝑖

=

𝑑∏
𝑖=1

F1�
1 (𝜉𝑖) .

Thus, the Fourier transform of the 𝑑-dimensional unit cube is given as

F𝑑�
𝑑 (𝜉) =

𝑑∏
𝑖=1

1
√

2𝜋
sinc

(𝜉𝑖
2

)
= (2𝜋)−

𝑑
2

𝑑∏
𝑖=1

sinc
(𝜉𝑖

2

)
.

For the X-Ray transform of the unit cube, there is no closed expression. Instead, its X-Ray transform
has to be evaluated separately for every given parameter combination of the angle 𝜃 ∈ S𝑑−1 and the
position 𝑥 ∈ 𝜃⊥ on the detector. We use the fact that �𝑑 is defined as the characteristic function of
the unit cube, hence having constant value 1 inside the cube such that each line integral

P𝜃�
𝑑 (𝑥) =

∫
𝐿(𝜃,𝑥)

�𝑑 (𝑦) 𝑑𝑦

corresponds to the length of the intersection of 𝐿(𝜃, 𝑥) with the unit cube. We can thus formulate
the computation of the X-ray transform as the geometrical problem

P𝜃�
𝑑 (𝑥) = length

({
𝑧 B 𝑥 + 𝑡𝜃 : 𝑡 ∈ R

}
∩

{
‖𝑧‖∞ <

1
2

})
.

For the Pixel basis function in two dimensions (𝑑 = 2), we differentiate between two (non-trivial)
cases. Let e1 and 𝑒2 be the canonical unit vectors in R2.

(i) 〈𝜃, e1〉 = 0 or 〈𝜃, e2〉 = 0: This is the case if the direction of integration 𝜃 is parallel to one of
the edges. Then, the X-ray transform is equal to the edge length of the unit square, i.e.,

P𝜃�
2(𝑥) = 1.

(ii) 〈𝜃, e1〉 ≠ 0 ≠ 〈𝜃, e2〉:
a) Compute the intersection points S2 B {𝑥1,±, 𝑥±,2} of

𝐿(𝜃, 𝑥) = {𝑥 + 𝑡𝜃 : 𝑡 ∈ R}
with the continued edges

Γ1,± B
{
± 1

2
e1 +𝑡 e2 : 𝑡 ∈ R

}
and Γ2,± B

{
𝑡 e1 ±

1
2

e2 : 𝑡 ∈ R

}
.

b) Define
𝑥1

min B min
𝑥∈S2

‖𝑥‖ and 𝑥2
min B min

𝑥∈S2\{𝑥1
min }

‖𝑥‖ .

The X-ray transform is now given as the distance between 𝑥1
min and 𝑥2

min, i.e.,

P𝜃�
2(𝑥) = ‖𝑥2

min − 𝑥1
min‖ .
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In three dimensions (𝑑 = 3), we have to take a third case into account to obtain the X-ray transform
of the Voxel basis function. Let e1, e2 and e3 denote the canonical unit vectors in R3.

(i)
〈
𝜃, e𝑖

〉
≠ 0 for a single index 𝑖∗ ∈ {1, 2, 3}: In this case, the direction of integration 𝜃 is

parallel to e𝑖∗ and thus parallel to one of the edges of the unit cube. The X-ray transform is
thus given as the edge length of the unit cube, i.e.,

P𝜃�
3(𝑥) = 1.

(ii)
〈
𝜃, e𝑖

〉
= 0 for exactly one index 𝑖∗ ∈ {1, 2, 3}: The direction 𝜃 is perpendicular to the

unit vector e𝑖∗ and is thus an element of the plane spanned by {e𝑖}𝑖∈{1,2,3}\{𝑖∗ }. Thus, the
three-dimensional case reduces to the two-dimensional case described before,

P𝜃�
3(𝑥) = P𝜃�

2(𝑥),

where 𝑥 ∈ R2 denotes the position of 𝑥 on the hyperplane 𝜃⊥
𝑖∗ .

(iii)
〈
𝜃, e𝑖

〉
≠ 0 for all indices 𝑖 ∈ {1, 2, 3}:

a) Compute the intersection points S3 B {𝑥1,±, 𝑥2,±, 𝑥3,±} of the line of integration

𝐿 B {𝑥 + 𝑡𝜃 : 𝑡 ∈ R}

with the continued outer surfaces

M1,± B
{
± 1

2
e1 +𝑡2 e2 +𝑡3 e3 : 𝑡2, 𝑡3 ∈ R

}
,

M2,± B
{
𝑡1 e1 ±

1
2

e2 +𝑡3 e3 : 𝑡1, 𝑡3 ∈ R

}
,

M3,± B
{
𝑡1 e1 +𝑡2 e2 ±

1
2

e3 : 𝑡1, 𝑡2 ∈ R

}
.

b) With
𝑥1

min B min
𝑥∈S3

‖𝑥‖ and 𝑥2
min B min

𝑥∈S3\{𝑥1
min }

‖𝑥‖

the X-ray transform is given as the distance between 𝑥1
min and 𝑥2

min, i.e.,

P𝜃�
3(𝑥) = ‖𝑥2

min − 𝑥1
min‖ .

6.1.2 The Lewitt-Blob basis function

The generalized Kaiser-Bessel window functions also referred to as Lewitt-Blobs were proposed in
[Lew90] as optimal basis functions being compactly supported and being efficiently band-limited.
The Blobs were designed as an approximation to prolate spheroidal wave functions which were
computed in [Sle65] as the optimum of functions having minimal support and minimal support in
the Fourier domain at the same time.
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Figure 6.2: Radial plot of 𝑏𝑚,𝑎,𝛼 for 𝑚 = 2, 𝑎 = 2 and different shaping parameter 𝛼.

Definition 6.3. Let 𝑎, 𝛼 > 0 and 𝑚 ≥ 0. The function

𝑏𝑚,𝑎,𝛼(𝑥) B
 𝐼𝑚 (𝛼)−1

(√︂
1 −

(
‖𝑥 ‖
𝑎

)2
)𝑚
𝐼𝑚

(
𝛼

√︂
1 −

(
‖𝑥 ‖
𝑎

)2
)
, if ‖𝑥‖ ≤ 𝑎

0, else

where 𝐼𝑚 denotes the modified Bessel function of the first kind of order 𝑚 is called generalized Kaiser-
Bessel window function or (Lewitt-)Blob function.

We summarize basic properties of the Blob basis function.

Proposition 6.4. Let 𝑎, 𝛼 > 0 and 𝑚 ≥ 0. The Lewitt-Blob basis function is

(i) rotationally invariant, non-negative and compactly supported, i.e.,

supp
(
𝑏𝑚,𝑎,𝛼

)
b R

𝑑 ,

(ii) continuous on R𝑑 for all 𝑚 ≠ 0,

(iii) (𝑚 − 1) - times continuously differentiable for 𝑚 ∈ N \ {0}, thus,

𝑏𝑚,𝑎,𝛼 ∈ 𝐶𝑚−1
0 (R𝑑).

Proof. (i) Follows directly from the definition of the Blob function and the properties of the
modified Bessel function 𝐼𝑚, where the non-negativity follows with the non-negativity of the
modified Bessel function 𝐼𝑚 as can be seen by the series representation in definition 2.1,

𝐼𝑚 (𝑥) =
( 𝑥
2

)𝑚 ∞∑︁
𝑘=0

( 1
2 𝑥)

2𝑘

𝑘! Γ(𝑚 + 𝑘 + 1) . (6.1)

(ii) Let 𝑧 ∈ R𝑑 with ‖𝑧‖ = 𝑎. By definition, the Blob function at 𝑧 is given as

𝑏𝑚,𝑎,𝛼(𝑧) = 𝐼𝑚 (𝛼)−1 𝐼𝑚 (0).

The series representation (6.1) yields

𝐼𝑚 (0) = 0𝑚
∞∑︁
𝑘=0

02𝑘

𝑘! Γ(𝑚 + 𝑘 + 1)
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= 0𝑚
(
1 +

∞∑︁
𝑘=1

02𝑘

𝑘! Γ(𝑚 + 𝑘 + 1)

)
= 0𝑚 =

{
1, 𝑚 = 0
0, 𝑚 > 0.

Hence, the Blob basis function is continuous on R𝑑 for 𝑚 ≠ 0.

(iii) With the representation of the 𝑙-th derivative of the modified Bessel function

𝐼
(𝑙)
𝑚 (𝑥) = 1

2𝑙

𝑙∑︁
𝑗=0

(
𝑙

𝑗

)
𝐼𝑚−𝑙+2 𝑗 (𝑥)

=
1
2𝑙
𝐼𝑚−𝑙 (𝑥) +

1
2𝑙

𝑙∑︁
𝑗=1

(
𝑙

𝑗

)
𝐼𝑚−𝑙+2 𝑗 (𝑥),

cf. [AS65, 9.6.29], and property (ii) follows the result.

Proposition 6.5 (Fourier transform). The Fourier transform of the Blob basis function is given as

𝑏𝑑𝑚,𝑎,𝛼(𝜉) =
𝑎𝑑𝛼𝑚

𝐼𝑚 (𝛼)

(√︃
𝑎2‖𝜉‖2 − 𝛼2

)−( 𝑑2+𝑚)
𝐽 𝑑

2+𝑚

(√︃
𝑎2‖𝜉‖2 − 𝛼2

)
where 𝐽 𝑑

2+𝑚
denotes the Bessel function of the first kind of order 𝑑

2 + 𝑚.

Proof. The proof follows [Lew90]. Note that a different definition of the Fourier transform is used.
Let 𝑎, 𝛼 and 𝑚 be fixed and put 𝑏 B 𝑏𝑚,𝑎,𝛼. Since the Blob function is rotationally invariant, the
Fourier transform of 𝑏𝑑 is computed via

𝑏𝑑 (𝜉) = ‖𝜉‖1− 𝑑
2

∫ ∞

0
𝑟
𝑑
2 𝜑(𝑟) 𝐽 𝑑

2−1(𝑟‖𝜉‖) 𝑑𝑟,

see lemma 2.6, where 𝜑 is defined as the radial part of the Blob, i.e., 𝑏(𝑥) = 𝜑(‖𝑥‖) for all 𝑥 ∈ R𝑑 .
Putting 𝑡(𝑟) B (1 − ( 𝑟

𝑎
)2) 1

2 and plugging in the definition of the Blob function yields

𝑏𝑑 (𝜉) = ‖𝜉‖1− 𝑑
2

𝐼𝑚 (𝛼)

∫ 𝑎

0
𝑟
𝑑
2 𝑡𝑚 (𝑟) 𝐼𝑚 (𝛼𝑡(𝑟)) 𝐽 𝑑

2−1(𝑟‖𝜉‖) 𝑑𝑟

=
𝑖−𝑚 ‖𝜉‖1− 𝑑

2

𝐼𝑚 (𝛼)

∫ 𝑎

0
𝑟
𝑑
2 𝑡𝑚 (𝑟) 𝐽𝑚 (𝑖𝛼𝑡(𝑟)) 𝐽 𝑑

2−1(𝑟‖𝜉‖) 𝑑𝑟

where we used the identity 𝐼𝑚 (𝑧) = 𝑖−𝑚𝐽𝑚 (𝑖𝑧), cf. lemma 2.2, in the last step.

With the substitution 𝑟 = 𝑎 cos 𝜃, 𝑑𝑟 = −𝑎 sin 𝜃 𝑑𝜃, follows

𝑡(𝑟) = 𝑡(𝑎 cos 𝜃) =
√︂

1 −
( 𝑎 cos 𝜃

𝑎

)2
= sin 𝜃
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(a) 𝑏2
𝑚,𝑎,𝛼 (b) log |𝑏2

𝑚,𝑎,𝛼 |

Figure 6.3: Radial plots of the Fourier transform 𝑏𝑑𝑚,𝑎,𝛼 for 𝑚 = 2, 𝑎 = 2 and the 𝛼 ≈ 10.8.

and it yields

𝑏𝑑 (𝜉) = 𝑖−𝑚 ‖𝜉‖1− 𝑑
2 𝑎

𝑑
2+1

𝐼𝑚 (𝛼)

∫ 𝜋
2

0
cos

𝑑
2 𝜃 sin𝑚+1 𝜃 𝐽𝑚 (𝑖𝛼 sin 𝜃) 𝐽 𝑑

2−1(𝑎‖𝜉‖ cos 𝜃) 𝑑𝜃.

To evaluate the integral on the right hand side, we use Sonine’s second finite integral from lemma 2.3
with 𝜇 = 𝑚, 𝜈 = 𝑑/2 − 1, 𝑧 = 𝑖𝛼 and 𝑍 = 𝑎‖𝜉‖ , yielding∫ 𝜋

2

0
cos

𝑑
2 𝜃 sin𝑚+1 𝜃 𝐽𝑚 (𝑖𝛼 sin 𝜃) 𝐽 𝑑

2−1(𝑎‖𝜉‖ cos 𝜃) 𝑑𝜃

= (𝑖𝛼)𝑚 (𝑎‖𝜉‖)
𝑑
2−1

(√︃
(𝑎‖𝜉‖)2 − 𝛼2

)−(𝑚+ 𝑑
2 )
𝐽𝑚+ 𝑑

2

(√︃
(𝑎‖𝜉‖)2 − 𝛼2

)
.

We finally obtain

𝑏𝑑 (𝜉) = 𝑎𝑑𝛼𝑚

𝐼𝑚 (𝛼)

(√︃
(𝑎‖𝜉‖)2 − 𝛼2

)−( 𝑑2+𝑚)
𝐽𝑚+ 𝑑

2

(√︃
(𝑎‖𝜉‖)2 − 𝛼2

)
.

Having a closer look at the Fourier transform of the Blob function, the argument of the Bessel
function 𝐽𝑚+ 𝑑

2
is complex valued whenever

𝑎2‖𝜉‖2 − 𝛼2 < 0.

In that case, it holds √︃
𝑎2‖𝜉‖2 − 𝛼2 = 𝑖

√︃
|𝑎2‖𝜉‖2 − 𝛼2 |

and with the identity 𝐼𝑚 (𝑧) = 𝑖−𝑚𝐽𝑚 (𝑖𝑧) we obtain(√︃
𝑎2‖𝜉‖2 − 𝛼2

)−( 𝑑2+𝑚)
𝐽 𝑑

2+𝑚

(√︃
𝑎2‖𝜉‖2 − 𝛼2

)
=

(√︃
|𝑎2‖𝜉‖2 − 𝛼2 |

)−( 𝑑2+𝑚)
𝑖−(

𝑑
2+𝑚) 𝐽 𝑑

2+𝑚

(
𝑖

√︃
|𝑎2‖𝜉‖2 − 𝛼2 |

)
=

(√︃
|𝑎2‖𝜉‖2 − 𝛼2 |

)−( 𝑑2+𝑚)
𝐼 𝑑

2+𝑚

(√︃
|𝑎2‖𝜉‖2 − 𝛼2 |

)
.
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Thus, we obtain

F𝑏𝑑𝑚,𝑎,𝛼(𝜉) =
𝑎𝑑𝛼𝑚

𝐼𝑚 (𝛼)

(√︃
|𝑎2‖𝜉‖2 − 𝛼2 |

)−( 𝑑2+𝑚)
𝐼 𝑑

2+𝑚

(√︃
|𝑎2‖𝜉‖2 − 𝛼2 |

)
, 𝑎2‖𝜉‖2 ≤ 𝛼2,

𝐽 𝑑
2+𝑚

(√︃
|𝑎2‖𝜉‖2 − 𝛼2 |

)
, 𝑎2‖𝜉‖2 ≥ 𝛼2,

which is a more suitable formula for implementation.

Theorem 6.6 (X-Ray transform of the Blob function).

P𝜃𝑏𝑚,𝑎,𝛼(𝑥) =


𝑎

𝐼𝑚 (𝛼)

√︂
2𝜋
𝛼

(√︃
1 − 𝑎−2‖𝑥‖2

)𝑚+ 1
2
𝐼𝑚+ 1

2

(
𝛼

√︃
1 − 𝑎−2‖𝑥‖2

)
, ‖𝑥‖ ≤ 𝑎,

0, else.

Proof. The proof follows again [Lew90]. Let 𝑎, 𝛼 and 𝑚 be fixed and put 𝑏 B 𝑏𝑚,𝑎,𝛼. Since the Blob
function is rotationally invariant, the X-Ray transform is computed by

P𝜃𝑏(𝑥) = 2
∫ ∞

0
𝑏

(√︃
‖𝑥‖2 + 𝑡2

)
𝑑𝑡

for 𝑥 ∈ 𝜃⊥, see lemma 3.8. With definition 6.3 of the Blob function follows,

P𝜃𝑏(𝑥) =
2

𝐼𝑚 (𝛼)

∫ √
𝑎2−‖𝑥 ‖2

0

(√︄
1 − ‖𝑥‖2 + 𝑡2

𝑎2

)𝑚
𝐼𝑚

©«𝛼
√︄

1 − ‖𝑥‖2 + 𝑡2
𝑎2

ª®¬ 𝑑𝑡.
Putting 𝑡 B

√︃
𝑎2 − ‖𝑥‖2 cos𝜙, 𝑑𝑡 = −

√︃
𝑎2 − ‖𝑥‖2 sin𝜙 𝑑𝜙, yields

1 − ‖𝑥‖2 + 𝑡2
𝑎2 = 1 −

‖𝑥‖2 +
(
𝑎2 − ‖𝑥‖2

)
cos2 𝜙

𝑎2

= 1 −
‖𝑥‖2 +

(
𝑎2 − ‖𝑥‖2

) (
1 − sin2 𝜙

)
𝑎2

= 1 −
𝑎2 −

(
𝑎2 − ‖𝑥‖2

)
sin2 𝜙

𝑎2

=

(
𝑎2 − ‖𝑥‖2

)
sin2 𝜙

𝑎2

=

(
1 − ‖𝑥‖2

𝑎2

)
sin2 𝜙

and thus

P𝜃𝑏(𝑥) =
2

𝐼𝑚 (𝛼)

∫ 𝜋
2

0

(√︃
1 − 𝑎−2‖𝑥‖2 sin𝜙

)𝑚
𝐼𝑚

(
𝛼

√︃
1 − 𝑎−2‖𝑥‖2 sin𝜙

)√︃
𝑎2 − ‖𝑥‖2 sin𝜙 𝑑𝜙

=
2

𝐼𝑚 (𝛼)

(√︃
1 − 𝑎−2‖𝑥‖2

)𝑚 ∫ 𝜋
2

0
𝐼𝑚

(
𝛼

√︃
1 − 𝑎−2‖𝑥‖2 sin𝜙

)
𝑎

√︃
1 − 𝑎−2‖𝑥‖2 sin𝑚+1 𝜙 𝑑𝜙
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=
2𝑎

𝐼𝑚 (𝛼)

(√︃
1 − 𝑎−2‖𝑥‖2

)𝑚+1
∫ 𝜋

2

0
𝐼𝑚

(
𝛼

√︃
1 − 𝑎−2‖𝑥‖2 sin𝜙

)
sin𝑚+1 𝜙 𝑑𝜙.

Applying Sonine’s first finite integral for the modified Bessel function 𝐼𝑚 of the first kind, see
lemma 2.3, given as√︂

2
𝜋

(
𝛼

√︃
1 − 𝑎−2‖𝑥‖2

) 1
2
∫ 𝜋

2

0
𝐼𝑚

(
𝛼

√︃
1 − 𝑎−2‖𝑥‖2 sin𝜙

)
sin𝑚+1 𝜙 𝑑𝜙 = 𝐼𝑚+ 1

2

(
𝛼

√︃
1 − 𝑎−2‖𝑥‖2

)
for 𝑧 = 𝛼

√︃
1 − 𝑎−2‖𝑥‖2, finally yields the X-Ray transform of the Blob function

P𝜃𝑏(𝑥) =
𝑎

𝐼𝑚 (𝛼)

√︂
2𝜋
𝛼

(√︃
1 − 𝑎−2‖𝑥‖2

)𝑚+ 1
2
𝐼𝑚+ 1

2

(
𝛼

√︃
1 − 𝑎−2‖𝑥‖2

)
.

6.1.3 Approximation properties

We will also have a look at the approximation properties of the Pixel/Voxel and the Blob basis
functions. We define the translates of a fixed basis function 𝑏 as

𝑏 𝑗 B 𝑏(· − 𝑥 𝑗) (6.2)

for a given set of centers {𝑥 𝑗} 𝑗 depending on the underlying grid. For the Blob basis functions,
different types of grids have been studied for two and three dimensions, see e.g. [ML95] and
[ML96]. Nevertheless, we will restrict the approximation analysis to the canonical case of regular
Cartesian grids, i.e., the centers in equation (6.2) are defined as 𝑥 𝑗 ∈ Z𝑑 . For a given grid size ℎ > 0,
we further define

𝑥ℎ𝑗 B ℎ−1𝑥 𝑗.

For compactly supported 𝜓 ∈ 𝐿2(R𝑑) and {𝑤 𝑗} 𝑗∈Z𝑑 ⊂ R we define

𝑆ℎ𝜓𝑤(𝑥) B ℎ−
𝑑
2

∑︁
𝑗∈Z𝑑

𝑤 𝑗𝜓

( · − 𝑥 𝑗

ℎ

)
.

For our approximation considerations, we refer to the so-called Strang-Fix conditions introduced
in [SF73] and broadly used in literature for example in [BJ85].

Theorem 6.7 ([SF73, Theorem 1]). Let 𝜓 ∈ 𝐿2(R𝑑) be compactly supported. It is equivalent:

(i) (Strang-Fix conditions) 𝜓(0) = 1 and 𝜓 = 0 on 2𝜋Z𝑚 \ {0}
(ii) For each 𝑢 ∈ 𝐻1(R𝑑) there exists {𝑤ℎ

𝑗
}
𝑗∈Z𝑑

such that

‖𝑢 − 𝑆ℎ𝜓𝑤
ℎ‖

𝐿2 (R𝑑 ) ≤ 𝐶ℎ ‖𝑢‖𝐻1 (R𝑑 ) and
∑︁
𝑗∈Z𝑑

|𝑤ℎ
𝑗 |

2 ≤ 𝑐‖𝑢‖2
𝐿2 (R𝑑 )

where 𝐻𝜈(R𝑑) denotes the Sobolev space of order 𝜈 associated to 𝐿2(R𝑑),

𝐻𝜈(R𝑑) B
{
𝑓 ∈ 𝐿2(R𝑑) : ‖ 𝑓 ‖𝐻𝜈 (R𝑑 ) B

( ∫
R𝑑

(
1 + ‖𝜉‖2

)𝜈
| 𝑓 (𝜉) |2 𝑑𝜉

) 1
2

< ∞
}
.
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For 𝜓 ∈ 𝐿2(R𝑑), the first part of the Strang-Fix condition (i) is obviously fulfilled by rescaling the
basis function with the constant 𝑐𝑏 defined as

𝑐−1
𝑏 B 𝜓(0) = (2𝜋)−

𝑑
2

∫
R𝑑

𝑏(𝑥) 𝑑𝑥.

6.1.3.1 Strang-Fix condition for the Pixel/Voxel basis

The Strang-Fix conditions are trivially fulfilled for the Pixel/Voxel basis function �𝑑 up to the scaling
factor 𝑐𝑑� B (2𝜋)

𝑑
2 . Following proposition 6.2, the Fourier transform of the Pixel basis function �𝑑

is given as

F�𝑑 (𝜉) = (2𝜋)−
𝑑
2

𝑑∏
𝑖=1

sinc
(𝜉𝑖

2

)
.

with sinc 𝑥 = sin 𝑥
𝑥

for 𝑥 ∈ R. It holds:

(i)

F
(
𝑐𝑑��

𝑑
)
(0) = 𝑐𝑑�F�

𝑑 (0) = 1,

(ii)

F�𝑑 (2𝑘𝜋) = (2𝜋)−
𝑑
2

𝑑∏
𝑖=1

sinc
(
𝑘𝑖𝜋

)
= 0 ∀𝑘 ∈ Z

𝑑 .

6.1.3.2 Strang-Fix condition for the Lewitt-Blobs

For the Lewitt-Blob basis function 𝑏𝑚,𝑎,𝛼 the situation looks different. We first recall that 𝑏𝑚,𝑎,𝛼
is an 𝑚 − 1-times continuously differentiable function with compact support, see proposition 6.4,
and thus obviously 𝑏𝑚,𝑎,𝛼 ∈ 𝐿2(R𝑑). The diameter of its support is controlled via the parameter 𝑎
while the shape of the Blob and thus its spectral behavior is controlled via the parameter 𝛼. While
the parameters 𝑚 and 𝑎 are chosen according to the requirements of the application and the used
algorithm, 𝛼 remains a free parameter which has to be chosen with respect to 𝑚 and 𝑎.

Optimizing the Blob parameters can already be found in [ML96]. The authors derive a criterion in
the Fourier domain based on the partition-of-unity property to minimize 𝑏𝑑 at 2𝜋, i.e., for 𝑘 = 1.

In [Nil+15, Theorem 2] a negative result is stated: The Strang-Fix conditions from theorem 6.7
cannot be fulfilled for compactly supported radially symmetric function. The authors showed
this for the equivalent partition-of-unity condition and proposed a method to obtain optimal Blob
parameters by mimimizing the ratio ∑

𝑘∈Z𝑑\0 𝑏
𝑑
𝑚,𝑎,𝛼(2𝑘𝜋)

𝑏𝑑𝑚,𝑎,𝛼(0)
.

The following proposition characterizes the zeros of the Blob function in terms of the zeros of the
Bessel function 𝐽.
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Proposition 6.8. The zeros of the radial part 𝑏𝑑,𝑅𝑚,𝑎,𝛼 of the Fourier transform of the Blob basis function
are given by

𝜁𝑛 =
1
𝑎

√︂(
𝑗 𝑑

2+𝑚,𝑛

)2
+ 𝛼2 ∈ R+ 𝑛 ∈ N+

where 𝑗 𝑑
2+𝑚,𝑛

denotes the 𝑛-th positive zero of the Bessel function 𝐽 𝑑
2+𝑚

. All zeros 𝜁𝑛 are simple.

Proof. According to proposition 6.5, the Fourier transform of 𝑏𝑚,𝑎,𝛼 is given as

𝑏𝑑𝑚,𝑎,𝛼(𝜉) =
𝑎𝑑𝛼𝑚

𝐼𝑚 (𝛼)

(√︃
𝑎2‖𝜉‖2 − 𝛼2

)−( 𝑑2+𝑚)
𝐽 𝑑

2+𝑚

(√︃
𝑎2‖𝜉‖2 − 𝛼2

)
.

Putting 𝜑(𝜎) B
√︃
(𝑎𝜎)2 − 𝛼2, the radial part is given as

𝑏
𝑑,𝑅
𝑚,𝑎,𝛼(𝜎) =

𝑎𝑑𝛼𝑚

𝐼𝑚 (𝛼)

(√︃
(𝑎𝜎)2 − 𝛼2

)−( 𝑑2+𝑚)
𝐽 𝑑

2+𝑚

(√︃
(𝑎𝜎)2 − 𝛼2

)
=
𝑎𝑑𝛼𝑚

𝐼𝑚 (𝛼)
𝐽 𝑑

2+𝑚
(𝜑(𝜎))

𝜑(𝜎) 𝑑2+𝑚
.

From the theory of Bessel functions, cf. [Wat95; GR15], it is known that the non-zero zeros of the
Bessel function 𝐽𝜈 are fully characterized by 𝑗 𝑑

2+𝑚,𝑛
, 𝑛 ∈ N+. It follows immediately, that 𝑏𝑑,𝑅𝑚,𝑎,𝛼 has

infinitely many non-zero real zeros characterized by the zeros of the Bessel function as follows,

𝜑(𝜁𝑛) =
√︃(

𝑎𝜁𝑛
)2 − 𝛼2 = 𝑗 𝑑

2+𝑚,𝑛
⇔ 𝜁𝑛 =

1
𝑎

√︂(
𝑗 𝑑

2+𝑚,𝑛

)2
+ 𝛼2.

For 𝜈 > 0, there may exist an additional non-simple zero exists at the origin (𝜑(𝜎) = 0). In the
following we show for odd and even dimensions separately that there is no zero at the origin. For
𝜑(𝜎) → 0 we obtain for even dimensions 𝑑 with L’Hospital’s rule

lim
𝜑(𝜎)→0

𝐽 𝑑
2+𝑚

(𝜑(𝜎))

𝜑(𝜎) 𝑑2+𝑚
= lim

𝜑(𝜎)→0

2−(
𝑑
2+𝑚)

∑ 𝑑
2+𝑚
𝑙=0 (−1) 𝑙

(𝑘
𝑙

)
𝐽2𝑙 (𝜑(𝜎))

( 𝑑2 + 𝑚)!

=
1

2( 𝑑2+𝑚) ( 𝑑2 + 𝑚)!
lim

𝜑(𝜎)→0

𝑑
2+𝑚∑︁
𝑙=0

(−1) 𝑙
(
𝑘

𝑙

)
𝐽2𝑙 (𝜑(𝜎))

=
1

2( 𝑑2+𝑚) ( 𝑑2 + 𝑚)!
lim

𝜑(𝜎)→0

(
𝐽0(𝜑(𝜎)) +

𝑑
2+𝑚∑︁
𝑙=1

(−1) 𝑙
(
𝑘

𝑙

)
𝐽2𝑙 (𝜑(𝜎))

)
=

1

2( 𝑑2+𝑚) ( 𝑑2 + 𝑚)!
.

For 𝑑 being odd we proceed analogously

lim
𝜑(𝜎)→0

𝐽 𝑑
2+𝑚

(𝜑(𝜎))

𝜑(𝜎) 𝑑2+𝑚
= lim

𝜑(𝜎)→0

2−(
𝑑−1

2 +𝑚) ∑ 𝑑−1
2 +𝑚

𝑙=0 (−1) 𝑙
(𝑘
𝑙

)
𝐽2𝑙+ 1

2
(𝜑(𝜎))

( 𝑑−1
2 + 𝑚)!

√︁
𝜑(𝜎)
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=
1

2( 𝑑−1
2 +𝑚) ( 𝑑−1

2 + 𝑚)!
lim

𝜑(𝜎)→0

∑ 𝑑−1
2 +𝑚

𝑙=0 (−1) 𝑙
(𝑘
𝑙

)
𝐽2𝑙+ 1

2
(𝜑(𝜎))√︁

𝜑(𝜎)

=
1

2( 𝑑−1
2 +𝑚) ( 𝑑−1

2 + 𝑚)!
lim

𝜑(𝜎)→0

𝐽 1
2
(𝜑(𝜎)) + ∑ 𝑑−1

2 +𝑚
𝑙=1 (−1) 𝑙

(𝑘
𝑙

)
𝐽2𝑙+ 1

2
(𝜑(𝜎))√︁

𝜑(𝜎)
.

With

Ξ(𝜑(𝜎)) B
𝑑−1

2 +𝑚∑︁
𝑙=1

(−1) 𝑙
(
𝑘

𝑙

)
𝐽2𝑙+ 1

2
(𝜑(𝜎))

follows

lim
𝜑(𝜎)→0

𝐽 𝑑
2+𝑚

(𝜑(𝜎))

𝜑(𝜎) 𝑑2+𝑚
=

1

2( 𝑑−1
2 +𝑚) ( 𝑑−1

2 + 𝑚)!
lim

𝜑(𝜎)→0

𝐽 1
2
(𝜑(𝜎)) + Ξ(𝜑(𝜎))√︁

𝜑(𝜎)

=

√
𝜋

2( 𝑑2+𝑚) ( 𝑑−1
2 + 𝑚)!

lim
𝜑(𝜎)→0

𝜑(𝜎)−
1
2 sin(𝜑(𝜎)) + Ξ(𝜑(𝜎))√︁

𝜑(𝜎)

=

√
𝜋

2( 𝑑2+𝑚) ( 𝑑−1
2 + 𝑚)!

lim
𝜑(𝜎)→0

(
sin(𝜑(𝜎))
𝜑(𝜎) + Ξ(𝜑(𝜎))√︁

𝜑(𝜎)

)
=

√
𝜋

2( 𝑑2+𝑚) ( 𝑑−1
2 + 𝑚)!

(
sinc(0) + lim

𝜑(𝜎)→0
2
√︁
𝜑(𝜎) Ξ′(𝜑(𝜎))

)
where we again used L’Hospital’s rule in the last step. Since Ξ′(𝜑(𝜎)) → 0 for 𝜑(𝜎) → 0, we
obtain

lim
𝜑(𝜎)→0

𝐽 𝑑
2+𝑚

(𝜑(𝜎))

𝜑(𝜎) 𝑑2+𝑚
=

√
𝜋

2( 𝑑2+𝑚) ( 𝑑−1
2 + 𝑚)!

.

Due to preceding lemma, the zeros of the Fourier transform 𝑏𝑑𝑚,𝑎,𝛼 are fully characterized by the zeros
of the Bessel functions of specific order. We obtain the following connection between 𝑏𝑑𝑚,𝑎,𝛼(2𝜋𝑘)
and its radial part 𝑏𝑑,𝑅𝑚,𝑎,𝛼(2𝜋𝑘),

𝑏𝑑𝑚,𝑎,𝛼(2𝜋𝑘) = 𝑏𝑑𝑚,𝑎,𝛼

(√︃
(2𝜋𝑎‖𝑘‖)2 − 𝛼2

)
= 0 ∀𝑘 ∈ Z

𝑑 \ {0}

⇔ 𝑏
𝑑,𝑅
𝑚,𝑎,𝛼(2𝜋𝑘′) = 𝑏

𝑑,𝑅
𝑚,𝑎,𝛼

(√︃
(2𝜋𝑎𝑘′)2 − 𝛼2

)
= 0 ∀𝑘′ ∈ 𝐾 ′ B

{
𝑛 ∈ N+ : 𝑛 = ‖𝑘‖2, 𝑘 ∈ Z

𝑑
}
.

Consequently the shaping parameter 𝛼 should be chosen in such a way that

2𝜋𝑘′ ∈ {𝜁𝑛}𝑛
is approximately fulfilled for all 𝑘′ ∈ 𝐾 ′. Numerical experiments have shown that this condition can
be approximately fulfilled in the sense that

𝑏
𝑑,𝑅
𝑚,𝑎,𝛼(2𝜋𝑘′) ≈ 0 ∀𝑘′ ∈ 𝐾 ′ (6.3)

for choosing of 𝛼 as specified in [ML96] and [Nil+15].
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6.2 Semi-discrete models for X-ray tomography

6.2.1 Parallel scanning geometry

The parallel scanning geometry in arbitrary dimensions is induced by the X-Ray transform. In the
two-dimensional case, i.e., 𝑑 = 2, the Radon transform coincides with the X-Ray transform up to
parametrization. It holds,

R 𝑓 (𝜃, 𝑠) = P 𝑓 (𝜃⊥, 𝑠𝜃) and P 𝑓 (𝜃, 𝑥) = R 𝑓 (𝜃⊥, 𝑥>𝜃⊥),

for 𝜃 ∈ S1, 𝑠 ∈ R and 𝑥 ∈ 𝜃⊥. To model the parallel scanning geometry, we will therefore consider
the X-ray transform, i.e.,

A𝑖 B P𝜃𝑖
: 𝐿2(Ω) → 𝐿2(𝜃⊥𝑖 , 𝑤𝜃𝑖

),
with the weight functions

𝑤1
𝜃𝑖
≡ 1 and 𝑤2

𝜃𝑖
(𝑥) =

(
P𝜃𝑖

𝜒Ω (𝑥)
)−1

=
1

2
√︃

1 − ‖𝑥‖2
, ∀𝑥 ∈ 𝜃⊥𝑖 ,

cf. section 3.2.

The locally supported basis functions discussed above will serve as the basis elements for our semi-
discrete model, i.e., the voxel basis function �𝑑 (𝑥), cf. definition 6.1 and the Lewitt-Blob basis
function, cf. definition 6.3. To compute their forward projection efficiently, we make use of the
invariances of the X-ray transform: the forward projection of the basis function 𝑏 𝑗 (𝑥) = 𝑏(𝑥 − 𝑥 𝑗) is
computed by

P𝜃𝑖
𝑏 𝑗 (𝑥) = P𝜃𝑖

𝑏(𝑥 − P𝜃𝑖⊥𝑥 𝑗),
cf. proposition 3.7. For the Pixel and Voxel basis function, P

𝜃𝑖
𝑏 has to be computed for each 𝜃𝑖

separately whereas the forward projection of the Lewitt-Blob basis is identical for each direction
due to its rotational symmetry.

We briefly discuss a possible way to evaluate the projection P
𝜃𝑖
𝑏 𝑗 for teh two- and three-dimensional

case numerically.

(i) Let 𝑑 = 2 and the scanning direction 𝜃 ∈ S1 be parameterized by 𝛽 ∈ [0, 2𝜋) as

𝜃(𝛽) =
(
cos 𝛽
sin 𝛽

)
.

Thus, with 𝜃⊥ = (− sin 𝛽, cos 𝛽)> being the orthogonal direction the X-ray transform of 𝑏𝑘 is
computed as

P𝜃𝑏 𝑗 (𝑥) = P𝜃𝑏
(
𝑥 − P𝜃⊥𝑥 𝑗

)
= P𝜃𝑏

(
𝑥 −

(
𝑥>𝑗 𝜃

⊥)
· 𝜃⊥

)
.

(ii) Let 𝑑 = 3. We describe the direction 𝜃 ∈ S2 in spherical coordinates

𝜃(𝛽, 𝛾) = ©«
cos 𝛽 sin 𝛾
sin 𝛽 sin 𝛾

cos 𝛾

ª®¬,
with azimuthal angle 𝛽 ∈ [0, 2𝜋) and polar angle 𝛾 ∈ [0, 𝜋]. The direction 𝜃(𝛽, 𝛾) is
expressed in terms of the unit vector e1 = (1, 0, 0)> as

𝜃(𝛽, 𝛾) = 𝑅𝑧𝛽𝑅
𝑦

𝛾− 𝜋
2

e1,
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where 𝑅𝑦 and 𝑅𝑧 are orthogonal matrices describing a rotation around the 𝑦-axis and 𝑧-axis,
respectively. A positive oriented basis for

𝜃⊥ =
{
𝑥 ∈ R

3 : 𝑥>𝜃 = 0
}

is thus given by rotating the unit vectors e2 and e3 yielding

𝜃⊥1 B 𝑅𝑧𝛽𝑅
𝑦

𝛾− 𝜋
2

e2 =
©«
− sin 𝛽
cos 𝛽

0

ª®¬
and

𝜃⊥2 B 𝑅𝑧𝛽𝑅
𝑦

𝛾− 𝜋
2

e3 =
©«
− cos 𝛽 cos 𝛾
− sin 𝛽 cos 𝛾

sin 𝛾

ª®¬.
We obtain

P𝜃𝑏 𝑗 (𝑥) = P𝜃𝑏
(
𝑥 − P𝜃⊥𝑥 𝑗

)
= P𝜃𝑏

(
𝑥 −

(
𝑥>𝑗 𝜃

⊥
1

)
· 𝜃⊥1 −

(
𝑥>𝑗 𝜃

⊥
2

)
· 𝜃⊥2

)
.

for the three-dimensional X-ray transform of 𝑏 𝑗.

Together with the locally supported basis 𝐵, we obtain the following semi-discrete model of the
X-ray transform:

𝑷𝑘 :
(
R

|𝐽 | , 〈·, ·〉𝑘
)
→ 𝐿2(𝜃⊥𝑘 , 𝑤𝜃𝑘

), 𝑷𝑘 𝒇 B
(
P𝜃𝑘

E𝐵,𝑘
)
𝒇 =

∑︁
𝑗∈𝐽

𝒇 𝑗P𝜃𝑘𝑏 𝑗, (6.4)

where we fix the operator partition 𝑃 of 𝐼 to 𝐼𝑃 = 𝐼, i.e., 𝐴
𝑘
= P

𝜃𝑘
, for convenience. The weight

matrices {𝑊 𝑝

𝑘
}
𝑘

are defined as the diagonal matrices introduced in example 4.10,(
𝑊

𝑝

𝑘

)
𝑗 𝑗
=

∑︁
𝑙∈𝐽

〈
P𝜃𝑘

𝑏 𝑗,P𝜃𝑘
𝑏𝑙

〉
𝐿2 (𝜃⊥𝑘 ,𝑤

𝑝

𝜃𝑘
)

=

〈
P𝜃𝑘

𝑏 𝑗,
∑︁
𝑙∈𝐽

P𝜃𝑘
𝑏𝑙

〉
𝐿2 (𝜃⊥𝑘 ,𝑤

𝑝

𝜃𝑘
)

𝑘 ∈ 𝐼𝑃

for 𝑝 = 1, 2, such that we obtain

‖𝑷𝑘 𝒇 ‖𝑌𝑘 = ‖ 𝒇 ‖𝑘 ∀ 𝒇 ∈ N(𝑷𝑘)⊥ and ‖𝑷‖ = 1.

6.2.2 Cone Beam scanning geometry

The Cone Beam scanning geometry is induced by the Cone Beam transforms D and X, see section 3.3.
For the derivation of the semi-discrete model, we will focus on the flat detector Cone Beam transform.
The semi-discrete model for the classical Cone Beam transform follows analogously. To compute
the Cone Beam transform efficiently for the basis 𝐵, we exploit its relation to the X-ray transform.

For the two-dimensional case, we assume that the X-ray source position 𝑎 ∈ R2 is given in polar
coordinates as

𝑎 = 𝑟 · 𝜃(𝛽), 𝜃(𝛽) B
(
cos 𝛽
sin 𝛽

)
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x

y

a

η

θ̃(φ)

Pθ̃(φ)⊥η

θ̃(φ)

θ̃(φ)⊥

β

φ

Figure 6.4: Relation between the X-ray transform and the flat detector Cone Beam transform in two
dimensions

with 𝑟 > 1 and 𝛽 ∈ [0, 2𝜋). For the three-dimensional case we assume that the X-ray source position
𝑎 ∈ R3 is given in spherical coordinates as

𝑎 = 𝑟 · 𝜃(𝛽, 𝛾), 𝜃(𝛽, 𝛾) B 𝑅𝑧𝛽𝑅
𝑦

𝛾− 𝜋
2

e1 =
©«
cos 𝛽 sin 𝛾
sin 𝛽 sin 𝛾

cos 𝛾

ª®¬
for 𝑟 > 1, 𝛽 ∈ [0, 2𝜋) and 𝛾 ∈ [0, 𝜋]. We treat both cases separately:

(i) We follow [KS88] to derive a connection between the Cone Beam transform and the X-ray
transform. For a given position 𝜂 ∈ 𝜃(𝛽)⊥ on the detector, let 𝜙 ∈ (−𝜋

2 ,
𝜋
2 ) describe the angle

between the central ray of the scanning system through the origin and the actually measured
X-ray, see figure 6.4. The measured X-rays are thus described by{

𝑎 + 𝑡𝜃(𝜙), 𝑡 ≥ 0
}
, 𝜙 ∈

(
−𝜋

2
,
𝜋

2

)
with 𝜃(𝜙) B 𝜃(𝛽 + 𝜋 + 𝜙) depending on the X-ray source position. The angle 𝜙 is computed
as

𝜙 = − arctan

(
𝜂>𝜃(𝛽)⊥

‖𝑎‖ + |𝜂>𝜃(𝛽) |

)
and we obtain

X𝑏 𝑗 (𝑎, 𝜂) = P𝑏 𝑗
(
𝜃(𝜙), P𝜃(𝜙)⊥𝑎

)
= P𝑏

(
𝜃(𝜙), P𝜃(𝜙)⊥

(
𝑎 − 𝑥 𝑗

) )
. (6.5)

(ii) Three-dimensional case (𝑑 = 3): We compute the angles 𝜙, 𝜗 ∈
[
−𝜋

2 ,
𝜋
2

]
for a given position

𝜂 ∈ 𝐸𝑎. For a given position 𝜂 ∈ 𝜃(𝛽)⊥ on the detector, let the angles 𝜙, 𝜗 ∈
[
−𝜋

2 ,
𝜋
2

]
denote
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x

z

a

η

θ̃(φ, ϑ) θ̃(φ, ϑ)

θ̃⊥1 (φ, ϑ)

θ̃⊥2 (φ, ϑ)

(a) 𝑥-𝑧-plane

x

y

a

η

θ̃(φ, ϑ)

θ̃(φ, ϑ)

θ̃⊥1 (φ, ϑ)

θ̃⊥2 (φ, ϑ)

(b) 𝑥-𝑦-plane

Figure 6.5: Relation between the X-ray transform and the flat detector Cone Beam transform in two
dimensions

the angle in the (tilted) 𝑥-𝑦-plane and the angle in the (rotated) 𝑥-𝑧-plane, respectively. The
X-rays are thus parameterized as

𝑎 + 𝑡𝜃(𝜙, 𝜗)
where

𝜃(𝜙, 𝜗) B 𝜃(𝛽 + 𝜋 + 𝜙, 𝛾 + 𝜋 + 𝜗) = 𝑅𝑧𝛽+𝜋+𝜙𝑅
𝑦

𝛾+ 𝜋
2 +𝜗

e1 .

Analogously to the two-dimensional case, we compute the angles 𝜙, 𝜗 ∈
[
−𝜋

2 ,
𝜋
2

]
describing

the direction of the X-ray through the detector position 𝜂 ∈ 𝐸𝑎. With the directions 𝜃⊥1 (𝛽, 𝛾)
and 𝜃⊥2 (𝛽, 𝛾) defined as

𝜃⊥1 (𝛽, 𝛾) = 𝑅𝑧𝛽𝑅
𝑦

𝛾− 𝜋
2

e2 = 𝜃
(
𝛽 + 𝜋

2
,
𝜋

2

)
and

𝜃⊥2 (𝛽, 𝛾) = 𝑅𝑧𝛽𝑅
𝑦

𝛾− 𝜋
2

e3 = 𝜃
(
𝛽, 𝛾 − 𝜋

2

)
,

see figure 6.5, we obtain

tan𝜙 = −
𝜂>𝜃⊥1 (𝛽, 𝛾)

‖𝑎‖ + |𝜂>𝜃(𝛽) | and tan𝜗 = −
𝜂>𝜃⊥2 (𝛽, 𝛾)

‖𝑎‖ + |𝜂>𝜃(𝛽) | .

Thus,
X𝑏 𝑗

(
𝑎, 𝜂

)
= P𝑏

(
𝜃(𝜙, 𝜗), P𝜃⊥ (𝜙,𝜗)

(
𝑎 − 𝑥 𝑗

) )
with 𝜙 = − arctan

(
𝜂>𝜃⊥1 (𝛽,𝛾)

‖𝑎‖+|𝜂>𝜃(𝛽) |

)
and 𝜗 = − arctan

(
𝜂>𝜃⊥2 (𝛽,𝛾)

‖𝑎‖+|𝜂>𝜃(𝛽) |

)
.

The semi-discrete model of the Cone Beam transform follows analogously to the parallel scanning
situation. Together with the locally supported basis 𝐵, we obtain the following semi-discrete model
of the Cone Beam transform:

𝑿𝑘 :
(
R

|𝐽 | , 〈·, ·〉𝑘
)
→ 𝐿2(𝐸𝑎𝑘 , 𝑤𝑎𝑘

), 𝑿𝑘 𝒇 B
(
X𝑎𝑘

E𝐵,𝑘

)
𝒇 =

∑︁
𝑗∈𝐽

𝒇 𝑗X𝑎𝑘
𝑏 𝑗. (6.6)
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Again, the operator partition 𝑃 of 𝐼 is fixed to 𝐼𝑃 = 𝐼, i.e., 𝐴
𝑘
= X𝑎𝑘

, for convenience. The weight
matrices {𝑊 𝑝

𝑘
}
𝑘

are defined as the diagonal matrices introduced in example 4.10,

(
𝑊

𝑝

𝑘

)
𝑗 𝑗
=

∑︁
𝑙∈𝐽

〈
X𝑎𝑘

𝑏 𝑗,X𝑎𝑘
𝑏𝑙

〉
𝐿2 (𝜃⊥𝑘 ,𝑤

𝑝

𝜃𝑘
)
=

〈
X𝑎𝑘

𝑏 𝑗,
∑︁
𝑙∈𝐽

X𝑎𝑘
𝑏𝑙

〉
𝐿2 (𝜃⊥𝑘 ,𝑤

𝑝

𝜃𝑘
)

𝑝 = 1, 2

for all 𝑘 ∈ 𝐼𝑃, such that we obtain

‖𝑿𝑘 𝒇 ‖𝑌𝑘 = ‖ 𝒇 ‖𝑘 ∀ 𝒇 ∈ N(𝑿𝑘)⊥ and ‖𝑿 ‖ = 1.

6.2.3 Incorporation of prior knowledge

Many applications in X-ray tomography suffer from restricted and limited data due to physical
limitations of the scanning system or unsuitable dimensions of the inspected objects. This may
be the case if high magnification ratios are desired or for large objects or objects with different
diameters in longitudinal and transversal direction.

If prior information on the inspected object is available, this information can be included in the
reconstruction process. We present two approaches, published in [VS16] and [VS17].

6.2.3.1 Geometrical a priori information

We consider that additional geometric information on the outer contour of the object is given. This
could be the case if a second imaging modality is used or knowledge of the nominal geometry of
the contours, e.g. from a CAD model, is available.

To use this additional information, we assume in the following that the outer contours of the
inspected object are known. Let 𝑓 ∈ 𝐿2(Ω) denote the searched-for density function of the inspected
object and let the outer support Ω 𝑓 ⊆ Ω be given as∫

Ω\Ω 𝑓

| 𝑓 (𝑥) | = 0.

We define the subset of indices 𝐽0 ⊆ 𝐽 as

𝐽0 B
{
𝑗 : supp 𝑏 𝑗 ∩ Ω 𝑓 ≠ ∅

}
(6.7)

and 𝐵0 B {𝑏 𝑗} 𝑗∈𝐽0
⊆ 𝐵. Hence, all basis functions 𝑏 𝑗 ∈ 𝐵 \ 𝐵0 have no contribution to the basis

representation of the best-approximation 𝑓 = arg min𝜑∈X𝐵
‖𝜑 − 𝑓 ‖ of 𝑓 . Therefore we restrict the

semi-discrete model to the basis 𝐵0 obtaining

𝑨𝐵0,𝑘
:

(
R

|𝐽0 | , 〈·, ·〉𝑘
)
→ 𝑌𝑘, 𝑨𝐵0,𝑘

𝒇 B
(
𝐴𝑘E𝐵0,𝑘

)
𝒇 =

∑︁
𝑗∈𝐽0

𝒇 𝑗𝐴𝑘𝑏 𝑗.

Together with the semi-discrete iteration schemes, we obtain the reconstruction methods adapted
to the prior geometrical knowledge.
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detector plane

X-ray source
ROI

object

Ω

Figure 6.6: Schematic representation of a region-of-interest setup in X-ray tomography.

6.2.3.2 Prior information in region-of-interest reconstruction

The second scenario that we consider is additional knowledge of the involved material properties
for region-of-interest (ROI) reconstruction, see figure 6.6. More specifically, we assume that the
attenuation inside the object underlies only small changes. This could for example be the case for
workpieces made of fiber-reinforced plastic where one is rather interested in the fiber structure
or also objects of homogeneous material composition where one is interested in the detection of
defects like porosity or cracks. With this assumption, the attenuation inside the inspected object
can be modeled to be approximately constant such that the data at any detector position depends
only on the way of the X-rays through the object.

Again, let 𝐽0 denote the index set defined in (6.7) and let 𝐽𝑅 ⊆ 𝐽0 denote the subset of ROI indices.
Further, let 𝑓 denote the minimum-norm solution

𝑨 𝑓 = PR(𝑨)𝑔.

With the assumption on the data follows

𝑔 = PR(𝑨)𝑔 + PN(𝑨∗)𝑔

= 𝑨 𝑓 + PN(𝑨∗)𝑔

=
∑︁
𝑗∈𝐽𝑅

𝑓 𝑗𝐴𝑏 𝑗 +
∑︁

𝑗∈𝐽0\𝐽𝑅

𝑓 𝑗𝐴𝑏 𝑗 + PN(𝑨∗)𝑔

and hence ∑︁
𝑗∈𝐽𝑅

𝑓 𝑗𝐴𝑏 𝑗 = 𝑔 − PN(𝑨∗)𝑔 −
∑︁

𝑗∈𝐽0\𝐽𝑅

𝑓 𝑗𝐴𝑏 𝑗 = PR(𝑨)𝑔 −
∑︁

𝑗∈𝐽0\𝐽𝑅

𝑓 𝑗𝐴𝑏 𝑗.

The arising semi-discrete reconstruction problem now reads

𝑨𝑅 𝒇 = 𝑔𝑅

where 𝑨𝑅 and 𝑔𝑅 are defined as

𝑨𝑅 𝒇 =
∑︁
𝑗∈𝐽𝑅

𝑓 𝑗𝐴𝑏 𝑗 and 𝑔𝑅 = PR(𝑨)𝑔 −
∑︁

𝑗∈𝐽0\𝐽𝑅

𝑓 𝑗𝐴𝑏 𝑗.
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6.3 Semi-discrete iteration methods in X-ray tomography

In this section, we describe the application of the semi-discrete iteration methods in X-ray tomog-
raphy, in particular for the parallel scanning geometry and the flat detector Cone Beam geometry
treated in the preceding section. The problem at hand is finding a solution of

A 𝑓 = 𝑔 𝑔 ∈ Y

The operator A is given as

A =
©«
A1
...

A |𝐼 |

ª®®¬
where A𝑖 is either given by the X-ray transform P

𝜃𝑖
for a fixed scanning direction 𝜃𝑖 or by the flat

detector Cone Beam transform X𝑎𝑖
for a fixed X-ray source position 𝑎𝑖, respectively.

Let 𝐵 denote a locally supported basis. We consider the semi-discrete model of the parallel geometry
described in equation (6.4),

𝑷𝑘 : (R |𝐽 | , 〈·, ·〉𝑘) → 𝐿2(𝜃⊥𝑘 , 𝑤
𝑝

𝜃𝑘
), 𝑷𝑘 𝒇 =

∑︁
𝑗∈𝐽

𝒇 𝑗P𝜃𝑘𝑏 𝑗, 𝑘 ∈ 𝐼𝑃

and the semi-discrete model of the flat detector Cone Beam scanning geometry described in equa-
tion (6.6),

𝑿𝑘 : (R |𝐽 | , 〈·, ·〉𝑘) → 𝐿2(𝐸𝑎𝑘 , 𝑤𝑎𝑘
), 𝑿𝑘 𝒇 B (X𝑎𝑘

E𝐵,𝑘) 𝒇 =
∑︁
𝑗∈𝐽

𝒇 𝑗X𝑎𝑘
𝑏 𝑗, 𝑘 ∈ 𝐼𝑃 .

6.3.1 The semi-discrete Landweber-Kaczmarz method

The semi-discrete Landweber-Kaczmarz method is obtained in terms of the X-Ray transform and the
flat detector Cone Beam transform by applying the backward operator Ψ𝑘 = 𝜆𝑘𝑨

♯

𝑘
to the residual

𝑔𝑘 − 𝑨
𝑘
𝒇𝑚,𝑘. The operator 𝑨

𝑘
denotes the semi-discrete parallel model operator 𝑷𝑘 or the semi-

discrete flat detector Cone Beam operator 𝑿𝑘, respectively. It yields componentwise

(
𝜆𝑘𝑨

♯

𝑘
(𝑔𝑘 − 𝑨𝑘 𝒇

𝑚,𝑘)
)
𝑗
= 𝜆𝑘

〈
A𝑘𝑏 𝑗, 𝑔𝑘 − 𝑨

𝑘
𝒇𝑚,𝑘

〉
Y𝑘〈

A𝑘𝑏 𝑗,
∑
𝑙∈𝐽 A𝑘𝑏𝑙

〉
Y𝑘

=
𝜆𝑘〈

A𝑘𝑏 𝑗,
∑
𝑙∈𝐽 A𝑘𝑏𝑙

〉
Y𝑘

〈
A𝑘𝑏 𝑗, 𝑔𝑘 −

∑︁
𝑗∈𝐽

𝒇 𝑗A𝑘𝑏 𝑗

〉
Y𝑘

for 𝑗 ∈ 𝐽.

Corollary 6.9. The iteration steps of the semi-discrete Landweber-Kaczmarz method are given as fol-
lows.

(i) For 𝑔 ∈
⊕

𝑖∈𝐼 𝐿2(𝜃⊥𝑖 , 𝑤
𝑝

𝜃𝑖
), the iteration step for solving the reconstruction problem

P𝜃𝑖
𝑓 = 𝑔𝑖 𝑖 ∈ 𝐼
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is given componentwise for all 𝑗 ∈ 𝐽 by

𝒇𝑚,𝑘+1
𝑗

= 𝒇𝑚,𝑘
𝑗

+ 𝜆𝑘〈
P
𝜃𝑘
𝑏 𝑗,

∑
𝑙∈𝐽 P𝜃𝑘

𝑏𝑙
〉
𝐿2 (𝜃⊥𝑘 ,𝑤

𝑝

𝜃𝑘
)

〈
P𝜃𝑘

𝑏 𝑗, 𝑔𝑘 −
∑︁
𝑗∈𝐽

𝒇𝑚,𝑘
𝑗

P𝜃𝑘
𝑏 𝑗

〉
𝐿2 (𝜃⊥𝑘 ,𝑤

𝑝

𝜃𝑘
)

.

(ii) For 𝑔 ∈
⊕

𝑖∈𝐼 𝐿2(𝐸𝑎𝑘 , 𝑤𝑎𝑘
), the iteration step for solving the reconstruction problem

X𝑎𝑖
𝑓 = 𝑔𝑖 𝑖 ∈ 𝐼

is given componentwise for all 𝑗 ∈ 𝐽 by

𝒇𝑚,𝑘+1
𝑗

= 𝒇𝑚,𝑘
𝑗

+ 𝜆𝑘〈
X𝑎𝑘

𝑏 𝑗,
∑
𝑙∈𝐽 X𝑎𝑘

𝑏𝑙
〉
𝐿2 (𝐸𝑎𝑘 ,𝑤𝑎𝑘

)

〈
X𝑎𝑘

𝑏 𝑗, 𝑔𝑘 −
∑︁
𝑗∈𝐽

𝒇𝑚,𝑘
𝑗

X𝑎𝑘
𝑏 𝑗

〉
𝐿2 (𝐸𝑎𝑘 ,𝑤𝑎𝑘

)

.

The convergence of the semi-discrete Landweber-Kaczmarz method was settled in section 5.2 by
proposition 5.11 and theorem 5.12. Since the weight matrices {𝑊 𝑝

𝑘
}
𝑘

are definied analogously to
example 4.10 it follows ‖𝑨

𝑘
‖ = 1. With the notation of proposition 5.11 follows 𝛽𝑘 = 1 and thus

𝜏𝑘 = 𝛽𝑘‖𝑨𝑘‖𝑘 = 1.

Corollary 6.10. Let 𝐼∗𝑃 ≠ ∅ and 𝐶𝑘 ∈ (0, 1] such that
∏

𝑘∈𝐼𝑃

√︃
𝜅
(
𝑊

𝑝

𝑘

) ∏
𝑘∈𝐼∗

𝑃
𝐶𝑘 ≤ 1 and let the

relaxation parameters 𝜆𝑘 be defined as

𝜆𝑘 ∈
(
1 − 𝐶𝑘, 1 + 𝐶𝑘

)
𝑘 ∈ 𝐼∗𝑃 and 𝜆𝑘 ∈ (0, 2) 𝑘 ∈ 𝐼𝑃 \ 𝐼∗𝑃 .

The semi-discrete Landweber-Kacmzmarz method converges linearly with
∏

𝑘∈𝐼𝑃

√︃
𝜅
(
𝑊

𝑝

𝑘

) ∏
𝑘∈𝐼∗

𝑃
𝐶𝑘 ≤ 1

being an upper bound for the convergence rate.

Proof. The result follows immediately with

1 ±
( (
𝐶2
𝑘
− 1

)
𝜏4
𝑘
+ 1

) 1
2

𝜏2
𝑘
‖𝑨

𝑘
‖2
𝑘

= 1 ± 𝐶𝑘

from proposition 5.11 and theorem 5.12.

The feasible relaxation parameters do still depend on the condition number 𝜅(𝑊 𝑝

𝑘
) of the weight

matrices 𝑊𝑃
𝑘

, 𝑝 = 1, 2. For the parallel scanning geometry, we obtain:

(i) 𝑝 = 1, i.e., 𝑤𝜃𝑘
= 𝑤1

𝜃𝑘
= 1:(
𝑊1
𝑘

)
𝑗 𝑗
=

∑︁
𝑙∈𝐽

〈
P𝜃𝑘

𝑏 𝑗,P𝜃𝑘
𝑏𝑙

〉
𝐿2 (𝜃⊥𝑘 ,𝑤

1
𝜃𝑘
)

=

∫
𝜃𝑘

⊥
P𝜃𝑘

𝑏 𝑗 (𝑥)
(∑︁
𝑙∈𝐽

P𝜃𝑘
𝑏𝑙 (𝑥)

)
𝑑𝑥
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=

∫
𝜃𝑘

⊥
P𝜃𝑘

𝑏(𝑥 − P𝜃𝑘⊥𝑥 𝑗)
(∑︁
𝑙∈𝐽

P𝜃𝑘
𝑏𝑙 (𝑥)

)
𝑑𝑥

=

(
P𝜃𝑘

𝑏 ∗𝑑−1

∑︁
𝑙∈𝐽

P𝜃𝑘
𝑏𝑙

) (
P𝜃𝑘⊥ (𝑥 𝑗)

)
. (6.8)

The weight matrices depend heavily on the chosen basis 𝐵 and the scanning direction 𝜃𝑘. The
condition number 𝜅

(
𝑊1
𝑘

)
and thus the interval of feasible relaxation parameters differs for

every scanning direction 𝜃𝑘. The representation (6.8) may be used to precompute the weight
matrices.

(ii) 𝑝 = 2, i.e., 𝑤𝜃𝑘
= 𝑤2,𝜃𝑘

(𝑥) =
(
P
𝜃𝑘
𝜒Ω (𝑥)

)−1. With proposition 3.10,(
𝑊2
𝑘

)
𝑗 𝑗
=

∑︁
𝑙∈𝐽

〈
P𝜃𝑘

𝑏 𝑗,P𝜃𝑘
𝑏𝑙

〉
𝐿2 (𝜃⊥𝑘 ,𝑤

2
𝜃𝑘
)

=
∑︁
𝑙∈𝐽

〈
𝑏 𝑗, 𝑏𝑙

〉
𝐿2 (Ω)

.

The weight matrices 𝑊2
𝑘

can thus be computed by the forward projection P
𝜃𝑘
𝜒Ω (𝑥) and is

fully independent of the scanning direction 𝜃𝑘.

For the Pixel and Voxel basis follows immediately

𝑊2
𝑘 = id ∀𝑘 ∈ 𝐼𝑃

since the basis generated by the Voxel basis function �𝑑 (𝑥) is orthonormal. We obtain for the
condition number

𝜅(𝑊2
𝑘 ) = 1

using the Voxel basis. For the Blob basis, this holds clearly not true. Although the Strang-Fix
conditions 6.7 and thus the partition-of-unity property is only approximately fulfilled, it holds

1
𝜇(𝑏)

∑︁
𝑙∈𝐽

𝑏𝑙 (𝑥) ≈ 1

where 𝜇Ω (𝑏) =
∫
Ω
𝑏(𝑥) 𝑑𝑥 denotes the mean value of 𝑏. We obtain∑︁

𝑙∈𝐽

〈
𝑏 𝑗, 𝑏𝑙

〉
𝐿2 (Ω)

=

∫
Ω
𝑏 𝑗 (𝑥)

∑︁
𝑙∈𝐽

𝑏𝑙 (𝑥) 𝑑𝑥

≈ 𝜇Ω (𝑏)
∫
Ω
𝑏 𝑗 (𝑥) 𝑑𝑥

= 𝜇Ω (𝑏) 𝜇Ω (𝑏 𝑗).

Hence, the condition number of 𝑊2
𝑘

for the Blob basis can be approximated by

𝜅
(
𝑊2
𝑘

)
≈

max 𝑗∈𝐽 𝜇Ω (𝑏 𝑗)
min 𝑗∈𝐽 𝜇Ω (𝑏 𝑗)

=
𝜇Ω (𝑏)

min 𝑗∈𝐽 𝜇Ω (𝑏 𝑗)
.
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6.3.2 The semi-discrete Kaczmarz method

Let {e 𝑗} 𝑗∈𝐽 denote the canonical of R |𝐽 | basis with 𝜓𝑘, 𝑗 ∈ N(𝑨♯
𝑘
)⊥ being its associated reconstruction

kernels for all 𝑗 ∈ 𝐽, cf. definition 5.17. Following corollary 5.20, we obtain(
𝜆𝑘𝑨

+
𝑘

(
𝑔𝑘 − 𝑨𝑘 𝒇

𝑚,𝑘
) )

𝑗
= 𝜆𝑘

〈
𝜓𝑘, 𝑗, 𝑔𝑘 − 𝑨𝑘 𝒇

𝑚,𝑘
〉
𝐿2 (𝜃⊥𝑘 ,𝑤

𝑝

𝜃𝑘
)

= 𝜆𝑘

〈
𝜓𝑘, 𝑗, 𝑔𝑘 −

∑︁
𝑗∈𝐽

𝒇 𝑗P𝜃𝑘𝑏 𝑗

〉
𝐿2 (𝜃⊥𝑘 ,𝑤

𝑝

𝜃𝑘
)

∀ 𝑗 ∈ 𝐽

for applying the backward operator to the residual.

Corollary 6.11. The iteration steps of the semi-discrete Kaczmarz method are given as follows.

(i) For 𝑔 ∈
⊕

𝑖∈𝐼 𝐿2(𝜃⊥𝑖 , 𝑤
𝑝

𝜃𝑖
), the iteration step for solving the reconstruction problem

P𝜃𝑖
𝑓 = 𝑔𝑖 𝑖 ∈ 𝐼

is given componentwise for all 𝑗 ∈ 𝐽 by

𝒇𝑚,𝑘+1
𝑗

= 𝒇𝑚,𝑘
𝑗

+ 𝜆𝑘
〈
𝜓𝑘, 𝑗, 𝑔𝑘 −

∑︁
𝑗∈𝐽

𝒇𝑚,𝑘
𝑗

P𝜃𝑘
𝑏 𝑗

〉
𝐿2 (𝜃⊥𝑘 ,𝑤

𝑝

𝜃𝑘
)

.

(ii) For 𝑔 ∈
⊕

𝑖∈𝐼 𝐿2(𝐸𝑎𝑘 , 𝑤𝑎𝑘
), the iteration step for solving the reconstruction problem

X𝑎𝑖
𝑓 = 𝑔𝑖 𝑖 ∈ 𝐼

is given componentwise for all 𝑗 ∈ 𝐽 by

𝒇𝑚,𝑘+1
𝑗

= 𝒇𝑚,𝑘
𝑗

+ 𝜆𝑘
〈
𝜓𝑘, 𝑗, 𝑔𝑘 −

∑︁
𝑗∈𝐽

𝒇𝑚,𝑘
𝑗

X𝑎𝑘
𝑏 𝑗

〉
𝐿2 (𝐸𝑎𝑘 ,𝑤𝑎𝑘

)

.

For 𝐼∗𝑃 ≠ ∅, the convergence follows of the semi-discrete Kaczmarz method follows immediately
from theorem 5.15 for the relaxation parameters {𝜆𝑘}𝑘∈𝐼𝑃 with∏

𝑘∈𝐼∗
𝑃

|1 − 𝜆𝑘 |
∏

𝑘∈𝐼𝑃\𝐼∗𝑃

max
{
1, |1 − 𝜆𝑘 |

}
< 1.

To compute suitable reconstruction kernels for the canonical basis {e 𝑗} 𝑗∈𝐽 of R |𝐽 | , we solve the
normal equation

𝑨𝑘𝑨
♯

𝑘
𝜓𝑘, 𝑗 = 𝑨𝑘 e 𝑗,

cf. definition 5.17. This is equivalent to solving

©«
〈
A𝑘𝑏1, 𝜓

𝑘
1

〉
Y𝑘

· · ·
〈
A𝑘𝑏1, 𝜓

𝑘
𝑀

〉
Y𝑘

...
...〈

A𝑘𝑏𝑀 , 𝜓
𝑘
1

〉
Y𝑘

· · ·
〈
A𝑘𝑏𝑀 , 𝜓

𝑘
𝑀

〉
Y𝑘

ª®®®¬
©«
A𝑘𝑏1
...

A𝑘𝑏𝑀

ª®®¬ =
©«
A𝑘𝑏1
...

A𝑘𝑏𝑀

ª®®¬ ∀𝑘 ∈ 𝐼𝑃 .
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The reconstruction kernels solve the normal equation if the matrix on the left-hand side coincides
with the identity matrix id,

©«
〈
A𝑘𝑏1, 𝜓

𝑘
1

〉
Y𝑘

· · ·
〈
A𝑘𝑏1, 𝜓

𝑘
𝑀

〉
Y𝑘

...
...〈

A𝑘𝑏𝑀 , 𝜓
𝑘
1

〉
Y𝑘

· · ·
〈
A𝑘𝑏𝑀 , 𝜓

𝑘
𝑀

〉
Y𝑘

ª®®®¬ = id ∀𝑘 ∈ 𝐼𝑃 .

In other words, the reconstruction kernels have to fulfill〈
A𝑘𝑏 𝑗, 𝜓

𝑘
𝑙

〉
Y𝑘

= 𝛿 𝑗𝑙 𝑗, 𝑙 ∈ 𝐽 (6.9)

where 𝛿 𝑗𝑙 denotes the Kronecker delta. Without further assumptions on the basis functions, such as
orthogonality, or on the reconstruction kernels this system is not solvable.

For the X-Ray transform, we give a heuristic approach. Let the reconstruction kernels 𝜓𝑘
𝑗
(𝑥) be

defined as shifted versions of the standard reconstruction kernel 𝜓 as

𝜓𝑘
𝑗 (𝑥) B 𝜓(𝑥 − P𝜃𝑘⊥𝑥 𝑗).

We obtain 〈
P𝜃𝑘

𝑏 𝑗, 𝜓
𝑘
𝑙

〉
𝐿2 (𝜃⊥𝑘 ,𝑤

𝑝

𝜃𝑘
)
=

∫
𝜃𝑘

⊥
P𝜃𝑘

𝑏 𝑗 (𝑥)𝜓
(
𝑥 − P𝜃𝑘⊥𝑥 𝑗

)
𝑤
𝑝

𝜃𝑘
(𝑥) 𝑑𝑥

=

∫
𝜃𝑘

⊥
P𝜃𝑘

𝑏(𝑥)𝜓
(
𝑥 − P𝜃𝑘⊥

(
𝑥 𝑗 − 𝑥𝑙

) )
𝑤
𝑝

𝜃𝑘
(𝑥) 𝑑𝑥.

We propose the following choices for the use as reconstruction kernels.

(i) The Dirac delta distribution:

𝜓𝑘
𝑙 (𝑥) B 𝛿(𝑥 − P𝜃𝑘⊥𝑥𝑙) 𝑥 ∈ 𝜃⊥𝑘 .

We obtain 〈
P𝜃𝑘

𝑏 𝑗, 𝜓
𝑘
𝑙

〉
𝐿2 (𝜃⊥𝑘 ,𝑤𝜃𝑘

)
=

∫
𝜃𝑘

⊥
P𝜃𝑘

𝑏 𝑗 (𝑥) 𝛿(𝑥 − P𝜃𝑘⊥𝑥𝑙)𝑤𝜃𝑘
(𝑥) 𝑑𝑥

= (𝑤𝜃𝑘
· P𝜃𝑘𝑏 𝑗) (P𝜃𝑘⊥𝑥𝑙),

providing a rough approximation to (6.9). The inner product with 𝜓𝑘
𝑙

then reduces to a point
evaluation, 〈

P𝜃𝑘
𝑏 𝑗, 𝜓

𝑘
𝑙

〉
𝐿2 (𝜃⊥𝑘 ,𝑤𝜃𝑘

)
=

∫
𝜃𝑘

⊥
P𝜃𝑘

𝑏 𝑗 (𝑥) 𝛿(𝑥 − P𝜃𝑘⊥𝑥𝑙)𝑤𝜃𝑘
(𝑥) 𝑑𝑥

= (𝑤𝜃𝑘
· P𝜃𝑘𝑏 𝑗) (P𝜃𝑘⊥𝑥𝑙).

(ii) The forward projection of the basis functions,

𝜓𝑘
𝑙 (𝑥) B P𝜃𝑘

𝑏𝑙 (𝑥) 𝑥 ∈ 𝜃⊥𝑘 .

Then, 〈
P𝜃𝑘

𝑏 𝑗, 𝜓
𝑘
𝑙

〉
𝐿2 (𝜃⊥𝑘 ,𝑤𝜃𝑘

)
=

〈
P𝜃𝑘

𝑏 𝑗,P𝜃𝑘
𝑏𝑙

〉
𝐿2 (𝜃⊥𝑘 ,𝑤𝜃𝑘

)
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=

∫
𝜃𝑘

⊥
P𝜃𝑘

𝑏 𝑗 (𝑥)P𝜃𝑘𝑏𝑙 (𝑥)𝑤𝜃𝑘
(𝑥) 𝑑𝑥.

Using this reconstruction kernel the backward operator coincides with the semi-discrete
Landweber-Kaczmarz method for unweighted semi-discrete model operators.

6.3.3 Simultaneous Algebraic Reconstruction Technique (SART)

As a representative of classical iterative algebraic reconstruction methods in X-ray tomography we
discuss the widely-used and well-known SART, cf. [AK84]. This method is known to provide suitable
reconstruction results for non-regular geometries as for example used in Computed Laminography
applications or limited data applications [VS16; VS17; Tra+17]. Although being studied in literature
with respect to convergence properties, the SART is usually considered as the fully-discrete iteration
scheme

𝒇𝑚,𝑘+1
𝑗

= 𝒇𝑚,𝑘
𝑗

+ 𝜆𝑘
(∑︁

𝑛

𝑎𝑘𝑛 𝑗

)−1∑︁
𝑛

𝑎𝑘
𝑛 𝑗

(
𝑔𝑘 (𝜂𝑛) −

∑
𝑗∈𝐽 𝒇𝑚,𝑘

𝑗
𝑎𝑘
𝑛 𝑗

)
∑

𝑗∈𝐽 𝑎
𝑘
𝑛 𝑗

, 𝑗 ∈ 𝐽 (6.10)

with 𝑎𝑘
𝑛 𝑗
B A𝑘𝑏 𝑗 (𝜂𝑛) and 𝜂𝑛 being the data points on the detector [AK84], [JW03] and [CE02]. For

a more detailed discussion on the SART and its relation to the semi-discrete iteration methods, we
refer to [VS16; VS17].

In the following, we will derive the SART as a discretization of the semi-discrete Landweber-
Kaczmarz method using the trapezoidal rule on the detector for evaluating of the inner products.
For the parallel geometry we consider the semi-discrete operator model

𝑷𝑘 : (R |𝐽 | , 〈·, ·〉𝑘) → 𝐿2(𝜃⊥𝑘 , 𝑤𝜃𝑘
), 𝑤𝜃𝑘

(𝑥) B
(∑︁
𝑗∈𝐽

P𝜃𝑘
𝑏 𝑗 (𝑥)

)−1

,

see (6.4). For the iteration step follows

𝒇𝑚,𝑘+1
𝑗

= 𝒇𝑚,𝑘
𝑗

+ 𝜆𝑘〈
P
𝜃𝑘
𝑏 𝑗, 1

〉
𝐿2 (𝜃⊥𝑘 )

〈
P𝜃𝑘

𝑏 𝑗,
𝑔𝑘 −

∑
𝑗∈𝐽 𝒇 𝑗P𝜃𝑘

𝑏 𝑗∑
𝑗∈𝐽 P𝜃𝑘

𝑏 𝑗

〉
𝐿2 (𝜃⊥𝑘 )

= 𝒇𝑚,𝑘
𝑗

+ 𝜆𝑘
(∫

𝜃⊥
𝑘

P𝜃𝑘
𝑏 𝑗 (𝑥) 𝑑𝑥

)−1 ∫
𝜃⊥
𝑘

P𝜃𝑘
𝑏 𝑗 (𝑥)

𝑔𝑘 (𝜂) −
∑

𝑗∈𝐽 𝒇 𝑗P𝜃𝑘
𝑏 𝑗 (𝜂)∑

𝑗∈𝐽 P𝜃𝑘
𝑏 𝑗 (𝑥)

𝑑𝑥.

Applying the trapezoidal rule yields

𝒇𝑚,𝑘+1
𝑗

≈ 𝒇𝑚,𝑘
𝑗

+ 𝜆𝑘
(∑︁

𝑛

𝜌𝑛𝑎
𝑘
𝑛 𝑗

)−1 ∑︁
𝑛

𝜌𝑛

𝑎𝑘
𝑛 𝑗
(𝑔𝑘 (𝜂𝑛) −

∑
𝑗∈𝐽 𝒇𝑚,𝑘

𝑗
𝑎𝑘
𝑛 𝑗
)∑

𝑗∈𝐽 𝑎
𝑘
𝑛 𝑗

(6.11)

with 𝑎𝑘
𝑛 𝑗
B P

𝜃𝑘
𝑏 𝑗 (𝑥𝑛) and the weights 𝜌𝑛 of the trapezoidal rule being 𝜌𝑛 = 0.5 on the detector

edges and 𝜌𝑛 = 1 else. For the Cone Beam geometry, the SART follows analogously with the
semi-discrete model

𝑿𝑘 : (R |𝐽 | , 〈·, ·〉𝑘) → 𝐿2(𝐸𝑎𝑘 , 𝑤𝑎𝑘
), 𝑤𝑎𝑘

(𝜂) B
(∑︁
𝑗∈𝐽

X𝑎𝑘
𝑏 𝑗 (𝜂)

)−1
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see (6.6). Assuming that the projections of the inspected object fit completely on the detector, i.e.,
the measured data is not truncated, the integration weights are equally 1 and thus neglectable.
The discretized iteration step (6.11) matches the SART iteration (6.10). This induces that the
convergence of the SART iteration scheme itself as well as the convergence to the solution of the
continuous system is settled by the convergence results of the semi-discrete Landweber-Kaczmarz
method.

Remark 6.12. For the classical Cone Beam transform, the following parameterization of the spherically
shaped detector is used to apply the trapezoidal rule.

(i) In two dimensions, 𝑑 = 2, let the ray direction 𝜃 ∈ S1 be given as

𝜃(𝜙) =
(
cos𝜙
sin𝜙

)
, 𝜙 ∈ [0, 2𝜋).

Applying the trapezoidal yields∫
S1

Φ(𝜃) 𝑑𝜃 =

∫ 2𝜋

0
Φ(𝜃(𝜙)) 𝑑𝜙 ≈ 2𝜋

𝐾

𝐾∑︁
𝑘=1

𝜌𝑘Φ(𝜃𝑘)

for 𝐾 equally distributed positions {𝜃𝑘}𝑘 and the integration weights 𝜌𝑘.

(ii) In three dimensions, 𝑑 = 3, the parameterization

𝜃(𝑡, 𝜙) = ©«
√

1 − 𝑡2 cos𝜙√
1 − 𝑡2 sin𝜙

𝑡

ª®¬ 𝑡 ∈ [−1, 1], 𝜙 ∈ [0, 2𝜋)

is considered for 𝜃 ∈ S2. Then,∫
S2

Φ(𝜃) 𝑑𝜃 =

∫ 1

−1

∫ 2𝜋

0
Φ(𝜃(𝑡, 𝜙)) 𝑑𝜙 𝑑𝑡

and the trapezoidal rule yields∫ 1

−1

∫ 2𝜋

0
Φ(𝜃(𝑡, 𝜙)) 𝑑𝜙 𝑑𝑡 ≈ 2

𝑃

𝑃∑︁
𝑝=1

2𝜋
𝑄

𝑄∑︁
𝑞=1

𝜌𝑝,𝑞Φ
(
𝜃(𝑡𝑝, 𝜙𝑞)

)
=

4𝜋
𝐾

𝐾∑︁
𝑘=1

𝜌𝑘Φ(𝜃𝑘)

with 𝐾 B 𝑃𝑄, 𝜃𝑘 B 𝜃(𝑡𝑝, 𝜙𝑞), 𝑘 B (𝑝 − 1)𝑄 + 𝑞 and integration weights 𝜌𝑝,𝑞.

6.4 Numerics

So far, we considered the given data to be given as 𝑔 ∈ Y and 𝑔𝑖 ∈ Y𝑖. In the context of X-ray
tomography this induces that the data is given continuously on the detector planes with

𝑔𝑖 ∈ 𝐿2(𝜃⊥𝑖 , 𝑤𝜃𝑖
) and 𝑔𝑖 ∈ 𝐿2(𝐸𝑎𝑖 , 𝑤𝑎𝑖

)

the X-ray transform and the flat detector Cone Beam transform, respectively. For measured data,
this is clearly not the case. In general, the data is given at discrete positions {𝜂𝑛}𝑛 on the detector
plane, i.e., the data 𝑔𝑖 is given as

(𝑔𝑖)𝑛 B 𝑔𝑖 (𝜂𝑛)
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Figure 6.7: The Shepp-Logan head phantom.

for every scanning direction 𝜃𝑖 resp. X-ray source position 𝑎𝑖. To derive the semi-discrete iteration
methods for the application in X-ray tomography, we assume in the following that the positions
{𝜂𝑛}𝑛 are equidistantly distributed on a Cartesian grid on the detector planes. This corresponds to
a widely used X-ray tomography setup with flat detector panels for the data acquisition.

For the numerical simulations and validation of the semi-discrete iteration methods, we restrict
ourselves to the two-dimensional case. We will consider the following data sets:

(i) The Shepp-Logan head phantom [SL74]. This phantom consists of eleven ellipses with con-
stant values, see figure 6.7. The outer ellipse imitates a skull and has a value of 2. On the
inside, the large ellipse has a value of 1.02, the value of the small ellipses varies from 1
to 1.05. Note that we use the original density values of the Shepp-Logan phantom. Since
the reconstruction of the small density jumps is very challenging a modified phantom with
large density jumps is widely used in literature to verify iterative reconstruction methods. We
will create synthetic data for our simulations using the parallel scanning geometry with 500
scanned directions and 1024 detector points.

(ii) As a second data set, measured data from beamline ID15A at the European Synchrotron Radi-
ation Facility (ESRF) in Grenoble, France, is used. This data was measured by Prof. Dr. Ralf
Seemann, Department of Physics, Saarland University. From this data fluid flow in porous
media is studied. The Synchrotron application generates data in the parallel scanning ge-
ometry. To verify the semi-discrete iteration methods, we consider the central slice of a
three-dimensional data set containing 500 projections and 512 × 512 detector pixels each.
This data was also used in [HL12] in the context of a fully three-dimensional reconstruction
method for the parallel scanning geometry. For the application of the Synchrotron imaging
modality, we refer to this publication and the references therein.

(iii) Finally, we verify the semi-discrete Landweber-Kaczmarz method for the Cone Beam scanning
geometry using the walnut data set [Häm+15a; Häm+15b]. This data set was originally cre-
ated for testing sparse-data tomography algorithms. However, the contained high-resolution
scans are well-suited for our purpose of evaluating the iteration methods. We downsampled
the data to 400 X-ray source positions and 1148 detector points for each position.

The main challenge in applying the iteration steps is the efficient implementation of the semi-discrete
forward operators and their corresponding backward operators. With the forward projection being
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computed by
𝑨𝑘 𝒇

𝑚,𝑘 (𝑥) =
∑︁
𝑙∈𝐽

𝒇𝑚,𝑘
𝑙

A𝑘𝑏𝑙 (𝑥)

the forward projection A𝑘𝑏 has to be evaluated for all basis function centers {𝑥𝑙}𝑙∈𝐽 and every data
point (𝑔𝑘)𝑛 on the detector.

The basis functions discussed in the previous section can be treated as follows: Whereas a closed for-
mula for evaluating the X-Ray transform of the Blob basis function is available, see proposition 6.6,
there is no such formula for the Voxel basis existent. Thus, the forward projection of the Voxel
P
𝜃𝑘
𝑏(𝜂𝑛 − P𝜃𝑘⊥𝑥 𝑗) has to be computed for each detector point 𝜂𝑛 ∈ 𝜃⊥𝑘 and each Voxel center point

𝑥𝑙, 𝑙 ∈ 𝐽. This can be done for example by using path tracing algorithms specifically designed for
the Pixel basis as for example done in [Tra+17], [VS16] and [VS17]. A more general approach is
the precomputation of P

𝜃𝑘
𝑏 at a regular grid and evaluating 𝑷𝑘 𝒇

𝑚,𝑘 by interpolation. For the flat
detector Cone Beam transform, we make use of the relation (6.5), i.e.,

X𝑏 𝑗 (𝑎, 𝜂) = P𝑏
(
𝜃(𝜙), P𝜃(𝜙)⊥ (𝑎 − 𝑥 𝑗)

)
(6.12)

with

𝜙 = − arctan

(
𝜂>𝜃(𝛽)⊥

‖𝑎‖ + |𝜂>𝜃(𝛽) |

)
where 𝜃(𝜙) B 𝜃(𝛽 + 𝜋 + 𝜙).

6.4.1 Parallel scanning geometry

To evaluate the backward operators, we have to compute the inner products〈
A𝑘𝑏 𝑗, 𝑔𝑘 −

∑︁
𝑗∈𝐽

𝒇𝑚,𝑘
𝑗

A𝑘𝑏 𝑗

〉
Y𝑘

and
〈
𝜓𝑘, 𝑗, 𝑔𝑘 −

∑︁
𝑗∈𝐽

𝒇𝑚,𝑘
𝑗

A𝑘𝑏 𝑗

〉
Y𝑘

respectively. For the X-Ray transform, we use〈
P𝜃𝑘

𝑏 𝑗, 𝜑
〉
𝐿2 (𝜃⊥𝑘 ,𝑤

𝑝

𝜃𝑘
) =

∫
𝜃𝑘

⊥
P𝜃𝑘

𝑏 𝑗 (𝑥) 𝜑(𝑥)𝑤𝑝

𝜃𝑘
(𝑥) 𝑑𝑥

=

∫
𝜃𝑘

⊥
P𝜃𝑘

𝑏(P𝜃𝑘⊥𝑥 𝑗 − 𝑥) (𝑤𝑝

𝜃𝑘
· 𝜑) (𝑥) 𝑑𝑥

=
(
P𝜃𝑘

𝑏 ∗𝑑−1(𝑤
𝑝

𝜃𝑘
· 𝜑)

)
(P𝜃𝑘⊥𝑥 𝑗).

To compute these convolutions efficiently, we proceed analogously to the filtered back-projection
algorithm, cf. [Nat01], by replacing the convolution by a discrete convolution at the data grid
{𝜂𝑛}𝑛, (

P𝜃𝑘
𝑏 ∗𝑑−1(𝑤

𝑝

𝜃𝑘
· 𝑟𝑚𝑘 )

)
(𝜂𝑛) ≈

(
P𝜃𝑘

𝑏 ∗ℎ𝑑−1(𝑤
𝑝

𝜃𝑘
· 𝑟𝑚𝑘 )

)
𝑛
.

Then, the values of the convolution at the positions P𝜃𝑘⊥𝑥 𝑗 are obtained by interpolation. We get the
following algorithm for the iteration step of the Landweber-Kaczmarz method. For 𝑘 = 1, . . . , |𝐽 |:

(i) For 𝜂𝑛 ∈ 𝜃⊥𝑘 compute∑︁
𝑙∈𝐽

P𝜃𝑘
𝑏𝑙 (𝜂𝑛) =

∑︁
𝑙∈𝐽

P𝜃𝑘
𝑏
(
𝜂𝑛 − P𝜃𝑘⊥𝑥𝑙

)
and 𝑷𝑘 𝒇

𝑚,𝑘 =
∑︁
𝑙∈𝐽

𝒇𝑚,𝑘
𝑙

P𝜃𝑘
𝑏
(
𝜂𝑛 − P𝜃𝑘⊥𝑥𝑙

)
.
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(ii) Compute the discrete convolution of P
𝜃𝑘
𝑏 with the residual 𝑟𝑚

𝑘
at 𝜂𝑛 by

�̃�𝑚𝑘 B P𝜃𝑘
𝑏 ∗ℎ

(
𝑤𝜃𝑘

· 𝑟𝑚𝑘
)

and �̃�𝑘 B P𝜃𝑘
𝑏 ∗ℎ

∑︁
𝑙∈𝐽

P𝜃𝑘
𝑏𝑙 .

(iii) Evaluate

𝒇𝑚,𝑘+1
𝑗

= 𝒇𝑚,𝑘
𝑗

+ 𝜆𝑘
�̃�𝑚
𝑘

(
P𝜃𝑘⊥𝑥 𝑗

)
�̃�𝑘

(
P𝜃𝑘⊥𝑥 𝑗

) ∀ 𝑗 ∈ 𝐽

by interpolation.

Analogously follows for the Kaczmarz iteration,〈
𝜓𝑘
𝑗 , 𝜑

〉
𝐿2 (𝜃⊥𝑘 ,𝑤

𝑝

𝜃𝑘
) =

(
𝜓 ∗𝑑−1(𝑤

𝑝

𝜃𝑘
· 𝜑)

) (
P𝜃𝑘⊥𝑥 𝑗

)
,

and we obtain the following algorithm. For 𝑘 = 1, . . . , |𝐽 |:

(i) For 𝜂𝑛 ∈ 𝜃⊥𝑘 compute∑︁
𝑙∈𝐽

P𝜃𝑘
𝑏𝑙 (𝜂𝑛) =

∑︁
𝑙∈𝐽

P𝜃𝑘
𝑏
(
𝜂𝑛 − P𝜃𝑘⊥𝑥𝑙

)
and 𝑷𝑘 𝒇

𝑚,𝑘 =
∑︁
𝑙∈𝐽

𝒇𝑚,𝑘
𝑙

P𝜃𝑘
𝑏
(
𝜂𝑛 − P𝜃𝑘⊥𝑥𝑙

)
.

(ii) Compute the discrete convolution of P
𝜃𝑘
𝑏 with the residual 𝑟𝑚

𝑘
at 𝜂𝑛 by

�̃�𝑚𝑘 B P𝜃𝑘
𝑏 ∗ℎ

(
𝑤𝜃𝑘

· 𝑟𝑚𝑘
)
.

(iii) Evaluate
𝒇𝑚,𝑘+1
𝑗

= 𝒇𝑚,𝑘
𝑗

+ 𝜆𝑘 �̃�𝑚𝑘
(
P𝜃𝑘⊥𝑥 𝑗

)
∀ 𝑗 ∈ 𝐽

by interpolation.

6.4.2 Cone Beam scanning geometry

To evaluate the backward operator Ψ𝑘 = 𝜆𝑘𝑿
♯ the inner product〈

X𝑎𝑘
𝑏 𝑗, 𝑔𝑘 −

∑︁
𝑗∈𝐽

𝒇𝑚,𝑘
𝑗

X𝑎𝑘
𝑏 𝑗

〉
𝐿2 (𝐸𝑎𝑘 ,𝑤𝑎𝑘

)

has to be evaluated. With (6.12) follows〈
X𝑎𝑘

𝑏 𝑗, 𝜑
〉
𝐿2 (𝐸𝑎𝑘 ,𝑤

𝑝
𝑎𝑘
) =

∫
𝐸𝑎𝑘

X𝑎𝑘
𝑏 𝑗 (𝜂)𝜑(𝜂)𝑤𝑝

𝜃𝑘
(𝜂) 𝑑𝜂

=

∫
𝐸𝑎𝑘

P𝑏
(
𝜃(𝜙), P𝜃(𝜙)⊥ (𝑎 − 𝑥 𝑗)

)
(𝑤𝑝

𝜃𝑘
· 𝜑) (𝜂) 𝑑𝜂

with

𝜙 = − arctan

(
𝜂>𝜃(𝛽)⊥

‖𝑎‖ + |𝜂>𝜃(𝛽) |

)
and 𝜃(𝜙) B 𝜃(𝛽 + 𝜋 + 𝜙). This integral is evaluated using the trapezoidal rule. We obtain the
following algorithm to compute the iteration steps. For 𝑘 = 1, . . . , |𝐽 |:
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(i) For 𝜂𝑛 ∈ 𝜃⊥𝑘 compute ∑︁
𝑙∈𝐽

X𝑎𝑘
𝑏𝑙 (𝜂𝑛) =

∑︁
𝑙∈𝐽

P𝑏
(
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.
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𝑤
𝑝
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·
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X𝑎𝑘
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(iii) Evaluate

𝒇𝑚,𝑘+1
𝑗

= 𝒇𝑚,𝑘
𝑗

+ 𝜆𝑘
�̃�𝑚
𝑘

�̃�𝑘

∀ 𝑗 ∈ 𝐽

by interpolation.

6.4.3 Results

For all reconstructions, we used a random but fixed order of the scanning directions and a regular
grid of 501 × 501 Lewitt-Blobs with parameters 𝑎 = 2, 𝑚 = 2, and 𝛼 = 10.8262. The value of 𝛼 was
optimized with respect to the criterion (6.3) for 𝑘′ = 1, cf. also [ML96]. The relaxation parameters
were chosen heuristically within the range of feasible relaxation parameters 𝜆𝑘. Figure 6.8 shows
the application of the semi-discrete Landweber-Kaczmarz to the data Shepp-Logan head phantom.
The reconstruction of the Synchrotron data set is shown in figure 6.9. In figure 6.10, the application
of the semi-discrete Landweber-Kaczmarz method to the walnut data set is shown. The application
of the semi-discrete Kaczmarz method for the Shepp-Logan head phantom and the Synchrotron
data set is shown in figure 6.11 and figure 6.12, respectively.

All reconstruction methods yield suitable reconstructions for the used data. A notable result is
that the reconstruction is already close to the desired result after few iterations. For the chosen
relaxation parameters 𝜆𝑘 there is almost only 1 iteration needed. Further, the basis coefficients
of the Blob basis itself provide already good reconstruction results. Due to the shape of the Blob
function, see figure 6.2, the reconstruction after evaluation the basis representation is smoother.

Having a closer look at the results of the semi-discrete Kaczmarz method in figure 6.11 and fig-
ure 6.12, the Blob reconstruction kernel yields smoother reconstructions than the Dirac reconstruc-
tion kernel.
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(a) Iteration 1

(b) Iteration 3

(c) Iteration 5

Figure 6.8: Semi-discrete Landweber-Kaczmarz method applied to Shepp-Logan head phantom data
(501 × 501 Blob basis functions, 𝜆𝑘 ≡ 0.6): Basis coefficients (left) and evaluated basis
coefficients (right).
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(a) Iteration 1 (b) Iteration 3

(c) Iteration 5

Figure 6.9: Semi-discrete Landweber-Kaczmarz method applied to the Synchrotron data (501× 501
Blob basis functions, 𝜆𝑘 ≡ 0.6): Evaluated basis coefficients.
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(a) Iteration 1 (b) Iteration 3

(c) Iteration 5

Figure 6.10: Semi-discrete Landweber-Kaczmarz method applied to the walnut data set (501 × 501
Blob basis functions, 𝜆𝑘 ≡ 0.6): Evaluated basis coefficients.
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(a) Iteration 1

(b) Iteration 3

(c) Iteration 5

Figure 6.11: Semi-discrete Kaczmarz method applied to Shepp-Logan head phantom data (501×501
Blob basis functions, 𝜆𝑘 ≡ 0.6): Evaluated basis coefficients for 𝜓𝑘

𝑙
(𝑥) = 𝛿(𝑥 − P𝜃𝑘⊥𝑥𝑙)

(left) and 𝜓𝑘
𝑙
(𝑥) = P

𝜃𝑘
𝑏𝑙 (𝑥) (right).
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(a) Iteration 1

(b) Iteration 3

(c) Iteration 5

Figure 6.12: Semi-discrete Kaczmarz method applied to the Synchrotron data set (501 × 501 Blob
basis functions, 𝜆𝑘 ≡ 0.6): Evaluated basis coefficients for 𝜓𝑘

𝑙
(𝑥) = 𝛿(𝑥 − P𝜃𝑘⊥𝑥𝑙) (left)

and 𝜓𝑘
𝑙
(𝑥) = P

𝜃𝑘
𝑏𝑙 (𝑥) (right).
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Chapter 7

Conclusion and outlook

We proposed the semi-discrete iteration methods consiting of a semi-discrete operator model and
an iteration scheme to solve the semi-discrete model. We showed that the solution of the semi-
discrete reconstruction problem converges to the solution of the continuous system for suitable
choices of the underlying basis elements, see theorem 4.15. The presented iteration schemes were
shown to converge linearly, see theorem 5.6. For the semi-discrete reconstruction problem being a
consistent the iteration methods converge to the generalized solution of the reconstruction problem
see proposition 5.8. The convergence theory was transferred to the explicit backward operator
choices yielding the semi-discrete Landweber-Kaczmarz method in theorem 5.12 and the semi-
discrete Kaczmarz method in theorem 5.15, respectively. We further proposed a method to compute
the application of the generalized inverse by evaluating inner products, see proposition 5.18.

Further, the semi-discrete iteration methods were applied to applications in X-Ray tomography
in chapter 6. The classical Voxel basis function and the Lewitt-Blob basis function were used
to derive a semi-discrete model for the parallel and the flat detector Cone Beam geometry. In
section 6.2.3 a modified operator model is introduced to incorporate prior information about the
inspected object directly into the semi-discrete model. An algorithm for the efficient implementation
of the semi-discrete iteration methods were applied in the context of parallel geometries and Cone
Beam scanning geometries. In section 6.3.3, the classical algebraic reconstruction method SART
was shown to be a discretized version of the semi-discrete Landweber-Kaczmarz method using the
trapezoidal rule on the detector. Together with the convergence and approximation properties of the
semi-discrete iteration methods this induces convergence and approximation properties of the SART
algorithm. The error estimates of theorem 5.6 provide an explanation for the efficiency of algebraic
reconstruction methods in CT applications and the impact of the chosen relaxation parameters on
the convergence speed.

We also discussed the boundedness of the Radon transform and its related ray transform for fixed
X-Ray directions and source positions, respectively, on weighted 𝐿2 spaces. For specific choices of
these weights the operator norm is equally 1 and the generalized inverse is identical to the adjoint
operator. This induces that the operator norm of the generalized inverse operators is also equally
1, see propositions 3.5, 3.10 and 3.14. This implies also that all these transforms form isometries
between the orthogonal complement of their nullspace and the image space. Although these results
are known in parts and can be found indirectly for the Radon transform and the X-Ray transform
for example in [Nat01] and for the Cone Beam transform for example in [Ham+80], there exists
no systematic analysis of this fact for all four transforms to the author’s knowledge.

Further studies of semi-discrete iteration methods could involve different choices for the backward
operators. Since the presented iteration methods rely on the classical Landweber and Kaczmarz
methods other choices of Ψ𝑘 might also be of interest. Although their application was restricted to
X-ray tomography using the semi-discrete framework in other applications where systems of linear
operator equations are involved seems promising.
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Naturally, the study of optimal relaxation parameters might be very useful for further research.
A systematic investigation of the choice of relaxation parameters based on the convergence theo-
rems 5.6, 5.12 and 5.15 might yield further insights into the proposed iteration methods. For the
fully-discrete case, such results exist together with convergence results for Landweber-type methods,
cf. for example [JW03] and [CE02]. For the continuous case there exists also results, see [LA12]
and [KL14]. These results might be transferred to the semi-discrete framework. We further saw
that the iteration methods converged in the numerical simulations using only a few iteration steps.
Thus, the iteration methods could also be treated and analyzed as direct methods. A further topic
for future research might be performance investigations and verification of the proposed methods
for limited and truncated data.

Clearly, the application of the semi-discrete Kaczmarz method to three-dimensional Cone Beam data
is of great interest, in particular, the computation of suitable reconstruction kernels in the sense of
definition 5.17. A possible approach might be the exploitation of the relation between the Cone
Beam transform and the Radon resp. X-Ray transform, see [Gra91] and [Lou16].
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