Please use this identifier to cite or link to this item: doi:10.22028/D291-31117
Title: Snapshot : friend or foe of data management - on optimizing transaction processing in database and blockchain systems
Author(s): Sharma, Ankur
Language: English
Year of Publication: 2020
Free key words: blockchain
virtual memory
snapshot
database optimization
database system
blockchain system
transactional systems
main-memory database system
permissioned-blockchain system
operating systems
DDC notations: 004 Computer science, internet
Publikation type: Doctoral Thesis
Abstract: Data management is a complicated task. Due to a wide range of data management tasks, businesses often need a sophisticated data management infrastructure with a plethora of distinct systems to fulfill their requirements. Moreover, since snapshot is an essential ingredient in solving many data management tasks such as checkpointing and recovery, they have been widely exploited in almost all major data management systems that have appeared in recent years. However, snapshots do not always guarantee exceptional performance. In this dissertation, we will see two different faces of the snapshot, one where it has a tremendous positive impact on the performance and usability of the system, and another where an incorrect usage of the snapshot might have a significant negative impact on the performance of the system. This dissertation consists of three loosely-coupled parts that represent three distinct projects that emerged during this doctoral research. In the first part, we analyze the importance of utilizing snapshots in relational database systems. We identify the bottlenecks in state-of-the-art snapshotting algorithms, propose two snapshotting techniques, and optimize the multi-version concurrency control for handling hybrid workloads effectively. Our snapshotting algorithm is up to 100x faster and reduces the latency of analytical queries by up to 4x in comparison to the state-of-the-art techniques. In the second part, we recognize strict snapshotting used by Fabric as a critical bottleneck, and replace it with MVCC and propose some additional optimizations to improve the throughput of the permissioned-blockchain system by up to 12x under highly contended workloads. In the last part, we propose ChainifyDB, a platform that transforms an existing database infrastructure into a blockchain infrastructure. ChainifyDB achieves up to 6x higher throughput in comparison to another state-of-the-art permissioned blockchain system. Furthermore, its external concurrency control protocol outperforms the internal concurrency control protocol of PostgreSQL and MySQL, achieving up to 2.6x higher throughput in a blockchain setup in comparison to a standalone isolated setup. We also utilize snapshots in ChainifyDB to support recovery, which has been missing so far from the permissioned-blockchain world.
Datenverwaltung ist eine komplizierte Aufgabe. Aufgrund der vielfältigen Aufgaben im Bereich der Datenverwaltung benötigen Unternehmen häufig eine anspruchsvolle Infrastruktur mit einer Vielzahl an unterschiedlichen Systemen, um ihre Anforderungen zu erfüllen. Dabei ist Snapshotting ein wesentlicher Bestandteil in nahezu allen aktuellen Datenbanksystemen, um Probleme wie Checkpointing und Recovery zu lösen. Allerdings garantieren Snapshots nicht immer eine gute Performance. In dieser Arbeit werden wir zwei Facetten des Snapshots beleuchten: Einerseits können Snapshots enorm positive Auswirkungen auf die Performance und Usability des Systems haben, andererseits können sie bei falscher Anwendung zu erheblichen Performanceverlusten führen. Diese Dissertation besteht aus drei Teilen basierend auf drei unterschiedlichen Projekten, die im Rahmen der Forschung zu dieser Arbeit entstanden sind. Im ersten Teil untersuchen wir die Bedeutung von Snapshots in relationalen Datenbanksystemen. Wir identifizieren die Bottlenecks gegenwärtiger Snapshottingalgorithmen, stellen zwei leichtgewichtige Snapshottingverfahren vor und optimieren Multi- Version Concurrency Control f¨ur das effiziente Ausführen hybrider Workloads. Unser Snapshottingalgorithmus ist bis zu 100 mal schneller und verringert die Latenz analytischer Anfragen um bis zu Faktor vier gegenüber dem Stand der Technik. Im zweiten Teil identifizieren wir striktes Snapshotting als Bottleneck von Fabric. In Folge dessen ersetzen wir es durch MVCC und schlagen weitere Optimierungen vor, mit denen der Durchsatz des Permissioned Blockchain Systems unter hoher Arbeitslast um Faktor zwölf verbessert werden kann. Im letzten Teil stellen wir ChainifyDB vor, eine Platform die eine existierende Datenbankinfrastruktur in eine Blockchaininfrastruktur überführt. ChainifyDB erreicht dabei einen bis zu sechs mal höheren Durchsatz im Vergleich zu anderen aktuellen Systemen, die auf Permissioned Blockchains basieren. Das externe Concurrency Protokoll übertrifft dabei sogar die internen Varianten von PostgreSQL und MySQL und erreicht einen bis zu 2,6 mal höhren Durchsatz im Blockchain Setup als in einem eigenständigen isolierten Setup. Zusätzlich verwenden wir Snapshots in ChainifyDB zur Unterstützung von Recovery, was bisher im Rahmen von Permissioned Blockchains nicht möglich war.
Link to this record: urn:nbn:de:bsz:291--ds-311177
hdl:20.500.11880/29329
http://dx.doi.org/10.22028/D291-31117
Advisor: Dittrich, Jens
Date of oral examination: 3-Jun-2020
Date of registration: 28-Jun-2020
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Prof. Dr. Jens Dittrich
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
Dissertation.pdfPh.D. Thesis4,98 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons