Please use this identifier to cite or link to this item:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-27393
Title: | Different in vitro and in vivo tools for elucidating the human metabolism of alpha-cathinone-derived drugs of abuse |
Author(s): | Manier, Sascha K. Richter, Lilian Schäper, Jan Maurer, Hans H. Meyer, Markus R. |
Language: | English |
Title: | Drug Testing and Analysis |
Volume: | 10 |
Issue: | 7 |
Startpage: | 1119 |
Endpage: | 1130 |
Publisher/Platform: | Wiley |
Year of Publication: | 2018 |
DDC notations: | 500 Science |
Publikation type: | Journal Article |
Abstract: | In vitro and in vivo experiments are widely used for studying the metabolism of new psychoactive substances (NPS). The availability of such data is required for toxicological risk assessments and development of urine screening approaches. This study investigated the in vitro metabolism of the 5 pyrrolidinophenone-derived NPS alpha-pyrrolidinobutyrophenone (alpha-PBP), alpha-pyrrolidinopentiothiophenone (alpha-PVT), alpha-pyrrolidinohexanophenone (alpha-PHP), alpha-pyrrolidinoenanthophenone (alpha-PEP, PV8), and alpha-pyrrolidinooctanophenone (alpha-POP, PV9). First, they were incubated with pooled human liver microsomes (pHLM) or pooled human liver S9 fraction (pS9) for identification of the main phase I and II metabolites. All substances formed hydroxy metabolites and lactams. Longer alkyl chains resulted in keto group and carboxylic acid formation. Comparing these results with published data obtained using pHLM, primary human hepatocytes (PHH), and authentic human urine samples, PHH provided the most extensive metabolism. Second, enzyme kinetic studies showed that the initial metabolic steps were formed by cytochrome P450 isoforms (CYP) CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 resulting in pyrrolidine, thiophene or alkyl hydroxy metabolites depending on the length of the alkyl chain. The kinetic parameters indicated an increasing affinity of the CYP enzymes with increase of the length of the alkyl chain. These parameters were then used to calculate the contribution of a single CYP enzyme to the in vivo hepatic clearance. CYP2C19 and CYP2D6 were mainly involved in the case of alpha-PBP and CYP1A2, CYP2C9 and CYP2C19 in the case of alpha-PVT, alpha-PHP, alpha-PEP, and alpha-POP. |
DOI of the first publication: | 10.1002/dta.2355 |
URL of the first publication: | https://onlinelibrary.wiley.com/doi/full/10.1002/dta.2355 |
Link to this record: | hdl:20.500.11880/29464 http://dx.doi.org/10.22028/D291-27393 |
ISSN: | 1942-7611 1942-7603 |
Date of registration: | 24-Jul-2020 |
Faculty: | M - Medizinische Fakultät |
Department: | M - Experimentelle und Klinische Pharmakologie und Toxikologie |
Professorship: | M - Prof. Dr. Markus Meyer |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
There are no files associated with this item.
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.