
Snapshot: Friend or Foe
of Data Management?

–
On Optimizing Transaction Processing
in Database and Blockchain Systems.

Ankur Sharma

A dissertation submitted towards the degree
Doctor of Engineering (Dr.-Ing.)

of the Faculty of Mathematics and Computer Science
of the Saarland University

Saarbrücken, Germany
February, 2020

Dean of the Faculty Univ.-Prof. Dr. Thomas Schuster
Day of Colloquium 03.06.2020

Examination Board:

Chairman Prof. Dr. Jörg Hoffmann
Adviser and First Reviewer Prof. Dr. Jens Dittrich
Second Reviewer Prof. Dr. Gustavo Alonso
Third Reviewer Prof. Dr. Wolfgang Lehner
Academic Assistant Dr. Felix Martin Schuhknecht

iii

To my family

v

Acknowledgements

Firstly, I would like to express my sincere gratitude and thank my advisor Prof. Dr. Jens
Dittrich, for his continuous support of my doctoral research, his patience, motivation,
and excellent guidance. His continuous inspiration and invaluable mentorship have been
one of the essential pillars of this research. I want to thank him for giving me enough
freedom to pursue a system-oriented research direction, which required an exceptional
level of patience from all perspectives. I have learned a lot from him over these years,
be it his research style, his unmatched art of writing, or his unique presentation skill.
He has been a great guide and friend during this journey.

I would also like to express my thanks to my reviewers, Prof. Dr. Gustavo Alonso
and Prof. Dr. Wolfgang Lehner, for agreeing to review this dissertation. I could not have
asked to get more prestigious and outstanding researchers into my doctoral committee.

Further, I would like to thank my co-authors Dr. Felix Martin Schuhknecht and
Divya Agrawal. They are an integral part of this dissertation. I want to thank Felix,
especially for his immense support in writing research papers and coming up with great
visualizations of complex problems. I have acquired many skills from him in the past
few years. I would like to express my thanks to Divya for his important suggestions
and his support in developing complex projects. I would like to thank my colleagues
and friends Immanuel, Marcel, and Joris, for all the insightful discussions we had in last
few years. I would like to thank Daniel, Alvaro, and Max for the table-tennis matches
that were always a great workout and stress busters. I would also like to thank Joris and
Marcel for assisting me in translating the abstract into German.

I would also like to thank my soulmate and wife: Mansi, whose continuous support
and love have motivated me to complete my doctoral research successfully. Last but not
least, I would like to thank my parents and my brother for helping and supporting me
throughout my life. I could not have achieved all of this without them.

The German Research Foundation funded the research work in this dissertation via
the collaborative research center “Methods and Tools for Understanding and Controlling
Privacy (SFB 1223).”

vii

Abstract

Data management is a complicated task. Due to a wide range of data management tasks,
businesses often need a sophisticated data management infrastructure with a plethora of
distinct systems to fulfill their requirements. Moreover, since snapshot is an essential
ingredient in solving many data management tasks such as checkpointing and recov-
ery, they have been widely exploited in almost all major data management systems that
have appeared in recent years. However, snapshots do not always guarantee excep-
tional performance. In this dissertation, we will see two different faces of the snapshot,
one where it has a tremendous positive impact on the performance and usability of the
system, and another where an incorrect usage of the snapshot might have a significant
negative impact on the performance of the system. This dissertation consists of three
loosely-coupled parts that represent three distinct projects that emerged during this doc-
toral research.

In the first part, we analyze the importance of utilizing snapshots in relational
database systems. We identify the bottlenecks in state-of-the-art snapshotting algo-
rithms, propose two snapshotting techniques, and optimize the multi-version concur-
rency control for handling hybrid workloads effectively. Our snapshotting algorithm is
up to 100x faster and reduces the latency of analytical queries by up to 4x in comparison
to the state-of-the-art techniques.

In the second part, we recognize strict snapshotting used by Fabric as a critical bot-
tleneck, and replace it with MVCC and propose some additional optimizations to im-
prove the throughput of the permissioned-blockchain system by up to 12x under highly
contended workloads.

In the last part, we propose ChainifyDB, a platform that transforms an existing
database infrastructure into a blockchain infrastructure. ChainifyDB achieves up to
6x higher throughput in comparison to another state-of-the-art permissioned blockchain
system. Furthermore, its external concurrency control protocol outperforms the internal
concurrency control protocol of PostgreSQL and MySQL, achieving up to 2.6x higher
throughput in a blockchain setup in comparison to a standalone isolated setup. We also
utilize snapshots in ChainifyDB to support recovery, which has been missing so far from
the permissioned-blockchain world.

ix

Zusammenfassung

Datenverwaltung ist eine komplizierte Aufgabe. Aufgrund der vielfältigen Aufgaben im
Bereich der Datenverwaltung benötigen Unternehmen häufig eine anspruchsvolle Infra-
struktur mit einer Vielzahl an unterschiedlichen Systemen, um ihre Anforderungen zu
erfüllen. Dabei ist Snapshotting ein wesentlicher Bestandteil in nahezu allen aktuellen
Datenbanksystemen, um Probleme wie Checkpointing und Recovery zu lösen. Aller-
dings garantieren Snapshots nicht immer eine gute Performance. In dieser Arbeit wer-
den wir zwei Facetten des Snapshots beleuchten: Einerseits können Snapshots enorm
positive Auswirkungen auf die Performance und Usability des Systems haben, anderer-
seits können sie bei falscher Anwendung zu erheblichen Performanceverlusten führen.
Diese Dissertation besteht aus drei Teilen basierend auf drei unterschiedlichen Projek-
ten, die im Rahmen der Forschung zu dieser Arbeit entstanden sind.

Im ersten Teil untersuchen wir die Bedeutung von Snapshots in relationalen Daten-
banksystemen. Wir identifizieren die Bottlenecks gegenwärtiger Snapshottingalgorith-
men, stellen zwei leichtgewichtige Snapshottingverfahren vor und optimieren Multi-
Version Concurrency Control für das effiziente Ausführen hybrider Workloads. Unser
Snapshottingalgorithmus ist bis zu 100 mal schneller und verringert die Latenz analyti-
scher Anfragen um bis zu Faktor vier gegenüber dem Stand der Technik.

Im zweiten Teil identifizieren wir striktes Snapshotting als Bottleneck von Fabric.
In Folge dessen ersetzen wir es durch MVCC und schlagen weitere Optimierungen vor,
mit denen der Durchsatz des Permissioned Blockchain Systems unter hoher Arbeitslast
um Faktor zwölf verbessert werden kann.

Im letzten Teil stellen wir ChainifyDB vor, eine Platform die eine existierende Da-
tenbankinfrastruktur in eine Blockchaininfrastruktur überführt. ChainifyDB erreicht da-
bei einen bis zu sechs mal höheren Durchsatz im Vergleich zu anderen aktuellen Syste-
men, die auf Permissioned Blockchains basieren. Das externe Concurrency Protokoll
übertrifft dabei sogar die internen Varianten von PostgreSQL und MySQL und erreicht
einen bis zu 2,6 mal höhren Durchsatz im Blockchain Setup als in einem eigenständigen
isolierten Setup. Zusätzlich verwenden wir Snapshots in ChainifyDB zur Unterstützung
von Recovery, was bisher im Rahmen von Permissioned Blockchains nicht möglich war.

xi

Contents

1 Introduction 1
1.1 Background . 3
1.2 Contribution . 6

1.2.1 AnKerDB . 6
1.2.2 Fabric++ . 7
1.2.3 ChainifyDB . 7
1.2.4 Personal Contributions . 8
1.2.5 Publications, Technical Reports, Patent, and Grant 8

2 AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting 11
2.1 Introduction . 12

2.1.1 Limitations of Multi-version Concurrency Control 12
2.1.2 Hybrid Processing . 13
2.1.3 Challenges . 13

2.2 Background . 14
2.2.1 MVCC in Hybrid Processing 14
2.2.2 High-Frequency Snapshotting 14
2.2.3 Structure & Contributions . 15

2.3 AnKer . 17
2.3.1 Mechanisms of MVCC . 17
2.3.2 Hybrid MVCC . 18

2.4 State-of-the-art Snapshotting . 21
2.4.1 Physical Snapshotting . 22
2.4.2 Virtual Snapshotting . 22
2.4.3 Reevaluating the State-of-the-Art 25

2.5 System Call vm snapshot . 29

xiii

CONTENTS xiv

2.5.1 Semantics . 29
2.5.2 Implementation . 30
2.5.3 Evaluating Virtual Memory Snapshotting 30
2.5.4 MVCC Scan Performance . 32
2.5.5 Snapshot Creation Cost . 33

2.6 Experimental Evaluation . 34
2.6.1 System Configurations . 34
2.6.2 Experimental Setup . 35
2.6.3 Snapshotting Cost and OLAP Latency 36
2.6.4 Transaction Throughput . 39
2.6.5 Scaling . 41

2.7 Future Work . 43
2.8 Conclusion . 44

3 Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 45
3.1 Introduction . 46

3.1.1 Catching up . 46
3.1.2 Fabric++ . 47

3.2 Hyperledger Fabric . 49
3.2.1 Architecture . 49
3.2.2 High-level Workflow . 49

3.3 Related Work . 51
3.3.1 Class 1: Transaction Throughput 52
3.3.2 Class 2: Transaction Abort & Success 53

3.4 Blurred Lines: Fabric vs Distributed Database Systems 54
3.4.1 The Importance of Transaction Order 54
3.4.2 On the Lifetime of Transactions 56

3.5 Fabric++ . 58
3.5.1 Transaction Reordering . 58
3.5.2 Early Transaction Abort using Concurrency Control 64

3.6 Experimental Evaluation . 67
3.6.1 Setup . 68
3.6.2 Benchmark Framework and Workload 68
3.6.3 The Impact of the Blocksize 70
3.6.4 Transactional Throughput . 70

CONTENTS xv

3.6.5 Optimization Breakdown . 75
3.6.6 Scaling Channels and Clients 75
3.6.7 Hyperledger Caliper . 77

3.7 Conclusion . 78

4 ChainifyDB: A Non-invasive Transformation of Database Systems into a
Blockchain System 81
4.1 Introduction . 82

4.1.1 Order-Consensus-Execute . 83
4.1.2 Whatever-LedgerConsensus 84
4.1.3 Contributions . 85

4.2 Related Work . 86
4.3 Whatever-Ledger Consensus . 87

4.3.1 Core Idea . 88
4.3.2 Processing Model . 88

4.4 Whatever Recovery . 89
4.4.1 Non-Consenting Organization Scenario 89
4.4.2 The 2 × 3 Recovery Landscape 90
4.4.3 No Recovery . 90
4.4.4 Recovery from a State . 91
4.4.5 Full Replay . 91
4.4.6 Partial Replay from a State . 91
4.4.7 Optimized Full Replay . 92
4.4.8 Optimized Partial Replay from a State 92
4.4.9 Abstraction vs Implementation 93

4.5 Chainify DB . 93
4.5.1 Overview on our WLC-Implementation 94
4.5.2 Logical per Block Digests . 95
4.5.3 LedgerBlocks . 96
4.5.4 Consensus Algorithm . 97
4.5.5 Logical Checkpointing and Recovery 98

4.6 Optimizations . 100
4.6.1 Transaction Agreement . 100
4.6.2 Iterative WLC-Setups . 101
4.6.3 Parallel Transaction Execution 101

CONTENTS xvi

4.7 System Architecture . 104
4.7.1 Running Example . 107

4.8 Experimental Evaluation . 108
4.8.1 Setup and Workload . 108
4.8.2 Throughput . 110
4.8.3 Robustness and Recovery . 112
4.8.4 Cost Breakdown . 114
4.8.5 Varying Blocksize . 115

4.9 Conclusion . 115

5 Conclusion 117
5.1 Future Work . 119

A AnKer’s System Call Implementation 121

List of Figures 133

List of Tables 137

Bibliography 139

Chapter 1

Introduction

With the explosion in the volume of data that is collected every minute, the advancement
in the hardware, and an eruption in the number of data management solutions that are
available in the market, making a choice on which data management system to use is
harder than ever. Moreover, this trend is not something that is planning to subsidize
soon. Every data management solution promises to sell us millions of features that we
might never need. These additional options lead to an increase in the complexity of the
company’s infrastructure as well as costs. It is also impossible to find a silver bullet for
our data management requirements, and because of this, we need to maintain multiple
systems that are good in individual dimensions.

With an ever-increasing rise in our online activity, we are witnessing an unprece-
dented growth in the amount of data. Sensors, mobile phones, our actions on platforms
like Facebook, Instagram, and Snapchat, everything is either generating new data or
is continually changing it. This massive data explosion is asking us to develop more
sophisticated data management platforms that can handle this evolving data and, at the
same time, extract meaningful insights that help businesses to grow and provide a bet-
ter user experience. Even though the research area around data management has been
super active in the past few decades, publishing thousands of excellent research papers,
we are yet to solve even the smallest fraction of data management tasks in an optimal
way. Due to a wide range of data management tasks, researcher often tend to optimize
their systems for a tiny subset to reduce the complexity of the system, while maintaining
the performance requirement of the system.

A wide range of data management systems also tends to exploit a broad spectrum
of techniques to extract every bit of performance from these systems. Snapshot is one
such technique that emerges in many instances of optimization steps, helping us to fulfill

1

Chapter 1. Introduction 2

our hunger for more and more performance. Systems are known to utilize snapshots in
transaction management and recovery algorithms extensively. So, does that mean using
snapshots brings only good to data management? The answer can be yes but only with
a careful system design to surround the snapshots. In this dissertation, our primary
goal is to optimize the transaction management in data management platforms while
simultaneously investigating the love-hate relationship of the data management and the
snapshots.

This dissertation explores two distinct yet related class of data management plat-
forms with a single vision of increasing the overall throughput of the system. The
first class of systems is a transactional database system which covers the trusted setup,
meaning that the host of the system fully trusts the system. Trust can have a signifi-
cant impact, both on the system design itself, and the performance of the system. With
trust, we mean that the host believes that the system is doing what it is supposed to do
and not maliciously modifying the data in any way. The other class of system, which
is still a transactional system, but in an untrusted setup is a blockchain system. This
class of system has gained immense popularity in recent years. Blockchain systems,
permissioned to be specific, provide a technology that enables sharing data in an un-
trusted environment utilizing cryptographic guarantees and proofs. They make strong
guarantees concerning the tampering of the state, which means that a malicious change
is impossible to hide.

In the first part, we look at how we can optimize the execution of hybrid transac-
tional workloads in a main-memory database system that implements a variant of multi-
version concurrency control. We evaluate different state-of-the-art snapshotting tech-
niques, propose two distinct snapshotting techniques. First, that can efficiently snapshot
data by manipulating virtual page to physical page mapping in the userspace, and sec-
ond, that essentially is like memcpy() but supported by the Linux kernel. We also
redesign the multi-version concurrency control protocol to utilize the snapshot and thus
speed-up the execution of the hybrid transactional and analytical workload.

In the next part, we move ourselves to the untrusted setup of permissioned-
blockchain systems. As a start, we investigate the transaction pipeline of Hyperledger
Fabric, one of the most widely used permissioned-blockchain system developed by
IBM. We amend the pipeline, getting rid of the pessimistic transaction execution (that
uses strict snapshot isolation for isolating the endorsement and commit phase) that uti-
lizes state locks. We also extend the execution model with mature database optimization
to improve the transactional throughput under the contended workload.

In the last part, we showcase a powerful WLC model that can fundamentally trans-
form an existing database infrastructure into a blockchain system. We show that it is a
bad idea to design a permissioned-blockchain system from scratch, and it is possible to

1.1. Background 3

achieve blockchain-level guarantees from an existing set of database nodes, with some
small additions to the top. We also utilize database snapshots to support recovery in
the permission-blockchain setup, which might be necessary if the node fails for some
reason, or if the state changes due to malicious activity.

In the following sections, we will look at these three parts in more detail, exploring
the background and contributions of each project that are a part of this dissertation. The
next sections describes the background of the three projects, and the second section
lists the contributions made by these projects, the list of publications, technical reports,
grants, and patents that emerged out of these projects.

1.1 Background

AnKerDB

Efficiently supporting complex analytical queries in conjunction with a transactional
workload is a difficult task. Since these two variants of workload have an interfering
nature, their efficient concurrent execution needs careful system design. If our use-
case requires a very restrictive isolation level such as fully-serializable, the solutions
and the system-design gets more and more complicated. If the system naively runs the
analytical queries on a traditional transactional system implementing a variant of multi-
version concurrency control, a simple scan over a column can be up to 6x slower (see
Section 2.5.4). This degraded performance urges us to look out for other solutions.

Researchers and developers have proposed intuitive ways [83, 50, 71, 67, 35, 42] to
execute these hybrid workloads without much performance problems. The most com-
mon and widespread mechanism to execute the hybrid workload is using a data ware-
house in addition to the transactional system [44, 60, 55, 54]. In this approach, the
transactional system handles the original, up-to-date data, and executes the transaction
always on the most recent version of data. On the other hand, the other system which is
optimized to execute analytical queries digests these transactional updates at some inter-
val. This design allows us to maintain two optimally configured systems for two differ-
ent types of workloads. While this is an important trait, it also has a severe bottleneck.
Since the system that executes analytical workload synchronizes with the transactional
system at some interval, the analytical queries potentially report stale state. These stale
results might have a significant impact on businesses that rely on up-to-date real-time
analytics. If we try to synchronize the two systems too frequently (for example, once
every few milliseconds), it has a severe impact on the performance of the system.

Chapter 1. Introduction 4

One way to overcome the cons of having two systems for inherently different work-
loads and synchronizing it is to support both analytical and transactional queries in a
single system. However, this requires a careful system design. As already mentioned,
the two query classes are interfering in nature, especially in the presence of higher isola-
tion levels. In order to efficiently support transactional and analytical queries in a single
system, we need a smart concurrency control protocol that can coordinate resources
efficiently between the hybrid workloads which might be a bit too complicated.

What if we take the data warehouse, and put it inside the transactional system?
We would still need some synchronization, but it is way cheaper if it is inside the same
process. In other words, if we can execute the analytical queries on a copy of the original
transactional data, we do not need to worry about the concurrency control protocol.

Nevertheless, creating a copy of data can be expensive. Even if the data resides
purely in main-memory, copying several gigabytes of data can take seconds. Re-
searchers have proposed innovative techniques to snapshot data [30, 31, 66] in order
to support hybrid transactional and analytical workload in a single system. The most
prominent example is HyPer [50] which introduced an excellent approach to overcome
the expensive copying of data by exploiting the virtual memory feature of the Linux
kernel. Linux provides the fork() system call that allows users to copy the parent pro-
cess’s virtual memory space into a child process by copying over the page table instead
of the actual pages containing the data. Even though this virtual memory snapshotting
approach used by HyPer is way faster than a traditional copy, it can still be quite expen-
sive. For a typical database process that allocates 100 GB of memory, a fork() system
call can take as long as 1 second. While this is acceptable for many workloads, it is
quite expensive for a much higher snapshotting frequency. What if we need to run some
analytics on data that is no more than 10 milliseconds old? None of the state-of-the-art
snapshotting techniques are able to support such a high snapshotting frequency.

Fabric++

Blockchain systems have gained immense popularity in the last few years. Their ability
to bring trust to an environment that has been untrusted so far has a great significance,
especially in a business environment. The database community has proposed several
intuitive blockchain systems [97, 59, 53, 73, 105, 46, 63] in the last few years, which all
claim to have either better performance or stronger cryptographic guarantees compared
to all other available systems. There has been a significant amount of contribution also
from the security and operating systems community in a similar direction [36, 90, 91,
40, 52, 89].

1.1. Background 5

Nevertheless, are we trying to reinvent the wheel by proposing an entirely new sys-
tem with blockchain level guarantees? Are blockchain systems related to another system
that has existed for decades: Database Systems? If yes, how similar are the database
and blockchain systems? Should we take an existing database system, and extend it to
provide blockchain level guarantees? Or should we take a premature blockchain system
designed from scratch and incorporate decades of database systems research into it? Is
it even feasible to do so?

In this project, we investigate and analyze these questions and try to find out their
answers. Firstly we try to blur the line of separation between the database and the
blockchain systems by analyzing the similarity in their design. Later, we pick Hyper-
ledger Fabric [18] a prevalent open-source permissioned blockchain system developed
by IBM, and try to investigate the weakness of its transactional pipeline. We also in-
tegrate some mature database optimization into this pipeline to show the impact of uti-
lizing decades of database research inside blockchain systems. The primary objective
of this project is to identify the design space of the blockchain system, which can be
optimized using database research.

ChainifyDB

After looking at the ways and impact of incorporating database technology into a
permissioned-blockchain system in Fabric++, in this project, we explore and analyze
the transformation of a database system into a blockchain system. Researchers from
the database community have already proposed some ways to transform an existing
database system into a blockchain system [33, 41, 70]. However, these attempts re-
quire a profound modification to the transaction processing pipeline of the underlying
database system. So, if a use-case requires to utilize the blockchain feature of the sys-
tem, it needs to shift to an entirely new, potentially a beta version of these modified
database systems, which is mostly a no-no.

In this project, we aim to extend an existing database infrastructure, potentially
comprising of database systems from different vendors into a blockchain system. This
choice of treating the underlying database system as a black-box brings unique chal-
lenges. These underlying database systems might behave differently, or they might treat
isolation-levels differently, or they may support different subsets of SQL standards. In
addition to this, they might implement concurrency control in entirely distinct ways.
ChainifyDB handles all these challenges, additionally provides blockchain level guar-
antees, all of this without looking at the source code of the underlying system.

ChainifyDB provides an advanced network protocol and a transaction execution

Chapter 1. Introduction 6

model that sits on top of existing database infrastructure and provides cryptographic
guarantees of a typical permissioned blockchain system. This non-invasive approach
to adding a blockchain system to our technology stack can help achieve widespread
commercial adoption of the blockchain technology.

1.2 Contribution

1.2.1 AnKerDB

In the following, we present a detailed list of contributions we made in this project.

1. We present a user-level snapshotting technique using rewiring [77]. In this tech-
nique, we exploit the mapping from the virtual page to a physical page by utilizing
a main-memory filesystem. We create snapshots by manually rewiring the virtual
page address to the physical page using rewiring. We also perform copy-on-write
manually using the signal handlers in the user-space.

2. We analyze the power and shortcomings of rewired snapshotting and present an
efficient and lightweight snapshotting mechanism implemented inside the Linux
kernel. Unlike fork(), our snapshotting techniques can create snapshots at a
page granularity.

3. We evaluate our snapshotting techniques against the state-of-the-art snapshotting
techniques and show that our snapshot mechanism is significantly faster (up to
100x) than other state-of-the-art snapshot algorithms.

4. We present a variant of a multi-version concurrency control algorithm that in-
corporates our virtual memory snapshotting techniques to support the efficient
execution of analytical queries while simultaneously executing the transactional
workload.

5. We integrate other snapshotting techniques such as fork() inside AnKerDB and
evaluate different snapshotting techniques under the hybrid analytical and trans-
actional workload. We show that the version of AnKerDB that utilizes our system
call is significantly faster (up to 4x) than the version that uses no or other snapshot
techniques.

6. We also show that our MVCC implementation using virtual snapshots under the
strongest serializable isolation level can execute analytical queries as fast as the
weakest read-uncommitted isolation level.

1.2. Contribution 7

1.2.2 Fabric++

We made the following contributions through this project:

1. We investigate the similarities and the difference between a traditional database
system and permissioned blockchain systems. As an example, we explore the
transaction processing pipeline of Hyperledger Fabric and showcase the overhead
of non-transactional components of the pipeline. Due to this excessive overhead,
it is tough to improve the end to end transactional throughput of the system with-
out making considerable changes to the architecture of the transaction pipeline.

2. We optimize the transactional pipeline of Hyperledger Fabric to get rid of lock-
based object synchronization. We replace the existing concurrency control imple-
mentation with multi-version concurrency control, which is similar in design to a
traditional MVCC implementation in a relational database system.

3. In addition to integrating MVCC inside Hyperledger Fabric, we also integrate an
early-abort mechanism in Fabric that helps us to clean the invalid transactions
from the transaction pipeline.

4. We replace the standard FIFO-based ordering service used by Fabric by an ad-
vanced ordering service that analyzes the transactions in a block to find a close-
to-optimal commit order.

5. We perform an extensive evaluation of Fabric++, which incorporates all suggested
optimizations against standard Fabric to show the significance of age-old database
research in improving permissioned-blockchain systems. Fabric++ achieves up
to 12x improvement in the throughput of successful transactions in comparison to
the standard version of Hyperledger Fabric.

1.2.3 ChainifyDB

We made the following contributions through this project:

1. We present an intuitive WhateverLedger Consensus model that pushes the con-
sensus phase to the end of the transaction pipeline. The WLC model helps us
in dropping interesting trust guarantees from the components like execution that
process transactions before the consensus phase.

Chapter 1. Introduction 8

2. We present a concrete instance of the WhateverLedger Consensus model in the
form of ChainifyDB. ChainifyDB essentially appends the blockchain guarantees
to an existing database infrastructure. Hence block-Chainify-ing the DB.

3. We present a simple-yet-powerful recovery mechanism that can restore a diverged
database replica. The state diversion can happen because of a loss of state due to
the failure of the database system. Such a mismatch in the state can also happen
due to an unintended malicious modification of the state.

4. We evaluate ChainifyDB under different database configurations. We also com-
pare the performance of ChainifyDB to a standalone instance of the underlying
database system to show that the overhead of appending cryptographic guarantees
to an existing database infrasrtucture is minimal.

1.2.4 Personal Contributions

Table 1.1 lists my personal contributions in much more detail. Since, I joined the
Rewiring project very late, my minor contribution to this project are merged with the
Chapter 2.

1.2.5 Publications, Technical Reports, Patent, and Grant

Major part of this dissertation has been previously published, or is being submitted to
different international conferences and a part of it is under an international patent filing
by the Saarland University.

• Chapter 2 – AnKerDB: Optimizing MVCC using Hyperfast Virtual Snap-
shotting
Publications:

[77] Felix Martin Schuhknecht, Ankur Sharma, Jens Dittrich.
RUMA has it: Rewired User-space Memory Access is Possible!
Proceedings of the VLDB 2016, New Delhi, India.

[82] Ankur Sharma, Felix Martin Schuhknecht, Jens Dittrich.
Accelerating Analytical Processing in MVCC using Fine-Granular High-
Frequency Virtual Snapshotting.
ACM SIGMOD 2018, Houston Tx, USA.

1.2. Contribution 9

Technical Report:

[81] Ankur Sharma, Felix Martin Schuhknecht, Jens Dittrich.
Accelerating Analytical Processing in MVCC using Fine-Granular High-
Frequency Virtual Snapshotting. arXiv:1709.04284 (2017).

• Chapter 3 – Fabric++: Optimizing Transaction Processing in Hyperledger
Fabric
Publications:

[80] Ankur Sharma, Felix Martin Schuhknecht, Jens Dittrich, Divya Agrawal.
Blurring the Lines between Blockchains and Database Systems: the Case of
Hyperledger Fabric.
ACM SIGMOD 2019, Amsterdam, Netherlands

Technical Report:

[79] Ankur Sharma, Felix Martin Schuhknecht, Jens Dittrich, Divya Agrawal.
How to Databasify a Blockchain: the Case of Hyperledger Fabric.
arXiv:1810.13177 (2018)

• Chapter 4 – ChainifyDB: A Non-invasive Transformation of Database Sys-
tems into a Blockchain System
Technical Report:

[78] Felix Martin Schuhknecht, Ankur Sharma, Jens Dittrich, Divya Agrawal.
ChainifyDB: How to Blockchainify any Data Management System.
arXiv:1912.04820 (2019). (Manuscript in preparation)

Grant:

German Ministry of Education and Science (BMBF) StartUp Secure (Phase I)
Covering 850, 000 Euros over 1 year.

Patent:

Secure and Transparent Cross-organization Data Sharing via Permissioned
Blockchain Technology. (filed provisionally by the Saarland University)

Chapter 1. Introduction 10

Project Contribution Involvement Details

Rewiring [77] Applications of rewiring Minor I developed virtual snapshotting
as an application of rewiring.

AnKerDB [82, 81] vm snapshot() system
call Major I developed this on my own.

Prototype database supporting
different snapshotting
mechanisms and isolation
levels

Major See above.

Experimental analysis Major See above.

Fabric++ [80, 79] Transactional pipeline
optimization of Fabric Major See above.

Optimized ordering service Major See above.

Benchmarking tool Major See above.

Experimental analysis Major See above.
ChainifyDB [78] System architecture Major See above

Formalization of the system
architecture into WLC model Minor Developed by Felix Schuhknecht.

I was involved in the discussions.

Semantic query analysis Major

Divya Agrawal implemented this
for his Master-thesis. I heavily
contributed with ideas and the
overall design on this part of the
project.

Parallel query execution Major See above.

Experimental analysis Major I developed this on my own.

Table 1.1: List of personal contributions to different projects.

Chapter 2

AnKerDB: Optimizing MVCC using
Hyperfast Virtual Snapshotting

Efficient transaction management is a delicate task. As systems face transactions of in-
herently different types, ranging from point updates to long-running analytical queries,
it is hard to satisfy their requirements with a single execution engine. Unfortunately,
most systems rely on such a design that implements its parallelism using multi-version
concurrency control. While MVCC parallelizes short-running OLTP transactions well,
it struggles in the presence of mixed workloads containing long-running OLAP queries,
as scans have to work their way through vast amounts of versioned data. To overcome
this problem, we reintroduce the concept of hybrid processing and combine it with
state-of-the-art MVCC: OLAP queries are outsourced to run on separate virtual snap-
shots while OLTP transactions run on the most recent version of the database. Inside
both execution engines, we still apply MVCC.

The most significant challenge of a hybrid approach is to generate the snapshots at
a high frequency. Previous approaches heavily suffered from the high cost of snapshot
creation. In our approach termed AnKer, we follow the current trend of co-designing
underlying system components and the DBMS, to overcome the restrictions of the OS
by introducing a custom system call vm snapshot. It allows fine-granular snapshot
creation that is orders of magnitudes faster than state-of-the-art approaches. Our ex-
perimental evaluation on an HTAP workload based on TPC-C transactions and OLAP
queries show that our snapshotting mechanism is more than a factor of 100x faster than
fork-based snapshotting and that the latency of OLAP queries is up to a factor of 4x
lower than MVCC in a single execution engine. Besides, our approach enables a higher
OLTP throughput than all state-of-the-art methods.

11

Chapter 2. AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting 12

2.1 Introduction

Realizing fast concurrent transactional processing is a desirable but challenging design
goal. A concurrency control technique is required to fully utilize the massive amount of
hardware parallelization that is nowadays available even in commodity servers.

Interestingly, a large number of database systems, including major players like
PostgreSQL [74], Microsoft Hekaton [26], SAP HANA [38], HyPer [71], MemSQL [6],
MySQL [8], NuoDB [9], and Peloton [10] currently implement a form of multi-version
concurrency control (MVCC) [95, 65, 21, 48] to manage their transactions. It allows
for a high degree of parallelism as readers do not block writers. The core principle is
straightforward: if a tuple is updated, a new physical version of this tuple is created
and stored alongside the old one in a version chain, such that the old version is still
available for readers that are still allowed to see the older version. Timestamps ensure
that transactions access only the most recent version that existed when they entered the
system.

2.1.1 Limitations of Multi-version Concurrency Control

In MVCC implementations that rely on a single execution engine, all transactions, no
matter whether they are short running OLTP transactions or scan-heavy OLAP queries,
are treated equally and are executed on the same (versioned) database. While this form
of processing unifies the way of transaction management, it also has unpleasant down-
sides under HTAP workloads: First and foremost, scan-heavy OLAP queries heavily
suffer when they have to deal with a large number of version chains [71]. During a
scan, version chains must be traversed to locate the most recent version of each item
that is visible to the transaction. It involves expensive timestamp comparisons as well
as random accesses when going through the version chains. As column scans typically
take significantly more time than short-running transactions, which touch only a few en-
tries, a large number of OLTP transactions can perform updates in parallel to create such
version chains. Apart from this, these version chains must be garbage collected from
time to time to remove versions that are not visible to any transaction in the system.
Garbage collection is typically done by a separate thread, which frequently traverses
these chains to locate and delete outdated versions [22, 96, 99, 56]. This thread has to
be managed and synchronized with the transaction processing, utilizing precious system
resources.

HTAP workload, consisting of transactions of inherently different nature, does
not fit the uniform processing in a single execution engine, which treats all incom-

2.1. Introduction 13

ing transactions in the same way. Unfortunately, many state-of-the-art MVCC sys-
tems [71, 74, 26, 6, 8, 10] implement some variant of such a processing model.

2.1.2 Hybrid Processing

But why exactly do these systems rely on such a processing model, although it does not
fit the faced workload? Why they do not implement hybrid processing, which classifies
queries based on the type and executes them in separation?

To answer these questions, let us look at the development of the prominent Hy-
Per [50, 71] system. Early versions of HyPer implemented hybrid processing [50, 66]:
the queries were classified into the categories OLTP and OLAP and consequently exe-
cuted on separate representations of the database. The short running modifying OLTP
transactions were executed on the most recent version of the data while long-running
OLAP queries were outsourced to run on snapshots. These snapshots were created
from time to time on the up-to-date version of the database.

While this concept mapped the mixed workload to the processing system in a nat-
ural way, the developers faced a severe problem: the creation of snapshots turned out
to be too expensive [71]. To snapshot, HyPer utilized the fork system call. This sys-
tem call creates a child process that shares its virtual memory with the parent process.
Both processes perform copy-on-write to keep changes locally, thus implementing vir-
tual snapshotting. While this principle is cheaper than physical snapshotting, which
eagerly creates a deep copy of the data, forking a process has a considerable overhead
of replicating the entire virtual memory allocated by the parent process. Thus, the devel-
opers decided to move away from hybrid processing to a model with a single execution
engine, relying entirely on MVCC in their current version [71].

2.1.3 Challenges

Despite the challenges one has to face when implementing a hybrid model, we believe
it is the right choice. Matching the processing system to the workload is crucial for
performance. This is the goal of our processing concept termed AnKer, which we will
propose in the following. Still, to do so, we have to discuss two problems: (a) Obvi-
ously, MVCC is the state-of-the-art concurrency control mechanism in main-memory
systems. We intend to apply it as well to parallelize transaction processing within our
execution engines. But how to combine state-of-the-art MVCC with a hybrid process-
ing model? (b) State-of-the-art snapshotting mechanisms are not capable of powering

Chapter 2. AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting 14

a hybrid processing model. How to realize a fast snapshotting mechanism, that allows
the creation of snapshots at a high frequency and with high flexibility?

2.2 Background

Classical systems implement MVCC in a single execution engine, where all queries are
treated equally and executed on the same versioned database. In contrast to that, AnKer
extends the capabilities of MVCC by reintroducing the concept of hybrid processing,
where incoming OLTP transactions and OLAP queries are treated independently. By
this, we can utilize the advantages of MVCC while avoiding its downsides.

2.2.1 MVCC in Hybrid Processing

The concept of hybrid processing works as follows: based on the classification, we
separate the short-running OLTP transactions from the long-running (read-only) OLAP
queries. Conceptually, the modifying OLTP transactions run concurrently on the most
recent version of the database and build up version chains as in classical MVCC. In
parallel, we outsource the read-only OLAP queries to run on separate (read-only) snap-
shots of the versioned database. These snapshots are created at a very high frequency to
ensure freshness. Thus, instead of dealing with a single representation of the database
that suffers from a large number of long version chains, we maintain a most recent ver-
sion in an OLTP execution engine alongside with a set of snapshots, which are present
in the OLAP execution engine. Naturally, each of the representations contains fewer
and shorter version chains, which primarily reduces the main problem described in Sec-
tion 2.1.1. Apart from that, using snapshots has the pleasant side-effect that the garbage
collection of version chains becomes extremely simple: We remove the version chains
automatically with the deletion of the corresponding snapshot if it is not visible to any
transaction in the system. Other systems like PostgreSQL have to rely on a fine-granular
garbage collection mechanism for shortening the version-chains, requiring precious re-
sources. By using snapshotting, we can solve the problem of complex garbage collection
techniques implicitly.

2.2.2 High-Frequency Snapshotting

With the high-level design of the hybrid processing model at hand, the question remains
how to realize efficient snapshotting. The approach stands and falls with the ability to

2.2. Background 15

generate snapshots at a very high frequency to ensure that transactions running on the
snapshots have to deal only with few and short version chains. In this regard, previous
approaches that relied on snapshotting suffered under the expensive snapshot creation
phase and consequently moved away from snapshotting. As mentioned, early versions
of HyPer [50], which also used a hybrid processing model, created virtual snapshots
utilizing the system call fork. This call is used to spawn child processes which share
their entire virtual memory with the parent process. The copy-on-write, which is carried
out by the operating system on the level of memory pages ensures that changes remain
local in the associated process. While this mechanism naturally implements a form of
snapshotting, process forking is expensive. Thus, it is not an option for our case as we
require a more lightweight snapshotting mechanism.

Unfortunately, all the existing solutions are not sufficient for our requirements on
snapshot creation speed. Therefore, AnKer implements a more sophisticated form of
virtual snapshotting. We do not limit ourselves by using the given general purpose
system calls. Instead, we introduce our custom system call termed vm snapshot and
integrate the concept of rewiring [77] directly into the Linux kernel. Such a co-design
of underlying system components and the DBMS has been demonstrated successfully
in recent publications concerning both operating system [43, 62] and hardware [72, 86]
customizations, as it enables a whole new level of optimization opportunities. Using
our call, we can essentially snapshot arbitrary virtual memory areas within a single
process at any point in time. The virtual snapshots share their physical memory until
a write to a virtual page happens which allows us to create snapshots with a small
memory footprint, allowing us to build them at a high frequency without much memory
overhead. Consequently, the individual snapshots contain few and short version chains
and enable efficient scans.

2.2.3 Structure & Contributions

Before we start with a detailed presentation of the system and the individual compo-
nents, let us outline the contributions we make:

(I) We present AnKer, a hybrid storage model that is able to execute scan-heavy
OLAP queries on a consistent snapshot while processing short running trans-
actions over the most recent version of the database. We extend this model to
redesign HyPer’s MVCC engine [71] as an example, to show the benefits of a hy-
brid processing model over conventional MVCC implementations. We also show
that the changes to the original implementation are minimal and can be easily
adopted to other main-memory MVCC systems [51, 85, 94].

(II) We realize the snapshots in form of virtual snapshots and heavily accelerate the

Chapter 2. AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting 16

snapshotting process by introducing a custom system call termed vm snapshot

to the Linux kernel. This call directly manipulates the virtual memory subsystem
of the OS and allows for a significantly higher snapshotting frequency than state-
of-the-art techniques. We demonstrate the capabilities of vm snapshot in a set
of micro-benchmarks and compare it against the existing physical and virtual
snapshotting methods.

(III) We create snapshots on the granularity of a column, instead of snapshotting the
entire table or database as a whole which is possible due to the flexibility of our
custom system call vm snapshot. Therefore, we can limit the snapshotting effort
to those columns, which are accessed by the transactions.

(IV) We create snapshots of versioned columns. To create a snapshot, the current col-
umn as well as the timestamp information is virtually snapshotted using our cus-
tom system call vm snapshot, and the current version chains are handed over.
Running transactions can still access all required versions from the fresh snap-
shot. As the snapshot is read-only, all further updates happen to the up-to-date
column, creating new version chains. As a side-effect, we avoid any expensive
garbage collection as dropping an old snapshot drops all old version chains with
it.

(V) We perform an extensive experimental evaluation of AnKer. We compare the hy-
brid processing model utilizing our system call vm snapshot with a fork-based
snapshotting approach. Additionally, we compare the hybrid models with a single
execution engine under full serializability, snapshot isolation, and read uncommit-
ted guarantees, executing mixed HTAP workloads based on TPC-C transactions
and configurable OLAP queries. Our prototype implementation of the AnKer
concept can be configured to support both a hybrid and a single execution engine
(by disabling snapshotting) as well as the required isolation levels. We show that
our approach offers faster snapshotting, lower OLAP latency and higher OLTP
transaction throughput than the counterparts under mixed workloads.

The paper has the following structure: In Section 2.3, we describe the hybrid design
of AnKer and motivate it with the problems of state-of-the-art MVCC approaches. As
the hybrid execution engine requires a fast snapshotting mechanism, we discuss the cur-
rently available snapshotting techniques to understand their strengths and weaknesses
in Section 2.4. In Section 2.5, we propose our snapshotting method based on our cus-
tom system call vm snapshot. Finally, in Section 2.6, we evaluate AnKer in different
configurations and show the superiority of hybrid processing using vm snapshot.

2.3. AnKer 17

2.3 AnKer

As outlined, the central component of AnKer is a hybrid processing model, which sep-
arates OLTP from OLAP processing using virtual snapshotting. Both in the up-to-date
representation of the data as well as in the snapshots, we want to use MVCC as the con-
currency control mechanism. To understand our hybrid design, let us first understand
how MVCC works on a single execution engine.

2.3.1 Mechanisms of MVCC

To understand the mechanisms of MVCC, let us go through the individual components.
Initially, the data is unversioned and present in the column. Thus, there does not exist
any version chains. If a transaction updates an entry, we first store the new value locally
inside the local memory of the transaction. Update are materialized in the column when
the actual commit happens. Before applying the update to the in-place value, the system
copies the old value to the version chain using atomic compare-and-swap instructions.
We store the versions in a newest-to-oldest order. Other systems as, e.g., HyPer [71]
rely on this order as well, as it favors younger transactions: they will find their version
early on during the chain traversal. A version chain can become arbitrarily long if
frequent updates to the same entry happen. Along with the version, we store a unique
timestamp of the update that created the version which is necessary to ensure that the
transactions that started before the (committed) update happened, do not see the new
version of the entry but still the old one. Unfortunately, reading a versioned column can
become arbitrarily expensive since the chain must be traversed using the comparison
of timestamps to locate the proper version. In summary, if a large number of lengthy
version chains is present and a transaction intends to read many entries, the version
chain traversal cost becomes significant.

Besides the way of versioning the data, the guaranteed isolation level is an im-
portant aspect in MVCC. As a consequence of its design, MVCC implements snapshot
isolation guarantees by default. During its lifetime, a transaction T sees the committed
state of the database, that was present at T ’s start time. The updates of newer transac-
tions, which committed during T ’s lifetime, are not seen by T . Write-write conflicts
are detected at commit time: if T wants to write to an entry, to which a newer com-
mitted transaction already wrote, T aborts. Still, under snapshot isolation, so-called
write-skew [39] anomalies are possible. Fortunately, MVCC can be extended to sup-
port full serializability [71, 93]. To do so, we extend the commit phase of a transaction
with additional checks. If a transaction T wants to commit, it validates its read-set by
inspecting if any other transaction, that committed during T ’s lifetime changed an entry

Chapter 2. AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting 18

in a way that would have influenced T ’s result. If this is the case, T has to abort as its
execution was based on stale reads. To perform the validation, we adopt the efficient
approach applied in HyPer [71], which is based on precision locking [95], a variant of
predicate locking. Essentially, the system tracks the predicate ranges on which the trans-
action filtered the query result. During validation, we check whether any write of any
recently committed transaction intersects with the predicate ranges. If an intersection is
identified, the transaction aborts.

0
0
0
0
0
0

OLTP

C
0
1
2
3
4
5

1

w (1), w (2)
OLTP Transaction T1

w (3)
OLTP Transaction T2

2OLTP

C
0
0
0
0
0
0

0
1
2
3
4
5

3
commit ✓

OLTP Transaction T1

intentional abort ✘
OLTP Transaction T2

OLTP

C

0

0
0
2
0
0
0
1

0
1
2
3
4
5

Version
Chains

virtual snapshot
using system calls

OLAP (read only)

C

0

0

0
2
0
0
0
1

0
2
0
0
0
1

OLTP

C’
0
1
2
3
4
5

Version
Chains

4

0
1
2
3
4
5

5OLAP (read only)

C

0

0

0
2
0
0
0
1

Version
Chains0

1
2
3
4
5

r ()➞0, w (4), w (5)

OLTP Transaction T3

OLAP Query Q1

sum()

0
2
0
0
0
1

OLTP

C’
0
1
2
3
4
5

Version
Chains

valuerowID

local writes

OLAP Query Q1

sum()
scan

5 2

3

3 3 1

Step

Step

Step

Step

Step

6
C

0

0

0
2
0
0
0
1

Version
Chains0

1
2
3
4
5

0
5
0
4
0
1

C’
0
1
2
3
4
5

2

Version
Chains

9OLAP (read only)

C

0

0

0
2
0
0
0
1

Version
Chains0

1
2
3
4
5

0
5
0
4
0
1

C’
0
1
2
3
4
5

2
0
5
0
4
0
1

OLTP

C’’
0
1
2
3
4
5

Version
Chains

commit ✓

OLTP
Transaction T3

commit ✓
OLAP Query Q1

delete

OLAP (read only) OLTP

0

OLAP (read only)

C

0

0

0
2
0
0
0
1

Version
Chains0

1
2
3
4
5

0
5
0
4
0
1

C’
0
1
2
3
4
5

2
0
5
0
4
0
1

OLTP

C’’
0
1
2
3
4
5

Version
Chains

0

0

8

OLAP Query Q1

sum()
scan

7
C

0

0

0
2
0
0
0
1

Version
Chains0

1
2
3
4
5

OLAP (read only)

OLAP Query Q2

avg()
OLAP Query Q1

sum()

scan

0
5
0
4
0
1

C’
0
1
2
3
4
5

2
0
5
0
4
0
1

OLTP

C’’
0
1
2
3
4
5

Version
Chains

0

virtual snapshot
using system calls

OLAP Query Q1

sum() ➞ 3

scan
OLAP Query Q2

avg()

scan

OLAP Query Q2

avg()

scan

Step

Step

Step

Step

Figure 2.1: Hybrid processing in AnKer.

2.3.2 Hybrid MVCC

To overcome the limitations of MVCC implementations mentioned above, we realize a
hybrid execution engine in AnKer. Two engines are present side by side: one engine is

2.3. AnKer 19

responsible for the concurrent processing of short-running transactions (termed OLTP
execution engine in the following), while the other one can perform long-running read-
only transactions in parallel (termed OLAP execution engine from here on). Incoming
transactions are marked as either an OLTP transaction or an OLAP query and sent to
the respective engine for processing. The challenge is to combine the concept of hybrid
processing with MVCC. Let us look at the engines in detail in the case of an example
depicted in Figure 2.1.

In the example, we use the following set of operations:

wi(v) write to row i the given value v
ri()→ v read from row i and return the read value as v
sum()→ r sum up all column values and return the result as r
avg()→ r average all column values and return the result as r

1. For the following discussion, we assume that our table consists of a single col-
umn C of 6 rows, identified by rows 0 to 5, which all contain the value 0 in the
beginning. This column C is located in the OLTP execution engine and is the
up-to-date representation of the column. Since there are no snapshots present yet,
the OLAP execution engine virtually does not exist.

2. Two OLTP transactions T1 and T2 arrive and intend to perform a set of writes.
The first write w5(1) of T1 intends to update at row 5 the value 0 with the new
value 1. However, instead of replacing the old value in the column with the new
value, we store the new value locally inside the transaction T1 and keep the col-
umn untouched as long as the transaction does not commit. In the same fashion,
the remaining write w1(2) of T1 as well as the write w3(3) of T2 are performed
only locally inside their respective transactions. Note that all three written val-
ues are uncommitted so far and are visible to the transactions that completed the
individual writes.

3. Let us now assume that T1 commits while T2 intentionally aborts. The commit
of T1 now replaces the old value 0 with the new value 1 in column C at row 5.
Of course, the old value 0 is not discarded but stored in a newly created version
chain for that row. Similarly, at row 1 the old value 0 is replaced by the new
value 2, and the old value stored in the version chain. Note that we implement
a timestamp mechanism (logging both the start and end time of a transactions
commit phase) to ensure that both writes of T1 become visible atomically to other
transactions. As no other transactions modified row 1 and 5 during the lifetime of
T1, the commit succeeds and satisfies full serializability, that we guarantee for all

Chapter 2. AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting 20

transactions. In contrast to that, the abort of T2 discards merely the local change
of row 3. This strategy with no rollback makes aborts cheap.

4. An OLAP query Q1 arrives, which intends to scan and sum up the values of
all rows of the column, denoted by sum(). To execute Q1, first, a snapshot of
column C is taken utilizing our custom system call (which we described in Sec-
tion 2.5 in detail), resulting in a (virtual) duplicate of the column denoted as C ′.
It is essential to understand that this duplicate C ′ will become the most recent
version of the column in the OLTP engine. The “old” column C along with its
build-up version chains is logically moved to the OLAP engine and becomes read-
only.

5. Another OLTP transaction T3 arrives, that intends to perform a read r3() followed
by the two writes w3(4) and w1(5). The read r3() is performed by accessing
the current value of row 3 of the representation in the OLTP view, resulting in
r3() → 0. The two successive writes are stored locally inside T3 and are not
visible for other transactions. In parallel to the depicted operations of T4, our
OLAP query Q1, which sums up the column values, starts executing in the OLAP
engine on C. As the snapshot is older than Q1, it can directly scan C without
inspecting the version chains.

6. While the scan of Q1 is running, T3 decides to commit. This commit does not
conflict with the execution of Q1 in any way, as the Q1 and T3 run in different
execution engines. The local write w3(4) and w1(5) are materialized in C ′ after
moving the old version to version chain.

7. Another OLAP query Q2 arrives, which attempts to compute the average of the
column, denoted by avg() triggers the creation of a new snapshot. Again we use
our system call and take a snapshot of column C ′ that is located in the OLTP
engine, resulting in a (virtual) duplicate of the column in form of C ′′. The new
duplicate C ′′ becomes the most recent representation of the column in the OLTP
engine, while C ′ with its version chains re-labeled as the OLAP engine. Note that
both C ′ as well as C is now present in the OLAP engine side by side, with Q1 still
running on C.

8. The new OLAP query Q2 starts running on the new snapshot C ′, while the older
OLAP query Q1 finishes its scan, returns the sum 3 and commits.

9. The finish of Q1 makes C obsolete, as a newer representation C ′ already exists
and no transaction accessing C is running. Thus, we can safely delete the oldest
snapshot C.

2.4. State-of-the-art Snapshotting 21

Snapshot Synchronization

For simplicity, in the previous example, all transactions worked solely on a single col-
umn. However, a database usually consists of several tables, containing a large number
of attributes and therefore, some form of snapshot synchronization is necessary. In this
context, snapshot synchronization means that a transaction, which accesses multiple
columns, has to see all columns consistent concerning a single point in time. The sys-
tem could trivially snapshot all columns of all tables for each request of the snapshot.
However, this causes unnecessary overhead as we might access only a small subset of
the attributes. Therefore, in AnKer, we implement a lazy snapshot materialization ap-
proach. The system logs the snapshot-timestamp along with the list columns used by
the snapshot for each snapshot request. The actual snapshot materialization happens
for each column if an OLTP transaction or an OLAP query comes in, which accesses
the columns requested by the snapshot. This lazy strategy ensures that columns, that
are never used by OLAP queries or are never updated by transactions are also never
materialized in snapshots.

Snapshot Consistency

In the previous example, we created a new snapshot for each OLAP query. When this
happens, and the previously described access triggers the actual materialization of the
snapshot using our system call, we have to ensure that no other transactions modify the
column while the snapshot is under creation. We ensure this using a shared lock on
the column, which must be acquired by any transaction which performs an installation
of updates to the respective column during the commit phase. When materializing a
snapshot, an exclusive lock must be acquired. To grant an exclusive lock, the system
blocks all further requests for the shared lock and the snapshot can be materialized once
all already-acquired shared locks are released.

2.4 State-of-the-art Snapshotting

As stated before, our hybrid processing model stands and falls with an efficient snapshot
creation mechanism. Only if we can create them at a high frequency without penalizing
the system, we get up-to-date snapshots with short version chains. There exist different
techniques to implement such a snapshotting mechanism, including physical and virtual
techniques. While the former ones create costly physical copies of the entire memory,
the latter ones lazily separate snapshots only for modified memory pages. Let us now

Chapter 2. AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting 22

look at the state-of-the-art techniques in detail to understand why they do not suffice our
needs and why we have to introduce an entirely new snapshotting mechanism in AnKer.

2.4.1 Physical Snapshotting

The most simple approach is physical snapshotting, where a deep physical copy of
the database is created. On this physical copy, the reading queries can then run in
isolation, while the modifying transactions update the original version. The granularity
of snapshotting is an important design decision. It is possible to snapshot the entire
database, a table, or just a set of columns. This way of snapshotting represents the
eager way of doing it — at the time of snapshot creation, the snapshot and the source
are entirely separated from each other. As a consequence, any modification to the source
is not carried through to the snapshot.

Physical snapshotting is straightforward and is easy to apply. However, its effec-
tiveness is directly bound to the amount of data that is updated on the source. If only a
portion of the data is updated, the full physical separation of the snapshot and the source
is unnecessary and just adds overhead to the snapshotting cost.

2.4.2 Virtual Snapshotting

Virtual Snapshotting overcomes this problem by following the lazy approach. The idea
of virtual snapshotting is that initially the snapshot and the source are not separated
physically. Instead, the separation happens lazily only for those memory pages that
are modified. As we will see, there are multiple ways to perform this separation using
virtual memory. To understand them, let us first go through some of the high-level
concepts of the virtual memory subsystem of Linux (kernel 4.8).

Virtual vs Physical Memory

By default, the user perspective on memory is simple — only virtual memory is visible.
To allocate a consecutive virtual memory area b of size s the system call mmap is used.
For instance, the general purpose memory allocator malloc from the GNU C library
internally uses mmap to claim large chunks of virtual memory from the operating system.
The layer of physical memory is completely hidden and transparently managed by the
operating system. After allocating the virtual memory area, the user can start accessing
the memory area, e.g., via b[i] = 42. Apparently, the user perspective is relatively

2.4. State-of-the-art Snapshotting 23

simple. He does not have to distinguish between memory types at all. In comparison,
the kernel perspective is significantly more complicated.

vpage0 vpage1

vi
rtu

al

[b ; b+p-1] [b+p ; b+2·p-1]

p-1][0 ; [p ; 2·p-1]

ppage42 ppage7

fil
e

ph
ys

ica
l

mmap()

vpage0 vpage1

[b ; b+p-1] [b+p ; b+2·p-1]

p-1][0 ; [p ; 2·p-1]

ppage42 ppage7

mmap()
mmap()

Figure 2.2: Visualization of rewiring as shown in [77]. The start address of the virtual
memory area is denoted as b and the page size as p. A consecutive virtual memory area
of two pages is mapped to a main-memory file, which is transparently mapped to two
potentially scattered physical pages (left part). The system call mmap can be used to
manipulate the mapping at runtime (right part).

First of all, the previously described call to mmap, which allocates a consecutive
virtual memory area, does not trigger the allocation of physical memory right away.
Instead, the call only creates a so-called vm area struct (VMA), that contains all
relevant information to describe this virtual memory area. For instance, it stores that the
size of the area is s and that the start address is b. Thus, the set of all VMAs of a process
defines which areas of the virtual address space are currently reserved. Note that a
single VMA can describe a memory area spanning over multiple pages. As an example,
in Figure 2.3 we visualize two VMAs. They describe the virtual memory areas starting
at address b (spanning over four pages) and c (spanning over three pages). In between
the two memory areas is an unallocated memory area of size two pages. Besides the

[c+p ; c+2·p-1][b+3·p ; b+4·p-1][b+p ; b+2·p-1]b+p-1][b ; [b+2·p ; b+3·p-1] c+p-1][c ; [c+2·p ; c+3·p-1]

VMAs

PTEs

not allocatedVMA of b VMA of c

valid
access

happened
valid
access

happened
valid
access

happened
valid
access

happened

b ppageb0 b+p ppageb1 b+3·p ppageb3 c+p ppagec1

Figure 2.3: Visualization of the relationship between VMAs and PTEs. The VMAs
store the information about the currently allocated virtual memory areas alongside with
all necessary meta-information.

Chapter 2. AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting 24

VMAs, there exists a page table within each process. A page table entry (PTE) that
contains the actual mapping from a single virtual to a physical page is inserted after
the first access to a virtual page, based on the information stored in the corresponding
VMA. The example in Figure 2.3 shows the state of the page table after four accesses
to four different pages. As we can see, there is one PTE per accessed page in the page
table.

Fork-based Snapshotting

With the distinction between the different memory types and the separation of VMAs
and PTEs in mind, we are now able to understand the most fundamental form of virtual
snapshotting: fork-based snapshotting [50]. It exploits the system call fork, which
creates a child process of the calling parent process. This child process gets a copy of all
VMAs and PTEs of the parent. In particular, this means that after a fork, the allocated
virtual memory of the child and the parent share the same physical memory. Only a
write1 to a page of child or parent triggers the actual physical separation of that page
in the two processes (called copy-on-write or COW). This concept can be exploited to
implement a form of snapshotting. If the source resides in one process, one can merely
fork it to create a snapshot. Any modification to the source in the parent process is not
visible in the child process. As mentioned in Section 2.1.2, early versions of HyPer that
implemented hybrid processing utilized fork.

Rewired Snapshotting

While fork-based snapshotting has the convenient advantage, that the snapshotting
mechanism is handled by the operating system in a transparent manner, it has two
significant disadvantages. First, it requires the spawning and management of several
processes at a time. Second, it always snapshots all allocated memory of the process,
i.e., it cannot be used to snapshot a subset of the data. Both problems can be addressed
using the technique of rewiring as described in [77].

To understand rewiring, let us again look at the mapping from virtual to physical
memory as described in Section 2.4.2. This mapping is by default both hidden from
the user as well as static, as the user sees only virtual memory by default. The authors
of [77] manage to reintroduce physical memory to userspace in the form of so-called
main-memory files. A main-memory file has the same properties as a file on disk, except
that volatile main-memory instead of disk pages back it. It can be mapped to a virtual

1Assuming the virtual memory area written to is private (MAP PRIVATE).

2.4. State-of-the-art Snapshotting 25

memory region using the system call mmap and accessed through it. As it is possible
to manipulate the mapping from virtual memory to the main-memory files using mmap

and main-memory files are internally backed by physical memory; they can establish
a transitive mapping from virtual to physical memory. At any time, this mapping can
be modified using mmap. Using rewiring memory, it is possible to establish a mapping
that is both visible and modifiable in userspace. To understand the concept, consider the
example in Figure 2.2 from the original paper [77] that swaps the content of two pages.
On the left side, two virtual memory pages of size p starting at virtual address b are
mapped to a main-memory file at offset 0. Since the main-memory file is transparently
backed by the two physical pages ppage42 and ppage7, the mappings vpage0 → ppage42
and vpage1 → ppage7 have been established. Using mmap, it is now easily possible
perform the swapping by mapping vpage0 to file offset p and vpage1 to file offset 0.
This changes the physical pages that are backing the virtual pages, resulting in a change
of content.

In rewired snapshotting, we utilize this modifiable mapping. Let us assume there
is a virtual memory area b, on which a snapshot should be created. To snapshot, we
simply allocate a new virtual memory area c and mmap (or rewire) it to the file, which
represents the physical memory, in the same way, as b. Consequently, b and c share
the same physical pages. If now a write to a page of b is happening, the separation of
the snapshot and original version must be performed manually on that page, before the
write can be carried out. In the first place, the write must be detected. After detection,
an unused page is claimed from the file (which serves as the pool for free pages), the
page content is copied over, the write is performed, and b is rewired to map to the new
page. By this, it is possible to mimic the behavior of fork while staying within a single
process. Further, the technique offers the flexibility of snapshotting only a fraction of
the data. However, rebuilding the mapping can also be quite expensive as we will see.

2.4.3 Reevaluating the State-of-the-Art

As we have discussed the different state-of-the-art methods of physical and virtual snap-
shotting that are present, let us now try to understand their strengths and limitations.
This analysis will point us directly to the requirements we have on our custom system
call, that we will use in AnKer to power snapshotting. In the experiment we are going to
conduct in Section 2.4.3, we evaluate the time to create a snapshot in the sense of estab-
lishing a separate view on the data. While for physical snapshotting, this means creating
a deep physical copy of the data, for virtual snapshotting, it does not trigger any physical
copy of the data. Still, virtual snapshotting has to perform a certain amount of work as
we will see. We will perform the experiment as a stand-alone micro-benchmark to focus
entirely on the snapshotting costs and to avoid interference with other components, that

Chapter 2. AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting 26

are present in our prototype of the AnKer concept. We use a table with n = 50 columns,
stored in a columnar fashion, where each column has a size of 200MB. The question
remains which page size to use. To make snapshotting as efficient as possible, we want
to back our memory with pages as small as available. This ensures that the overhead of
copy-on-write on the level of page granularity is minimal. Consider the case where our
200MB column is either backed by 100 huge pages or 51,200 small pages. In the former
case, 100 writes would cause a COW of the entire column (200MB) in the worst case,
resulting in a full physical separation of the snapshotted column and the base column.
In the latter case, 100 writes would trigger COW of at most 100 small pages (400KB),
physically separating only 0.2% of the snapshotted column from the base column.

System Setup

Before the start of the evaluation, let us look at the setup. We perform all of the following
experimental evaluations on a server consisting of two quad-core Intel Xeon E5-2407
running at 2.2 GHz. The CPU does neither support hyper-threading nor turbo mode. The
sizes of the L1 and L2 caches are 32KB and 256KB, respectively, whereas the shared L3
cache has a capacity of 10MB. The processor can cache 64 entries in the fast first-level
data-TLB for virtual to physical 4KB page address translations. In a slower second-
level TLB, 512 translations can be stored. In total, the system is equipped with 48GB of
main memory, divided into two NUMA regions of 24GB each. For the upcoming micro-
benchmarks of this Section, we deactivate one CPU and the attached NUMA region to
stay local on one socket. For the experimental evaluation in Section 2.6, we use both
sockets. The operating system is a 64-bit version of Debian 8.16 with our customized
Linux kernel (version 4.8.17), that has been extended with our vm snapshot system
call. The codebase is written in C++ and compiled using g++ 6.3.0 with optimization
level O3.

Creating a Snapshot

To simulate snapshotting on a subset of the data, we create a snapshot on the first
p columns of the table T . Let us precisely define how the individual snapshotting tech-
niques behave in this situation:

(a) Physical: to create a snapshot of p columns of table T , we allocate a fresh virtual
memory area S of size p · l pages, where l denote the number of pages per column.
Then, we copy the content of p columns of T into S using memcpy. S represents
the snapshot.

2.4. State-of-the-art Snapshotting 27

(b) Fork-based: to create a snapshot of p columns of table T , we create a copy of the
process containing table T using fork. Independent of p, this snapshots the entire
table. The first p columns of table T ′ contained in the child process represent the
snapshot. The virtual memory areas representing T and T ′ are declared as private,
such that writes to one area are isolated from the other area.

(c) Rewiring: to create a snapshot of p columns of table T , we first have to inspect
by how many VMAs each column is actually described. As a VMA describes the
characteristic properties of a consecutive virtual memory region, it is possible that
a column is represented by only a single VMA (best case), by one VMA per page
(worst case), or anything in between. The more writes happened to a column and
the more copy-on-writes were performed, the more VMAs a column is backed by.
Eventually, every page is described by its individual VMA. To create the snapshot,
we first allocate a fresh virtual memory area S of size p · l pages, where l denote
the number of pages per column. For each VMA that is backing a portion of the
p columns in T , we now rewire the corresponding part of S to the same file offset.
Additionally, we use the system call mprotect to set the protection of S to read-
only. This is necessary to detect the first write to a page to perform a manual copy-
on-write. S represents the snapshot.

Method Pages Modified per
Column 1 Col [ms] 25 Col [ms] 50 Col [ms]

Physical – 108.09 2693.69 5382.87
Fork-based – 108.28 108.28 108.28
Rewiring 0 0.02 0.39 7.72
Rewiring 500 1.22 30.90 61.87
Rewiring 5000 14.17 352.15 712.96
Rewiring 50000 169.28 4210.17 8459.67

Table 2.1: Creating a snapshot using state-of-the-art techniques. We vary the number of
columns on which we snapshot. For rewiring, the number of modified pages influences
the runtime. Thus, we show the snapshotting cost after 0, 500, 5000, and 50000 pages
were modified per column.

Table 2.1 shows the results. We vary the number of columns to snapshot p from 1 col-
umn (2% of the table) over 25 columns (50% of the table) to 50 columns (100% of the
table) and show the runtime in ms to create the snapshot. For rewiring, we vary the pages
that have been modified (by writing the first 8B of the page) before the snapshot is taken,
as it influences the runtime. We test the case where no write has happened, and a single
VMA backs each column. Further, we measure the snapshotting cost after 500 pages,

Chapter 2. AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting 28

5000 pages, and 50000 pages have been modified. These number of writes lead to 995,
9483, and 51177 number of VMAs backing a column. First of all, we can see that phys-
ical snapshotting is quite expensive, as it creates a deep copy of the columns already
at snapshot creation time. As expected, we can observe a linearly increasing cost with
the number of columns to snapshot. In contrast to that, fork-based snapshotting is inde-
pendent of the number of requested columns, as it snapshots the entire process with the
whole table in any case. When snapshotting 50% of the table, fork-based snapshotting
is over an order of magnitude faster than physical snapshotting, as it duplicates solely
the virtual memory, consisting of the VMAs and the page table. The runtime of rewiring
is highly influenced by the number of written pages, respectively the number of VMAs
per column. The more VMAs we have to touch to create the snapshot, the higher the
runtime. If we have as many VMAs as pages (the case after 50000 writes), the runtime
of rewiring is higher than the one of physical snapshotting. However, we can also see
rewiring is significantly faster than the remaining methods if fewer VMAs need to be
copied. For instance, after 500 writes, rewiring is around two orders of magnitude faster
for a single column and almost factor two faster for snapshotting the entire table.

Summary of Limitations

The performance of rewiring for snapshot creation is highly influenced by the number
of VMAs per column. For every VMA, a separate mmap call must be carried out – a
significant cost if the number of VMAs is large. Unfortunately, when using rewiring, an
increase in the amount of VMAs over time is not avoidable.

Still, we believe in rewiring for efficient snapshotting. However, it can not show
its full potential. If we carefully inspect the description of rewired snapshotting in Sec-
tion 2.4.3 again, we can observe that rewiring implements a workaround of the limita-
tions of the OS. We are forced to manually rewire the virtual memory areas described
by the VMAs to create a snapshot — because there is no way to copy a virtual memory
area. We have to perform another pass over the source VMAs to set the protection using
the system call mprotect to read-only — instead of setting it directly when copying
the virtual memory area. It is also expensive to keep track of shared physical pages in
the presence of multiple snapshots.

Naturally, rewiring hits the limits of the vanilla kernel. Therefore, in the following
Section, we will propose a custom system call that tackles these limitations — leading
to a much more straight-forward and efficient implementation of virtual snapshotting,
which we will finally use in AnKer.

2.5. System Call vm snapshot 29

2.5 System Call vm snapshot

In the previous section, we have seen the limitations of the state-of-the-art kernel.
Let us now discuss how we can overcome them by introducing our custom system
call vm snapshot. In our implementation of rewired snapshotting, we have experi-
enced the need to snapshot virtual memory areas directly. By default, the kernel does
not support this task. As a workaround, we had to rewire a new virtual memory area in
the same way as the source area which is a costly process as it involves repetitive calls
to mmap.

2.5.1 Semantics

To solve this problem, we have to introduce a new system call, that will be the core of
our snapshotting mechanism. Before, let us precisely define what snapshotting a virtual
memory area means in this context. Let us assume we have a mapping from n virtual to
n physical pages starting at virtual address b. The first virtual page covering the virtual
address space [b; b + p − 1] (vpageb0) is mapped to the physical page ppage42. The
second virtual page covering virtual address space [b + p; b + 2 · p − 1] (vpageb1) is
mapped to another physical page ppage7 and so on.

Now, we want to create a new virtual memory area starting at a virtual address c,
that maps to the same physical pages. Thus, the virtual page covering [c; c + p − 1]
should map to ppage42, the virtual page [c + p; c + 2 · p− 1] should map to ppage7 and
so on. We define the following system call to encapsulate the described semantics:

void* vm_snapshot(void* src_addr, size_t length);

This system call takes the src addr of the virtual memory area to snapshot and the
length of the area in bytes. Both src addr and length must be page aligned. It
returns the address of a new virtual memory area of size length, that is a snapshot of
the virtual memory area starting at src addr. The new memory area uses the same up-
date semantics as the source memory area, i.e., if the virtual memory area at src addr

has been declared using MAP PRIVATE | MAP ANONYMOUS, the new memory area is
declared in the same way. Besides, the new memory area follows the same NUMA
allocation policy as any virtual memory of the system – by default, the physical page
serving a COW is allocated on the NUMA region of the socket, that executes the thread
causing the COW.

Chapter 2. AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting 30

2.5.2 Implementation

Implementing a system call that modifies the virtual memory subsystem of Linux
is a delicate challenge. In the following, we will provide a high-level description
of the system call behavior. For the interested reader, we provide a full patch for
Linux kernel v4.16 in the Appendix A. On a high level, vm snapshot internally
performs the following steps: (1) Identify all VMAs that describe the virtual mem-
ory area [src addr, src addr + length − 1]. (2) Reserve a new virtual mem-
ory area of size length starting at virtual address dst addr. (3) Copy all of the
previously identified VMAs and update them to describe the corresponding portions
of virtual memory in [dst addr, dst addr + length − 1]. (4) For each VMA
which describes a private mapping (which is the standard case in AnKer), addition-
ally copy all existing PTEs and update them to map the corresponding virtual pages in
[dst addr, dst addr + length − 1]. This system call vm snapshot will form the
core component of creating snapshots on columns in AnKer. It is the call that we use in
Figure 2.1 in Step 4 and Step 7 .

2.5.3 Evaluating Virtual Memory Snapshotting

Let us now see how our custom system call vm snapshot performs in comparison with
its direct competitor rewiring. We excluded the baseline of physical snapshotting, as it is
already out of consideration for AnKer due to high cost and low flexibility. We first look
at the snapshot creation time for a single column of 200MB. The previous experiment
presented in Table 2.1 showed that rewiring is profoundly influenced by the number of
VMAs that are backing the column to snapshot. To analyze this behavior in comparison
with vm snapshot, we run the following experiment: for each of the 51,200 pages of
the column, we perform precisely one write to the first 8B of the page. In the case of
rewiring, this write triggers the COW of the touched page and thus, creates a separate
VMA describing it. After each write, we create a new snapshot of the column and report
the creation time.

In Figure 2.4(a), as predicted, the snapshot creation cost of rewiring is highly in-
fluenced by the number of VMAs that is increasing with every modified page. To visu-
alize this correlation, we plot the number of VMAs per column for rewiring alongside
with the snapshot creation time. In contrast to rewiring, our system call vm snapshot

shows both a stable and low runtime over the entire sequence of writes. After only
around 1000 writes have happened (see zoom-in of Figure 2.4(a)), the snapshotting cost
of vm snapshot already becomes lower than the one of rewiring. After all 51,200
writes have been carried out, vm snapshot is 68x faster than rewiring. This shows the
tremendous effect of avoiding repetitive calls to mmap.

2.5. System Call vm snapshot 31

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500
 0

 10

 20

 30

 40

 50

 60

S
n
a
p
s
h
o
t
c
re

a
ti
o
n
 t
im

e
 (

m
s
)

N
u
m

b
e
r

o
f
V

M
A

s
 b

a
c
k
in

g
 t
h
e
 c

o
lu

m
n
 (

x
1
0

3
)

Number of pages written to (x10
2
)

fork()
rewiring

vm_snapshot
VMAs / Column (rewiring)

 0

 2

 4

 3 6 9 12 15
 0

 1

 2

(a) Comparison of snapshot creation times. The time to snapshot
a single column is shown on the left y-axis for rewiring respectively
vm snapshot. To enhance the visualization, we also show a zoom-in.

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500
 0

 10

 20

 30

 40

 50

 60

T
im

e
 t
o
 u

p
d
a
te

 8
 b

y
te

s
 i
n
 a

 r
a
n
d
o
m

 p
a
g
e
 (

µ
s
e
c
)

N
u
m

b
e
r

o
f
V

M
A

s
 b

a
c
k
in

g
 t
h
e
 c

o
lu

m
n
 (

x
1
0

3
)

Number of pages written to (x10
2
)

rewiring
vm_snapshot

VMAs / Column (rewiring)

(b) Comparison of writes to the snapshotted column. On the left y-axis, the
time to perform a write of 8B is shown.

Figure 2.4: Comparison of vm snapshot and rewiring in terms of snapshotting and
write cost. After every write to a page, a new snapshot is taken. Additionally, we show
the number of VMAs per column for rewiring on the right y-axis.

Chapter 2. AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting 32

However, we should also look at the actual cost of writing the virtual memory.
In the case of rewiring, the triggered COW is handled by copying the page content to
an unused page and rewiring that page into the column. In the case of vm snapshot,
which works on anonymous memory and relies on the COW mechanism of the operating
system, no manual handling is necessary. This becomes visible in the runtime shown
in Figure 2.4(b). Writing a page of the column snapshotted by vm snapshot is up to
6x faster than writing to one created by rewiring, as the operating system handles the
entire COW. No protection must be set manually, and no signal handler is necessary to
detect the write to a page.

2.5.4 MVCC Scan Performance

In this part of our microbenchmarks, we use the TPC-H schema to highlight the impact
of version chains on the performance of long-running analytical queries. We perform
the experiment shown in Figure 2.5, which resembles executing mixed workloads under
homogeneous processing.

Sc
an

 T
im

e
(m

ill
ise

co
nd

s)

0

200

400

600

800

1000

1200

Fraction of versioned rows in the table
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

LINEITEM ORDERS PART

Figure 2.5: Runtime of scanning versioned tables. We vary the amount of versioned
rows and perform a full scan.

In this experiment, we vary the number of rows that are versioned in the ta-
bles LINEITEM, ORDERS, and PART and measure the time it takes to perform a full
scan of the table. The versioned rows are uniformly distributed across the table. To
improve scan performance in the presence of versioned rows, we apply an optimization
technique introduced by HyPer [71]: for every 1024 rows, we keep the position of the
first and the last versioned row. With this information, it is possible to scan in tight loops
between versioned records without performing any checks.

2.5. System Call vm snapshot 33

Nevertheless, in Figure 2.5 we can see that this optimization cannot defuse the
problem entirely. With an increase in the number of versioned rows, we see a drastic
increase in the runtime of the scan as well. Scanning a table that is completely versioned
takes around 5 times longer than scanning an unversioned table. This unversioned table
essentially resembles the situation when scanning in a snapshot under heterogeneous
processing.

2.5.5 Snapshot Creation Cost

Let us now inspect the cost of snapshot creation in AnKer. Due to our flexible system
call vm snapshot, we are able to snapshot virtually at the granularity of individual
columns.

Sn
ap

sh
ot

 C
re

at
io

n
(m

ill
ise

co
nd

s)

0

10

20

30

40

50

fork() LINEITEM ORDERS PART All

COMMENT
SHIPMODE
SHIPINSTRUCT
RECEIPTDATE
…

Cost for
snapshotting
individual
columns:

Figure 2.6: Snapshot creation cost for the individual columns of LINEITEM, ORDERS,
and PART utilizing our system call vm snapshot in comparison with using fork.

To demonstrate the benefit of this flexible approach, we present in Figure 2.6 the
cost of snapshotting the individual columns of the LINEITEM, ORDERS, and PART table
of the TPC-H benchmark inside of AnKer in form of stacked bars. Each layer in a bar
resembles the cost of snapshotting a single column of the respective table. The bar All
presents the cost of snapshotting all three tables. In comparison, we show the cost of
forking the process in which AnKer is running using the system call fork. We make
sure that when performing the fork, the process is in the same state as when performing
the snapshotting using vm snapshot. At this point in time, the AnKer process has a
size of 5.2GB in terms of virtual memory.

Chapter 2. AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting 34

As we can see in Figure 2.6, the cost of snapshotting individual columns of the
TPC-H tables is negligibly cheap. Thus, if a transaction accesses only a portion of the
attributes, the cost of preparing the snapshot stays as low as possible as well. Never-
theless, even when snapshotting all columns of all tables, our approach is considerably
cheaper than using the fork system call. The problem of fork is that the virtual mem-
ory of the entire process containing 5.2GB of virtual memory is replicated. Besides the
tables, which consume only around 1.5GB of memory, this includes the used indexes,
the version chains, the timestamp arrays, and various meta-data structures.

2.6 Experimental Evaluation

After the description of the processing concept of AnKer and the introduction of
vm snapshot to efficiently snapshot virtual memory areas, let us now start with the
experimental evaluation of the actual system. As AnKer relies on a hybrid processing
model, we want to test it against MVCC using a single execution engine. Additionally,
we want to test its snapshotting capabilities against fork-based snapshotting. Our proto-
type is designed in a way also to support both hybrid processing using fork as well as
MVCC using a single execution engine by disabling snapshotting.

2.6.1 System Configurations

Let us define the precise configurations we are going to evaluate:

1. MVCC in a Single Execution Engine, Full Serializability (abbreviated by
SEE FS). We configure our prototype such that no snapshots are taken at all.
Thus, there is only a single execution engine with the most recent representation
of the database. Both OLTP transactions and OLAP queries run on this execution
engine under full serializability guarantees. A separate garbage collection mech-
anism cleans the version chains created by the updates. The system uses a thread
that passes over the version chains every second and deletes all versions that are
not visible to the oldest active transaction in the system. To speed up scanning
over versioned data, we apply an optimization technique introduced by [71]: for
every 1024 rows, we keep the position of the first and the last versioned row. With
this information, it is possible to scan in tight loops between versioned records
without performing any checks.

2.6. Experimental Evaluation 35

2. MVCC in a Single Execution Engine, Snapshot Isolation (abbreviated by
SEE SI). As in (1), no snapshots are taken. There is only a single execution en-
gine with the most recent representation of the database. Both OLTP transactions
and OLAP queries run in this component under snapshot isolation guarantees and
thus, no read set validation is performed. The same garbage collection and scan
optimization as in (1) are applied.

3. MVCC in a Single Execution Engine, Read Uncommitted (abbreviated by
SEE RU). As in (1) and (2), no snapshots are taken. There is only a single ex-
ecution engine with the most recent representation of the database. Both OLTP
transactions and OLAP queries run in this component under read uncommitted
guarantees and thus, running transactions/queries can see uncommitted changes.
Not garbage collection is necessary since updates do not create versions. Scan
optimization is not necessary as well.

4. MVCC in a Hybrid Execution Engine using vm snapshot, Full Serializabil-
ity (abbreviated by HEE AnKer). The OLTP transactions run in the OLTP ex-
ecution engine, and the OLAP queries run in the OLAP execution engine. The
creation of snapshots works in a lazy fashion using our system call vm snapshot

as described in Section 2.3.2. We additionally force the transactions, that are clas-
sified as OLTP to abort, as soon as they are forced to find the right tuple version
from the version chain. This prevents these transactions from doing unnecessary
work before they abort.

5. MVCC in a Hybrid Execution Engine using fork, Full Serializability (ab-
breviated by HEE fork). Same as (4), except that we use fork to perform the
virtual snapshotting instead of vm snapshot. A call to fork launches a new
process of AnKer that runs the OLAP queries. To create a consistent snapshot,
HEE fork blocks all commits until the fork is complete. This can be replaced with
log-based rollback similar to HyPer[50] to improve the OLTP throughput, but it
adds additional cost to snapshot preparation.

2.6.2 Experimental Setup

To evaluate the system under a complex HTAP workload, we define the following mix-
ture of OLTP transactions and OLAP queries:

On the OLTP side, we use three transactions from the TPC-C benchmark:
Payment, NewOrder, and OrderStat. These three transactions access all nine ta-
bles of the TPC-C database and perform updates on the tables stock, order line,
orders, new order, and district. For each transaction that is submitted to the

Chapter 2. AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting 36

system, we pick the configuration parameters randomly within the bounds given in the
TPC-C specification. We populate the database with 40 warehouses. We support two
different types of access pattern for the transactions. For the first one, the accesses are
uniformly distributed across warehouses and districts. For the second one, 50% of the
accesses are skewed towards five given warehouse/district pairs. The remaining 50%
follow a uniform distribution.

On the side of OLAP, we use eight synthetic queries, which are dominated by
scanning, grouping, and aggregation. Figure 2.7 shows the precise queries. We pick the
query StockScan (OLAP-Q1) as described in [96], which operates on the warehouse
and stock tables. Further, we add the two single-table queries OLAP-Q2 and OLAP-
Q3, which group and aggregate on order line. To have scan-heavy queries, we add
OLAP-Q4 and OLAP-Q5, which simply perform full table scans on orders respec-
tively new order. Finally, we add the three fast queries OLAP-Q6, OLAP-Q7, and
OLAP-Q8, which perform scans and aggregations on the columns of a single table.

Unless mentioned otherwise, the upcoming experiments use 6 threads to process
the stream of incoming OLTP transactions and 2 threads to answer OLAP queries.

OLAP-Q1 StockScan [25] OLAP-Q2 OLAP_Q3

 select w_id, count(*)
 from warehouse, stock
 where w_id = s_w_id
group by w_id;

 select ol_d_id,
 avg(ol_amount)
 from order_line
group by ol_d_id;

 select ol_w_id,
 sum(ol_quantity),
 avg(ol_amount)
 from order_line
group by ol_w_id;

OLAP-Q4 FULL TABLE SCAN OLAP-Q5 FULL TABLE SCAN
select *
 from orders;

select *
 from new_order;

OLAP Q6 COLUMN SCAN OLAP Q7 COLUMN SCAN OLAP Q8 COLUMN SCAN
select avg(d_tax),
 avg(d_ytd)
 from district;

select avg(ol_amount)
 from order_line;

select avg(s_quantity)
 from stock;

Figure 2.7: The eight OLAP queries we use in the evaluation.

2.6.3 Snapshotting Cost and OLAP Latency

Let us start with an evaluation of the core mechanism of AnKer: the fast snapshotting
using our system call vm snapshot. Our initial motivation of this project was to en-
able virtual snapshotting without the overhead of fork-based snapshotting. Thus, let us
now first see how hybrid processing using our system call (HEE AnKer) competes with

2.6. Experimental Evaluation 37

hybrid processing using fork as originally done by HyPer (HEE fork). Both run under
full serializability guarantees. Additionally, we compare the two hybrid approaches with
MVCC using a single execution engine under three different isolation levels (SEE FS,
SEE SI, SEE RU).

In the following experiment, we will answer two questions: First, how expensive
is the snapshotting mechanism using our system call in comparison with the alterna-
tives under a real-world HTAP workload? Second, what is the impact of the snapshot-
ting mechanism and the hybrid processing under MVCC on the latency of the OLAP
queries? To answer these questions, we perform the following experiment: To sustain
the system, we fire an infinite stream of OLTP transactions randomly picked from the
set of TPC-C transactions. After five seconds, we fire a random OLAP query from the
set depicted in Figure 2.7 and repeat firing random OLAP queries every 500ms. For
every fired query, we create a new snapshot for the hybrid approaches HEE AnKer and
HEE fork. After three minutes, we terminate the experiment and report the average of
all observed snapshotting times and query latencies.

Figure 2.8 shows the results grouped by the OLAP queries. In Figure 2.8(a), we
use the OLTP workload with a uniform access pattern while in Figure 2.8(b), we use the
skewed OLTP workload focusing on five hot warehouse/district combinations. For each
of the eight OLAP queries, we report the snapshot creation time as well as the latency
in ms for each of the five tested methods.

Let us first have a look at the results on the uniform pattern in Figure 2.8(a). If
we compare the baselines, we can see the significant cost of the snapshotting phase in
HEE fork, caused by replicating the process, followed by a fast query answering part.
The approaches SEE FS and SEE SI using a single execution engine do not have an
explicit snapshot creation phase but suffer from very high query execution times of up
to 2200ms for Q3 (cut off at 1000ms in the plot), as the OLAP query has to work its way
through the version chains, which are build up by the OLTP stream. In comparison to the
baselines, HEE AnKer combines the best of both worlds: its snapshot creation time is
so short that it is not even visible in the plots. This is caused by the fact that it snapshots
only the columns that are touched by the respective query using vm snapshot. In com-
parison to HEE fork, the snapshotting phase of HEE AnKer is more than 100x faster.
After snapshotting, the actual query answering part is equally fast as for HEE fork. We
want to point out that the total latency for HEE AnKer (including snapshot creation
and query answering) under full serializability guarantees almost equals the runtime of
SEE RU, which runs only on the isolation level of read-uncommitted. We can also ob-
serve that depending on the query, the expensive snapshotting phase of HEE fork can
have a drastic impact on the overall latency. For Q6, Q7, and Q8, the snapshotting cost
of HEE fork dominates the latency, and HEE AnKer achieves a speedup of 4.9x to 7.5x.

Chapter 2. AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting 38

Snapshot Creation
Latency of OLAP query

Q1 Q2 Q3 Q4 Q5
0

200

400

600

800

1000

Ti
m

e
[m

s]

OLAP Queries
Q6 Q7 Q8

HEE_AnKer
HEE_fork
SEE_FS
SEE_SI
SEE_RU

11
92

11
81

18
39

18
47

22
44

22
38

17
24

17
22

15
56

15
42

(a) System sustained using OLTP transactions with uniform access pattern.

0

200

400

600

800

1000

Ti
m

e
[m

s]

OLAP Queries
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

14
62

14
71

(b) System sustained using OLTP transactions with skewed access pattern.

Figure 2.8: Snapshotting Cost and Latency of OLAP queries.

If we look at the results on the skewed pattern in Figure 2.8(b), we can observe that
especially the approaches using a single execution engine and a higher isolation level
(SEE FS and SEE SI) massively benefit from the skew. We can also see that for the
three faster queries Q6, Q7, and Q8, HEE fork shows now the overall highest latency:
the snapshotting mechanism using fork is more expensive than the query answering
part of any competitor.

2.6. Experimental Evaluation 39

2.6.4 Transaction Throughput

After inspecting the snapshotting cost and the latency of the OLAP queries, let us now
investigate the previous experiment from Section 2.6.3 from the OLTP side. As we fire
an infinite stream of OLTP transactions over a time interval of three minutes, we plot
the OLTP throughput achieved per second. As before, starting after five seconds, we
fire a random OLAP query every 500ms and snapshot before every OLAP query for
the hybrid methods. We exclude the results for SEE RU, as the OLTP throughput is
extremely high in comparison to the counterparts with higher isolation levels.

Figure 4.11 shows the results for the uniform OLTP access pattern (Figure 2.9(a))
and the skewed OLTP access pattern (Figure 2.9(b)). For the uniform case, in the first
five seconds, no OLAP query is running, and we see the maximum OLTP throughput
of the system which locates between 60k and 70k transactions per second. As soon
as the first OLAP query arrives, the throughput significantly drops for all methods due
to congestion. As expected, we observe the lowest throughput of around 28k trans-
actions per second under SSE FS because of the expensive commit phase validation
that is performed, and a slightly higher throughput of around 30k to 38k transactions
per second for HEE fork. The costly snapshotting utilizing fork heavily throttles the
OLTP throughput. The throughput of SEE SI is very stable around 42k transactions
per second. To our surprise, this is a lower throughput than the average throughput
achieved by HEE AnKer with 47k transactions per second which has one major reason:
Before SEE SI successfully reads a value that is stored in a column, it must validate
whether the value is versioned or not. If it is versioned, it reads the timestamp of the
most recent version and the pointer to the version chain. The read is successful if the
current timestamp of the tuple is smaller than transaction’s begin-timestamp. If not,
the version chain is traversed to find the valid version. However, for the HEE AnKer
this is not the case. Since we only support full-serializability, the OLTP transactions
are not allowed to read from the version chains. For every read, the transaction only
reads the timestamp of the current tuple version. If the timestamp is smaller than trans-
action’s begin-timestamp, the transaction can read the value. Otherwise, it prema-
turely aborts without doing the read. Due to fewer comparisons and metadata validation,
a single read access for full-serializable OLTP transaction is faster than the reads per-
formed by SI based protocol where the transaction can still commit after reading from
the version chain. For HEE AnKer, we observe a high variance in the throughput which
is due to different snapshot creation time for different OLAP queries and the copy-on-
write cost. We also observe a stable behaviour for HEE Fork due to relatively stable
fork cost.

For the skewed distribution in Figure 2.9(b), we see a lower throughput than for
the uniform pattern across all methods. This is caused by update conflicts that must

Chapter 2. AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting 40

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140 160 180

O
L
T

P
 T

h
ro

u
g
h
p
u
t
[x

1
0
0
0
 t
ra

n
s
a
c
ti
o
n
s
/s

e
c
]

Time [sec]

HEE_AnKer
HEE_fork
SEE_FS
SEE_SI

(a) Throughput of OLTP Transactions with uniform access pattern.

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120 140 160 180

O
L
T

P
 T

h
ro

u
g
h
p
u
t
[x

1
0
0
0
 t
ra

n
s
a
c
ti
o
n
s
/s

e
c
]

Time [sec]

HEE_AnKer
HEE_fork
SEE_FS
SEE_SI

(b) Throughput of OLTP Transactions with skewed access pattern.

Figure 2.9: Throughput of OLTP Transactions.

be serialized for the contended transactions. We can also observe in this plot that the
variance for HEE AnKer and HEE fork is smaller than in the uniform case since fewer
copy-on-writes are performed.

2.6. Experimental Evaluation 41

HEE_AnKer HEE_fork
SEE_FS SEE_SI
SEE_RU

0

300

600

900

1200

1500

Q
1

La
te

nc
y

(w
ith

ou
t s

na
ps

ho
tt

in
g)

 [m
s]

OLTP Streams
1 2 3 4 5 6

(a) Latency for Q1 while varying the number of OLTP streams. The
number of OLAP streams is 2.

0

20

40

60

80

100

Q
6

La
te

nc
y

(w
ith

ou
t s

na
ps

ho
tt

in
g)

 [m
s]

OLTP Streams
1 2 3 4 5 6

HEE_AnKer HEE_fork
SEE_FS SEE_SI
SEE_RU

(b) Latency for Q6 while varying the number of OLTP streams. The
number of OLAP streams is 2.

Figure 2.10: Varying the number of streams used for processing.

2.6.5 Scaling

Our system essentially implements parallelism on two layers: On the first layer, we
parallelize OLTP and OLAP execution by maintaining a hybrid execution engine. On
the second layer, we apply MVCC inside each engine to ensure a high concurrency

Chapter 2. AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting 42

HEE_AnKer HEE_fork
SEE_FS SEE_SI

0

5

10

15

20

25
O

LT
P

Th
ro

ug
hp

ut
 [x

10
00

 tr
an

sa
ct

io
ns

/s
ec

]

1 2 3 4 5 6
OLAP Streams

30

Figure 2.11: Varying the number of streams used for processing.

among transactions of a single type. In this regard, let us now investigate how well
AnKer scales with the number of OLTP and OLAP streams, that are used to process the
transactions and queries.

In Figure 2.10, we investigate the scaling capabilities along two dimensions. On the
first dimension, we fix the number of OLAP streams and vary the number of available
OLTP streams. On the second dimension, we fix the number of OLTP streams and
vary the number of available OLAP streams. The experimental setup is the same as in
Section 2.6.3 and Section 4.8.2. In Figure 2.10(a) and Figure 2.10(b), we report the
latency of the OLAP queries Q1 and Q6 when fixing the number of OLAP streams to 2
and varying the number of OLTP streams from 1 to 6 to sustain the system with varying
OLTP load. In Figure 2.11, we fix the number of OLTP streams to 2 and vary the number
of OLAP streams from 1 to 6. Here, we show the average throughput over the run of
180 seconds.

From Figure 2.10(a) and Figure 2.10(b), we can see that the hybrid approaches
are largely unaffected by the number of OLTP streams. The reason for this is that the
OLAP processing happens in isolation to the version chain building, that is happening
in the OLTP execution engine. In contrast to that, the OLAP latency of SEE FS and
SEE SI heavily decreases with an increase in OLTP streams, as more OLTP streams
build up more version chains that must be traversed by an OLAP query. SEE RU is
again unaffected, as it simply reads the in-place version without traversing the version
chains at all. In Figure 2.11, we can see that the OLTP throughput decreases for all
methods with an increase of OLAP streams. However, some methods are more affected

2.7. Future Work 43

than others. While the throughput of HEE AnKer decreases only by 11.6% from 1 to
6 OLAP streams, the throughput of HEE fork decreases by 67.6%. This is because the
expensive snapshotting phase using fork interrupts the processing of the OLTP stream
for a significant amount of time and decreases the number of OLTP transactions that can
be processed in 180 seconds. Consequently, the effective throughput is decreased.

Method 1 WH 10 WH 20 WH 30 WH 40 WH Slowdown
1WH→40WH

HEE AnKer 51289 50525 49718 48637 47729 1.07x
HEE fork 46391 42741 39172 35678 31220 1.49x
SEE FS 32456 31810 31281 30299 28794 1.18x
SEE SI 48391 48027 47687 47033 46237 1.05x

Table 2.2: Varying the number of warehouses and observing the throughput decrease.
The throughput is given in transactions per second. The last column shows the slow-
down in throughput from 1 warehouse to 40 warehouses.

Finally, let us vary the size of the used dataset and see the effect on the OLTP
throughput. Additionally to 40 warehouses, that we used in the previous experiments,
we also evaluate 1, 10, 20, and 30 warehouses in the following and report the slowdown
in throughput when increasing the size from 1 to 40 warehouses. As expected, HEE fork
is affected the most by an increase of the dataset size with a throughput slowdown of
factor 1.49x, as the process to fork heavily increases in size. For HEE AnKer, the
problem is not that severe as only the touched columns are snapshotted.

2.7 Future Work

Our system call vm snapshot is the essential component that powers the hybrid exe-
cution engine of AnKer. It enables fast and fine-granular snapshotting in combination
with a low memory footprint. Nevertheless, due to its flexibility and general design,
it could be applied in a variety of other situations as well. From a more general per-
spective, vm snapshot can essentially replace any larger memcpy operation. While
memcpy duplicates all pages in a memory region in an eager fashion, vm snapshot

lazily duplicates only the modified pages. As memcpy is frequently used at essentially
all levels of any software system, such a simple function swap can have a significant im-
pact on performance. From a system perspective, the problem of efficient snapshotting
is not limited to relational systems. For instance, graph processing systems throttle
in the presence of concurrent updates and analytics. Our system call could be used to

Chapter 2. AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting 44

snapshot (parts of) the graph and outsource the analytics as in AnKer. Apart from snap-
shotting, there is the related concept of checkpointing [95], where a consistent view
of the database has to be stored to disk for recovery purposes. As this is more of a
background task with respect to the query processing, it should be as transparent and
lightweight as possible. We can ensure this with our system call: if a checkpoint is re-
quested, we create a consistent view of the database using vm snapshot with minimal
effort. Afterwards, this view can be spilled to disk asynchronously. Consequently, a
system, which supports the creation of snapshots and checkpoints at a high frequency,
could be easily extended to run time travel queries efficiently: they would either run on
snapshots, which are still available in the system, or on checkpoints, that are reloaded
via mmap.

2.8 Conclusion

In this work, we introduced AnKer, a transactional processing concept implementing a
hybrid execution engine in combination with MVCC, which works hand in hand with
our customized Linux kernel to enable snapshotting at a very high frequency. We have
shown that a hybrid design powered by a lightweight snapshotting mechanism fits nat-
urally to the HTAP workloads and improves the throughput of OLAP queries by factors
up to 4x, as it enables fast scans in tight loops. Besides, due to the flexibility of our cus-
tom system call vm snapshot, we can limit the snapshotting effort to those columns
that are accessed by transactions, allowing a snapshotting speedup of more than fac-
tor 100x over fork-based snapshotting.

Overall, in this chapter, we have seen that a fast snapshotting technique can have
a significant impact on the performance of the database system that aims to provide
a unique solution for transactional as well as analytical workloads. Therefore, high-
lighting the friendly nature of snapshots towards hybrid transactional and analytical
workloads. In the upcoming chapter, we will look into another class of data manage-
ment systems, i.e., permissioned-blockchain systems. We will investigate the transac-
tion processing pipeline of Hyperledger Fabric and extend it with some optimizations
from the relational database research, which will significantly improve the permissioned
blockchain system’s performance. We will also look at how we can hamper performance
if we use snapshot isolation in an ineffective way as done by Hyperledger Fabric.

Chapter 3

Fabric++: Optimizing Transaction
Processing in Hyperledger Fabric

Within the last few years, a countless number of blockchain systems have emerged
on the market, each one claiming to revolutionize the way of distributed transaction
processing in one way or the other. Many blockchain features, such as byzantine fault
tolerance, are indeed valuable additions in modern environments. However, despite all
the hype around the technology, many of the challenges that blockchain systems have to
face are fundamental transaction management problems. These are largely shared with
traditional database systems, which have been around for decades already.

These similarities become especially visible for systems, that blur the lines between
blockchain systems and classical database systems. A great example of this is Hyper-
ledger Fabric, an open-source permissioned blockchain system under development by
IBM. By implementing parallel transaction processing, Fabric’s workflow is highly mo-
tivated by optimistic concurrency control mechanisms in classical database systems.
This raises two questions: (1) Which conceptual similarities and differences do actually
exist between a system such as Fabric and a classical distributed database system? (2) Is
it possible to improve on the performance of Fabric by transitioning technology from
the database world to blockchains and thus blurring the lines between these two types
of systems even further? To tackle these questions, we first explore Fabric from the per-
spective of database research, where we observe weaknesses in the transaction pipeline.
We then solve these issues by transitioning well-understood database concepts to Fab-
ric, namely transaction reordering as well as early transaction abort. Our experimental
evaluation under the Smallbank benchmark as well as under a custom workload shows
that our improved version Fabric++ significantly increases the throughput of success-
ful transactions over the vanilla version by up to a factor of 12x, while decreasing the
average latency to almost half.

45

Chapter 3. Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 46

3.1 Introduction

Blockchains are one of the hottest topics in modern distributed transaction processing.
However, from the perspective of database research, one could raise the question: what
makes these systems so special over classical distributed databases, that have been out
there for a long time already?

The answer lies in byzantine fault tolerance: while classical distributed database
systems require a trusted set of participants, blockchain systems are able to deal with
a certain amount of maliciously behaving nodes. This feature opens lots of new ap-
plication fields such as transactions between organizations, that do not fully trust each
other.

Regarding the aspect of byzantine fault tolerance, blockchain systems have a clear
advantage over distributed database systems. Unfortunately, with respect to essentially
any other aspect of transaction processing, classical database systems are decades ahead
of blockchain systems.

A great example for this is the order-execute transaction processing model, that
prominent systems like Bitcoin [69] and Ethereum [3] implement: In the ordering phase,
all peers first agree on a global transaction order, typically using a consensus mecha-
nism. Then, each peer locally executes the transactions in that order on a replica of the
state. While this approach is simple, it has two severe downsides: First, the execution
of transactions happens in a sequential fashion. Second, as every transaction must be
executed on every peer, the performance of the system does not scale with the number
of peers. Of course, both parallel execution as well as scaling capabilities have been
well-established properties of distributed database systems since many years.

3.1.1 Catching up

Still, there are blockchain systems that try to catch up. A prominent example for this is
Hyperledger Fabric [18], a popular open-source blockchain system introduced by IBM.
Instead of implementing the order-execute model, it follows a sophisticated simulate-
order-validate-commit model. This model is highly influenced by optimistic concur-
rency control mechanisms in database systems: Transactions are simulated specula-
tively in parallel before actually ordering them. Then, after ordering, Fabric checks in
the validation phase whether the order does not conflict with the previously computed
simulation effects. Finally, the effects of non-conflicting transactions are committed.
The advantages of this model are clear: parallel transaction execution and therefore
the ability to scale — features, which will be mandatory for any upcoming blockchain

3.1. Introduction 47

system, that aims at high performance.

We strongly believe that Fabric’s ambitions in transitioning technology from the
world of databases to blockchains are a step in the right direction. Unfortunately, its
implementation of parallel transaction processing still suffers from certain problems
which highly limit the gain, that can be achieved by concurrency. These problems can
be identified easily in two simple experiments.

Transactions per second
0 150 300 450 600

Aborted Successful

SuccessfulBlank

Transactions

Meaningful

Transactions

Fabric

Figure 3.1: Transactions per second of vanilla Fabric when meaningful transactions
are fired as described in Section 3.6 for the configuration BS=1024, RW=8, HR=40%,
HW=10%, HSS=1%. Additionally, we show the throughput when blank transactions
are fired.

In the first experiment (Figure 3.1, top bar), we submit a stream of meaningful
transactions, which originate from an asset transfer scenario, and report the throughput,
divided into aborted and successful transactions. This experiment reveals a severe prob-
lem of Fabric: a large number of transactions end up as being aborted. The reason for
all these aborts are serialization conflicts, a negative side-effect of concurrent execution.

If we want to increase the number of successful transactions, we essentially have
two options: Either we (a) increase the overall throughput of the system or (b) turn
transactions, that would have been aborted by Fabric, to successful ones. Unfortunately,
option (a) is hardly applicable in Fabric. We can see this in the second experiment
(Figure 3.1, bottom bar), where we submit blank transactions without any logic. Inter-
estingly, the total throughput of blank and meaningful transactions essentially equals.
This reveals, that the overall throughput of the system is not dominated by the core com-
ponents of transaction processing, but actually by other auxiliary factors: cryptographic
computations and networking overhead.

3.1.2 Fabric++

Thus, option (b) is the key: we have to turn transactions, that would have been aborted
by Fabric, to successful ones. We achieve this, by transitioning a well-known technique

Chapter 3. Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 48

from database systems to Fabric: transaction reordering. Instead of arbitrarily order-
ing transactions, we inspect the transaction semantics and arrange the transactions in a
way such that the number of serialization conflicts is drastically reduced. Furthermore,
we remove transactions, that have no chance to commit anymore, as early as possible
from the pipeline. This early abort of transactions further improves the situation, as
transactions, which have no chance to commit, are out of consideration for reordering.

In total, we carry out the following steps to further “databasify” Fabric:

1. To have a basis for the discussion, we first inspect the transaction flow of Hyper-
ledger Fabric version 1.2 from a conceptual perspective. (Section 3.2).

2. We carefully inspect the related work in the area of concurrency control and dis-
cuss, which techniques are related to Fabric and which are out of consideration.
(Section 4.2). This leads us directly to the techniques we are integrating.

3. Based on the analysis of the transaction flow in Fabric, we discuss its weaknesses
in detail and describe, how database technology can be utilized to counter them.
(Section 3.4).

4. We transition database technology to the transaction pipeline of Fabric. Precisely,
we first improve on the ordering of transactions. By default, the system orders
transactions arbitrarily after simulation, leading to unnecessary serialization con-
flicts. To counter this problem, we introduce an advanced transaction reordering
mechanism, which aims at reducing the number of serialization conflicts between
transactions within a block. This mechanism significantly increases the number
of valid transactions, that make it through the system and therefore the overall
throughput (Section 3.5.1).

5. Next, we advance the abort of transactions. By default, Fabric checks whether
a transaction is valid right before the commit. This late abort unnecessarily pe-
nalizes the system by processing transactions, that have no chance to commit. To
tackle this issue, we introduce the concept of early abort to various stages of the
pipeline. We identify invalid transactions as early as possible and abort them,
assuring that the pipeline is not throttled by transactions that have no chance to
commit eventually. A requirement for this concept is a fine-grained concurrency
control mechanism, by which we extend Fabric as well (Section 3.5.2). These
modifications significantly extend the vanilla Fabric, turning it into what we call
Fabric++.

6. We perform an extensive experimental evaluation of the optimizations of Fab-
ric++ under the Smallbank benchmark as well as under a custom workload. We

3.2. Hyperledger Fabric 49

show that we are able to significantly increase the number of successful transac-
tions over the vanilla version. Additionally, we vary the blocksize, the number of
channels, and clients to show that our optimizations also have a positive impact on
the scaling capabilities of the system. Further, using the Caliper benchmark, we
show that Fabric++ also produces a lower transaction latency than vanilla Fabric
(Section 3.6).

3.2 Hyperledger Fabric

First, we have to understand the workflow of Fabric. Let us describe in the following
section how it behaves in version 1.2.

3.2.1 Architecture

Fabric is a permissioned blockchain system, meaning all peers of the network are known
at any point in time. Peers are grouped into organizations, which typically host them.
Within an organization, all peers trust each other. Each peer runs a local instance of
Fabric. This instance includes a copy of the ledger, containing the ordered sequence
of all transactions that went through the system. This includes both valid and invalid
transactions. Apart from the ledger, each peer also contains the current state in form of
a state database, which represents the state after the application of all valid transactions
in the ledger to the initial state. Apart from the peers, which play an important role both
in the simulation phase and the validation phase, there is a separate instance called the
ordering service, which is the core component of the ordering phase and assumed to be
trustworthy.

3.2.2 High-level Workflow

At its core, Fabric follows a simulate-order-validate-commit workflow, as shown in
Figure 3.2.

Simulation Phase

In the simulation phase, a client submits a transaction proposal to a subset of the peers,
called the endorsement peers or endorsers, for simulation. This subset of endorsement

Chapter 3. Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 50

Simulation
Phase

Ordering
Phase

Validation
Phase

Commit
Phase

Client 1

Ordering
Service

Peer A1

Peer B1

Peer A2

Peer B2

Client 2

Endorsement

Endorsement

Proposal

Transaction

Block
Peer A1

simulate

Peer A1

simulate

simulate

simulate

append to ledgervalidate ✓ ✘

Peer A2 Peer A2

append to ledgervalidate ✓ ✘

Peer B1 Peer B1

append to ledgervalidate ✓ ✘

Peer B2 Peer B2

append to ledgervalidate ✓ ✘

Proposal

Endorsement

Transaction

Figure 3.2: High-level workflow of Fabric.

peers is defined in a so called endorsement policy. Since organizations do not fully trust
each other, it is typically specified, that at least one peer of each involved organization
has to simulate the transaction proposal. The endorsers now simulate the transaction
proposal against a local copy of the current state in parallel. As the name of this phase
suggests, none of the effects of the simulation become durable in the current state at
this point. Instead, each endorser builds up a read set and a write set during simulation
to capture the effects. After simulation, each endorser returns its read and write set to
the client. Along with that, the endorsers also return a cryptographic signature over the
sets. If all returned read and write sets are equal, the client forms an actual transaction.
It contains the previously computed read set and write set along with all signatures. The
client then passes this transaction on to the ordering service.

Ordering Phase

In the ordering phase, the trusted ordering service receives the transactions from the
clients. Among all received transactions, it establishes a global order and packs them
into blocks containing a certain number of transactions. By default, the transactions are
essentially ordered in the way in which they arrive at the service, without inspecting
the transaction semantics in any way. The ordering service then distributes each formed
block to all peers of the network. Note that the system does not guarantee that all peers
receive a block at the same time. However, it guarantees that all peers receive the same
blocks in the same order.

3.3. Related Work 51

Validation Phase

As soon as a block arrives at a peer, its validation phase starts. For each transaction
within the block, the validation consists of two checks: First, Fabric tests whether the
transaction respects the endorsement policy and whether all contained signatures fit to
the read and write set. If this is not the case, it means that either an endorser or the
client tampered with the transaction in some way. In this case, the systems marks the
transaction as invalid. If a transaction passes the first test, Fabric secondly checks,
whether any serialization conflicts occur. As the simulation of transactions happens in
parallel before ordering them, it is possible that the effects of the simulation stand in
conflict with the established order. Therefore, Fabric marks transactions, which conflict
with previous transactions, as invalid as well.

Commit Phase

In the commit phase, each peer appends the block, which contains both valid and invalid
transactions, to its local ledger. Additionally, each peer applies all changes made by the
valid transactions to its current state.

3.3 Related Work

Before diving into the optimizations we apply, we have to discuss related work in the
field.

In this work, we transition mature database techniques to the world of blockchains.
As mentioned in the introduction, we essentially apply two prominent techniques from
the field of database concurrency control to Fabric: transaction reordering and early
transaction abort. Of course, concurrency control is a large and active area of research
and the alerted reader might wonder, why we focus on precisely these techniques. The
answer lies in the fact, that a blockchain system such as Fabric, despite being a parallel
transaction processing system, differs from parallel database systems in four points:

(a) A blockchain system like Fabric commits at the granularity of blocks instead of
committing at the granularity of individual transactions. The commit granularity
has a significant effect on the type of applicable optimizations.

(b) A blockchain system like Fabric is a distributed system, where the state is fully
replicated across the network and where transactions operate on all nodes. In con-

Chapter 3. Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 52

trast to that, parallel database systems are typically either installed locally on a
single node or partition their state across a network, such that transactions operate
on a subset of the network. The type of distribution and replication has a significant
effect on the optimization options.

(c) In Fabric, a single transaction is simulated in parallel on multiple nodes to establish
trust. The state, against which the transaction is simulated potentially differs across
nodes. In a parallel database system, the situation is way simpler: a transaction is
executed exactly once against the only state present in the system.

(d) The performance of a blockchain system like Fabric is largely dominated by cryp-
tographic signature computations, network communication, and trust validation. In
contrast, the performance of parallel database systems is highly influenced by low-
level components, such as the choice of the locking mechanism for concurrency
control. Therefore, despite being closely related, blockchain optimizations happen
on a different level than database optimizations.

Let us now go through the related work. Essentially, concurrency control techniques can
be divided into two classes: (1) methods, that aim at improving the overall transactional
throughput [98, 75, 37, 57] and (2) methods, that try to turn aborted transactions into
successful transactions [94, 100].

3.3.1 Class 1: Transaction Throughput

The works of [98], [75], and [37] all aim at improving parallel transaction execution.
In [98], the authors propose a mechanism, which collects a batch of transactions and an-
alyzes the access dependencies between these transactions. The resulting dependency
graph is then partitioned into non-intersecting subgraphs. As the transactions in dif-
ferent subgraphs do not conflict with each other, they can be safely executed in paral-
lel. [75] and [37] go a step further by not only analyzing dependencies between entire
transactions, but actually between transaction-fragments. Precisely, they first split the
transactions into possible fragments and then analyze the dependencies between these
fragments, while respecting existing dependencies between entire transactions. By this,
they are able to achieve a higher degree of parallelism. In general, a design as proposed
by these three papers allows to equip systems, that would otherwise follow a purely
sequential execution, with a partial parallel execution. In the context of blockchains,
systems following an order-execute model could benefit from such a technique. Ob-
viously, Fabric is not the right candidate for this method, as it already parallelizes the
simulation phase by default.

3.3. Related Work 53

[57] aims at improving concurrency control from a low-level perspective. It pro-
poses interesting optimizations to MVCC components such as timestamp allocation,
version storage, validation, index management, and recovery. In theory, these tech-
niques could be applied to the underlying storage system of Fabric. However, improv-
ing low-level components of Fabric will not improve the overall performance, which
is largely dominated by top-level components handling cryptography, networking, and
trust validation.

Unfortunately, the techniques of class (1) are not suited to improve the transactional
throughput of a blockchain system such as Fabric. We saw the reason for this in Fig-
ure 3.1 in the introduction. For blank transactions, the concurrency control mechanism
essentially has no work to do. For meaningful transactions, simulation and validation
must be synchronized. Still, the throughput equals. This means, that a technique that
directly affects transactional processing, such as concurrency control, can not lead to an
improvement in throughput. Instead, the system is dominated by factors, that are not
directly related to transactional processing, such as cryptographical computations and
networking. As a consequence, optimizations of class (1) are out of consideration.

3.3.2 Class 2: Transaction Abort & Success

[94] relates to our work, as it shares the same motivation: to reduce the amount of
transactions, that are unnecessarily aborted due to serialization conflicts. In the con-
text of a local parallel database system implementing multi-version concurrency control
(MVCC) [82, 96, 99, 56], the authors propose to protect each frequently accessed entry
additionally with a shared lock. The use of such a lock prevents unnecessary aborts due
to read-write conflicts between transactions accessing these hot entries. Effectively, this
need to acquire a lock assures for potentially conflicting transactions, that they commit
in a non-conflicting order. Unfortunately, this strategy is hardly applicable to the dis-
tributed transaction processing model of Fabric. Since Fabric simulates and commits
transactions in parallel on multiple nodes, this technique would require a trusted fine-
grained distributed locking service to synchronize accesses, causing excessive network
communication and coordination effort.

In [100], the authors also aim at reducing the number of aborted transactions by
influencing the commit order. However, they follow a completely different strategy
than [94]: When a transaction T wants to commit and detects a read-write conflict with
an already committed transaction, then it is not directly aborted. Instead, it is checked
whether the commit time of T can be simply changed retrospectively to its begin time.
If this change does not trigger a read-write, write-write, or a write-read conflict with
another concurrent transaction, then T is allowed to commit at its begin time. While

Chapter 3. Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 54

this technique would be applicable in the ordering service of Fabric, its effects would
be highly limited. This is caused by the simplicity of the method which allows the
commit time of a transaction to be changed only to its begin time, not to other possible
points in time within the commit sequence. This wastes a lot of optimization potential.
In contrast, our transaction reordering mechanism considers commit reordering for all
transactions within a block and aims at finding the best global order.

The benefit of transaction reordering has also recently been studied in [28]. In the
context of OLTP systems, the authors identify that the number of successful transaction
can be improved by up to a factor of 2.7x via reordering of transaction batches.

Thus, class (2) methods, which aim at increasing the number of successful transac-
tions and clearing the ones that must be aborted, are the key for improving a blockchain
system such as Fabric. Our optimizations of transaction reordering and early transaction
abort fall into this class. In the following section, we will elaborate the importance of
these techniques in detail.

3.4 Blurred Lines: Fabric vs Distributed Database Sys-
tems

With an understanding of the workflow of Fabric, we are able to discuss its architecture
in relation to distributed database systems. In particular, we are interested in aspects of
Fabric, that are (a) conceptually shared with distributed database systems, but (b) have
potential for the application of database technology.

3.4.1 The Importance of Transaction Order

The first component we look at is the ordering mechanism. Such a component is also
present in any distributed database system with transaction semantics and therefore a
great candidate for transitioning database technology to Fabric.

As described in Section 3.2, Fabric relies on a single trustworthy ordering service
for ordering transactions. Since Fabric simulates the smart contracts bound to proposals
before performing the ordering, the order actually has an influence on the number of
serialization conflicts between transactions. Again, this is a property shared with any
parallel database system, that separates transaction execution from transaction commit.

In ordering transactions, various different strategies are possible: The simplest op-

3.4. Blurred Lines: Fabric vs Distributed Database Systems 55

tion is to arbitrarily order them, for instance in the order in which they arrive. While this
arrival order is fast to establish, it can lead to serialization conflicts, that are potentially
unnecessary. These conflicts increase the number of invalid transactions, which must
be resubmitted by the client. Unfortunately, the vanilla Fabric follows exactly this naive
strategy. This is caused by the design decision that the ordering service is not supposed
to inspect the transaction semantics, such as the read and write set, in any way. Instead,
it simply leaves the transactions in the order in which they arrive. This strategy can be
problematic, as the example in Table 3.1 shows. In this example, four transactions are
scheduled in the order in which they arrive, namely T1 ⇒ T2 ⇒ T3 ⇒ T4, where T1
updates the key k1 from version v1 to v2. Since the transactions T2, T3, and T4 each
read k1 in version v1 during their simulations, they have no chance to commit, as they
operated on an outdated version of the value of k1. They will be identified as invalid in
the validation phase and the corresponding transaction proposals must be resubmitted
by the client, resulting in a new round of simulation, ordering, and validation.

Transaction Read Set Write Set Is Valid?
1. T1 — (k1, v1 → v2) X
2. T2 (k1, v1), (k2, v1) (k2, v1 → v2) ×
3. T3 (k1, v1), (k3, v1) (k3, v1 → v2) ×
4. T4 (k1, v1), (k3, v1) (k4, v1 → v2) ×

Table 3.1: For the order T1 ⇒ T2 ⇒ T3 ⇒ T4, only one out of four transactions is valid:
T2, T3, and T4 read the outdated version v1 of key k1, that has been updated by T1 to v2
before.

Interestingly, for the four transactions from the previous example, there exists an
order that is conflict free. In the schedule T4 ⇒ T2 ⇒ T3 ⇒ T1, as shown in Table 3.2,
all four transactions are valid, as their read and write sets do not conflict with each other
in this order.

Transaction Read Set Write Set Is Valid?
1. T4 (k1, v1), (k3, v1) (k4, v1 → v2) X
2. T2 (k1, v1), (k2, v1) (k2, v1 → v2) X
3. T3 (k1, v1), (k3, v1) (k3, v1 → v2) X
4. T1 — (k1, v1 → v2) X

Table 3.2: The order T4 ⇒ T2 ⇒ T3 ⇒ T1 results in all four transactions being valid.

This example shows that the vanilla orderer of Fabric misses a chance of removing
unnecessary serialization conflicts. While this problem is new to the blockchain do-

Chapter 3. Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 56

main, as blockchains typically offer only a serial execution of transactions, within the
database community, this problem is actually well known. There exist reordering mech-
anisms which aim at minimizing the number of serialization conflicts via a reordering
of transactions [104, 58, 102, 28]. However, in a database system, it is typically avoided
to buffer a large number of incoming transactions before processing as low latency is
mandatory. Thus, reordering is not always an option in such a setup. Fortunately, as
blockchain systems buffer the incoming transactions anyways to group them into blocks,
this gives us the opportunity to apply sophisticated transaction reordering mechanisms
without introducing significant overhead.

We will add such a transaction reordering mechanism to Fabric in Section 3.5.1,
which significantly enhances the number of valid transactions, that make it through the
system.

3.4.2 On the Lifetime of Transactions

The second aspect we look at from a database perspective tackles the lifetime of trans-
actions within the pipeline. In Fabric, every transaction that goes through the system
is either classified as valid or as invalid with respect to the validation criteria. In the
vanilla version, this classification happens in the validation phase right before the com-
mit phase. A severe downside of this form of late abort is that a transaction, that violated
the validation criteria already in an earlier phase, is still processed and distributed across
all peers. This penalizes the whole system with unnecessary work, throttling the perfor-
mance of valid transactions. Besides, this concept also delays the abort notification to
the client.

We have to distinguish in which phase a violation happens. First, a violation can
occur already in the simulation phase, in form of so called cross-block conflicts, meaning
a transaction from a later block, which is currently in the simulation phase, conflicts with
a valid transaction from an earlier block. Second, a violation can occur as well as in the
ordering phase, in form of within-block conflicts between conflicting transactions in a
single block.

Let us look at these two scenarios in isolation in Section 3.4.2 and Section 3.4.2,
respectively.

Violation in the simulation phase (cross-block conflicts)

To understand the problem in the simulation phase, let us look at the following situation
and how the vanilla version of Fabric handles it. Let us assume there are four trans-

3.4. Blurred Lines: Fabric vs Distributed Database Systems 57

actions T1, T2, T3, and T4 that are currently in the ordering phase and that end up in a
block of size four, which is shipped to all peers for validation. Before the validation of
that block starts within a peer P , the smart contract of a transaction proposal T5 starts
its simulation in P . To do so, it acquires a read lock1 on the entire current state. While
the simulation is running, the block has to wait for the validation, as it has to acquire
an exclusive write lock on the current state. The problem in this situation is: if T1, T2,
T3, or T4 write the value of a key, that is read by T5, then T5 simulates on stale data.
Therefore, in the moment of the read, the transaction becomes virtually invalid. Still, in
the vanilla version of Fabric, this stale read is not detected before the validation phase
of T5. Thus, T5 would continue its simulation and go through the ordering phase, just to
be invalidated in the very end.

Violation in the ordering phase (within-block conflicts)

Apart from conflicts across blocks, there can be conflicts between transactions within
a block. These conflicts appear after putting the transactions into a particular order in
the ordering phase. For instance, the example from Table 3.1 in Section 3.4.1 showed
a schedule, where the three transactions T2, T3, and T4 individually conflict with the
previously scheduled transaction T1 of the same block. Unfortunately, these conflicts are
not detected within the orderer of the vanilla version of Fabric. The block containing T2,
T3, and T4 would be distributed across all peers of the network for validation, although
3/4 of transactions within the block are virtually invalid. As before, this originates from
the design decision that the ordering service does not inspect transaction semantics.

The mentioned situations show that Fabric misses several chances to abort trans-
actions right at the time of violation. In contrast to that, database systems are typically
very eager in aborting transactions [47], as it decreases network traffic and saves com-
puting resources. This concept of “cleaning” the pipeline as early as possible is called
early abort in the context of databases, which apply this concept in various flavors. For
instance, besides of the early abort of transactions, that violate certain criteria, database
systems eliminate records from the query result set as early as possible by pushing down
selection and projection operations in the query plan.

To overcome the mentioned problems, we will apply the concept of early abort at
several stages of the transaction processing pipeline of Fabric. By this, we assure to
utilize the available resources with meaningful work to the extend. We will detail this
in Section 3.5.2.

1The read lock can be shared by multiple simulation phases, as they do not modify the current state.

Chapter 3. Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 58

3.5 Fabric++

We have outlined the problems of Fabric and how they relate to key problems known
in the context of database systems. Let us now see precisely how we counter them.
First, in Section 3.5.1, we introduce a transaction reordering mechanism, that aims at
minimizing the number of unnecessary within-block conflicts. Second, in Section 3.5.2,
we introduce early transaction abort to several stages of the Fabric pipeline. This also
involves the introduction of a fine-grained concurrency control mechanism.

3.5.1 Transaction Reordering

When reordering a set of transactions S, multiple challenges must be faced. First, we
have to identify which transactions of S actually conflict with each other with respect
to the actions they perform. Again, these conflicts can occur, as the transactions of S
simulated in complete isolation from each other. As the commits of S happen in a
later phase, they had no chance to see each other’s potentially conflicting modifications.
Precisely, we have a conflict between two transactions Ti and Tj (denoted as Ti 9
Tj), if Ti writes to a key that is read by Tj . In this case, Ti must be ordered after Tj

(denoted as Tj ⇒ Ti) to make the schedule serializable, as otherwise, the read of Tj

would be outdated. Unfortunately, the problem is typically more complex as cycles
of conflicts can occur, such that simple reordering cannot resolve the problem. For
example, if we have the cycle of conflicts Ti 9 Tj 9 Tk 9 Ti, there is no order of
these three transactions that is serializable. Therefore, before reordering transactions,
our mechanism must actually first remove certain transactions of S to form a cycle-free
subset S ′ ⊆ S, from which a serializable schedule can be generated.

From a high-level perspective, the following five steps must be carried out: (1)
First, we build the conflict graph of all transactions of S. (2) Then, we identify all cycles
within this conflict graph. (3) Based on that, we identify for each transaction, in which
cycles it occurs. (4) Next, we incrementally abort transactions occurring in cycles,
starting from the ones that occur in most cycles, until all cycles are resolved. (5) Finally,
we build a serializable schedule from the remaining transactions. The pseudo-code of
Algorithm 1 implements these five steps.

3.5. Fabric++ 59

Read Set
Transactions K0 K1 K2 K3 K4 K5 K6 K7 K8 K9

T0 1 1 0 0 0 0 0 0 0 0
T1 0 0 0 1 1 1 0 0 0 0
T2 0 0 0 0 0 0 1 1 0 0
T3 0 0 1 0 0 0 0 0 1 0
T4 0 0 0 0 0 0 0 0 0 1
T5 0 0 0 0 0 0 0 0 0 0

Write Set
Transactions K0 K1 K2 K3 K4 K5 K6 K7 K8 K9

T0 0 0 1 0 0 0 0 0 0 0
T1 1 0 0 0 0 0 0 0 0 0
T2 0 0 0 1 0 0 0 0 0 1
T3 0 1 0 0 1 0 0 0 0 0
T4 0 0 0 0 0 1 1 0 1 0
T5 0 0 0 0 0 0 0 1 0 0

Table 3.3: Ten unique keys that are accessed by six transactions, separated in read set
and write set.

Example

To understand the principle and to discuss some of the implementation details, let us go
through a concrete example. Let us assume we have a set S of six transactions T0 to T5
to consider for reordering. These six transactions have read and write sets as shown in
Table 3.3. In total, they access ten unique keys K0 to K9.

Step (1): Based on this information, we now have to generate the conflict graph of
the transactions as done by the function buildConflictGraph() in line 2 of Algo-
rithm 1. To do so in an efficient way, we interpret the rows of Table 3.3 as bit-vectors of
length 10. Let us refer to them as vecr(Ti) for the reading accesses and vecw(Ti) for the
writing accesses of a transaction Ti. For each transaction Ti, we now perform a bitwise
&-operation between vecr(Ti) and vecw(Tj) for all j 6= i. If the result of an &-operation
is not 0, we have identified a read-write conflict and create an edge in the conflict graph
between the corresponding transactions. As a result, we obtain the conflict graph C(S)
of our six transactions as shown in Figure 3.3.

Note that this algorithm has quadratic complexity on the number of transactions. Still,
we apply it as the number of transactions to consider is very small in practice due to the

Chapter 3. Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 60

T0
T1

T3

T2

T4
T5

T0
T1

T3

T2

T4
T5

Figure 3.3: Conflict graph C(S) of the transactions in S.

limitation by the block size and therefore, the overhead is negligible.

Step (2): To identify the cycles, we apply Tarjan’s algorithm [84] in the func-
tion divideIntoSubgraphs() in line 4 to identify all strongly connected subgraphs.
In general, this can be done in linear time in O(N + E) over the number of nodes N
and number of edges E and results in the three subgraphs as shown in Figure 3.4.

Using Johnson’s algorithm [49], we then identify all cycles within the strongly
connected subgraphs. Again, this step can be done in linear time inO((N +E)·(C+1)),
where C is the number of cycles. Therefore, if there are no cycles in the subgraphs, the
overhead of this step is very small.

T0
T1

T3

T2

T4
T5

T0
T1

T3

T2

T4
T5

Figure 3.4: The three strongly connected subgraphs of the conflict graph of Figure 3.3.

We identify that the first subgraph (colored in green) contains the two cy-
cles c1 = T0 9 T3 9 T0 and c2 = T0 9 T3 9 T1 9 T0. The second subgraph
(colored in red) contains the cycle c3 = T2 9 T4 9 T2. The third subgraph (colored in
yellow) contains only one node and is thus cycle-free.

Step (3): From this information, we can build a table denoting for every transaction
in which cycle it appears as shown in the lines 6 to 9 of Algorithm 1. Table 3.4 visualizes
the result for our example. If a transaction Ti is part of a cycle cj , the corresponding cell
is set to 1, otherwise 0. The last row of the table sums up for every transaction in how
many cycles it is contained in total.

3.5. Fabric++ 61

Cycle T0 T1 T2 T3 T4 T5

c1 1 0 0 1 0 0
c2 1 1 0 1 0 0
c3 0 0 1 0 1 0∑

2 1 1 2 1 0

Table 3.4: If a transaction Ti is a part of a cycle cj , the corresponding cell is set to 1,
otherwise 0. The last row contains for every transaction the total number of cycles, in
which it appears.

Step (4): We now iteratively remove transactions, that participate in cycles, starting
from the ones that appear in most cycles. The lines 17 to 24 of Algorithm 1 show the
corresponding pseudo-code. As we can see, T0 and T3 both appear in two cycles, so
we take care of them first. If we can choose between two transactions, such as T0
and T3, we pick the one with the smaller subscript. This assures that our algorithm is
deterministic. We remove T0, which clears all cycles in which T0 appears, namely c1
and c2. The transactions T2 and T4 remain with a participation in cycle c3 each. We
remove T2 which clears c3 and thereby the last cycle.

From this we now know that from the set S ′ = {T1, T3, T4, T5} we can generate a
serializable schedule, leading to the cycle-free conflict graph C(S ′) (line 28) as shown
in Figure 3.5.

T1

T3 T4
T5

T0
T1

T3

T2

T4
T5

Figure 3.5: The cycle-free conflict graph C(S ′), containing only the transactions T1, T3,
T4, and T5.

Step (5): Generating the final schedule is essentially a repetitive execution of two
parts until all nodes are scheduled: (a) the locating of the source node in the current
subgraph (lines 33 to 40) and (b) the scheduling of all nodes that are reachable from that
source (lines 41 to 47).

We start part (a) at the node of C(S ′) representing the transaction with the smallest

Chapter 3. Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 62

subscript, namely T1. From this starting node, we have to find a source node, as sources
have to be scheduled last. T1 has two parents, namely T3 and T4, so it not a source. We
follow the edge to T3, which has not been visited yet but is also not a source, as it has T4
as a parent as well. We follow the edge to T4, which has not been visited yet and which
is a source. Therefore, we can schedule T4 safely at the last position in our schedule,
to which we refer to as position 4. Now, part (b) starts as all nodes that are reachable
from T4 must be scheduled before it. T4 has two children, namely T1 and T3. We follow
the edge to T1, which has not been scheduled yet. However, as T1 has an incoming
edge from T3, we also cannot directly schedule it. First, we visit T3 and identify that it
has a parent in form of T4, the source at which we started. With this information, we
know that T3 must be scheduled at position 3 and T1 must be scheduled at position 2.
This ends part (b), as all reachable nodes have been scheduled. Next, we restart at the
only remaining node T5. As T5 is not only a source but also a sink, we can schedule it
instantly at position 1. This results in the final schedule T5 ⇒ T1 ⇒ T3 ⇒ T4, which is
returned to the orderer.

Please note that our reordering mechanism is not guaranteed to abort a minimal
number of transactions, as this would be a NP-hard problem. However, it offers a very
lightweight way to generate a serializable schedule with a small number of aborts.

Batch Cutting

In the context of transaction reordering, we have to discuss and extend a mechanism
within the ordering service, that we omitted for simplicity in the description of Fabric in
Section 3.2, namely batch cutting. When the ordering service receives the transactions
in form of a constant stream, it decides based on multiple criteria when to ”cut” a batch
of transactions to finalize it and to form the block. In the vanilla version, a batch is cut
as soon as one of the following three conditions hold: (a) The batch contains a certain
number of transactions. (b) The batch has reached a certain size in terms of bytes. (c) A
certain amount of time has passed since the first transaction of this batch was received.

In Fabric++, we extend these criteria by one additional condition. We also cut the
batch, if (d) the transactions within the batch access a certain number of unique keys.
This condition ensures that the runtime of our reordering mechanism, in particular the
time of step (1), remains bounded.

Micro-Benchmark

To analyze the effectiveness of our reordering mechanism, we first evaluate it in a stand-
alone micro-benchmark in isolation of Fabric. For a given sequence of input transac-

3.5. Fabric++ 63

 0

 500

 1000

 0 100 200 300 400 500
 0

 5

 10

 15

 20

N
u

m
b

e
r

o
f

v
a

lid
 t

ra
n

s
a

c
ti
o

n
s

T
im

e
 [

m
s
]

Number of read-transactions shifted before the write-transactions

Arrival order
Reordered

Time to Reorder

Figure 3.6: Workload 1: Varying the number of conflicts.

tions we compute the number of valid transactions for this particular sequence (called
”arrival order” in the following plots) as well as for the sequence that is generated by
our reordering mechanism (called ”reordered” in the following plots). Additionally, we
measure the time to compute the reordered schedule. In Figure 3.6, we test a workload
pattern with varying number of conflicts. For the interested reader, we provide a second
micro-benchmark in the Appendix 3.5.1 on the effect of varying the length of the cycles
(Figure 3.7) and see how well our reordering mechanism performs in comparison to the
naive arrival order.

Micro-Benchmark 1: Interleave reads and writes to vary the number of conflicts

The first input sequence we test consists of two equal sized sub sequences, where one
subsequence contains only transactions that perform writes (colored in red) and the other
sequence only transactions that read (colored in blue). Each transaction performs only
one operation (either read or write). Neither two writes nor two reads happen to the same
key. For the example of n = 6 transactions, we start with the following sequence S1:

S1 = T [w(k1)], T [w(k2)], T [w(k3)], T [r(k1)], T [r(k2)], T [r(k3)]

To generate Si, we move the last transaction of Si−1 to the front, leading to the following
sequences S2, S3, and S4.

S2 = T [r(k3)], T [w(k1)], T [w(k2)], T [w(k3)], T [r(k1)], T [r(k2)]

Chapter 3. Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 64

S3 = T [r(k2)], T [r(k3)], T [w(k1)], T [w(k2)], T [w(k3)], T [r(k1)]

S4 = T [r(k1)], T [r(k2)], T [r(k3)], T [w(k1)], T [w(k2)], T [w(k3)]

The more writing transactions happen before the corresponding reading transactions,
the more conflicts happen. We want to find out whether our reordering mechanism can
solve this problem.

Figure 3.6 shows the results for n = 1024 transactions. As we can see, our reorder-
ing mechanism is able to reorder the transactions for every input sequence in a way such
that all transactions are valid. In contrast to that, the arrival order suffers under a lot of
invalid reading transactions, if writing transactions happen before. We can also see that
our reordering mechanism is computationally cheap: it takes only around 1 to 2 ms to
rearrange the transactions on a Macbook Pro with Intel Core i7 running at 3.1 GHz.

Micro-Benchmark 2: Vary the length of cycles

In the following experiment, we want to analyze the impact of cycles on the arrival order
and on our reordering mechanism. To do so, we again form a sequence of n transactions,
that contains n/t cycles of size t transactions of the form

T [r(k0), w(k0)], T [r(k0), w(k1)], T [r(k1), w(k2)], T [r(k2), w(k0)]

Again, we want to identify how many transactions are valid under the arrival order and
when using our reordering mechanism. Figure 3.7 shows the results for 1024 transac-
tions. For the arrival order, only half of transactions are valid, no matter of the cycle
length. This is because aborting every second transaction breaks the cycles. In com-
parison to that, our reordering mechanism is able to achieve a high number of valid
transactions, if the cycles are sufficiently long respectively, there are not too many cy-
cles to cancel. Of course, our algorithm becomes more expensive with the length of
the cycles to break. However, since extremely long cycles are very unlikely to occur in
reality, the runtime of our mechanism will in general remain low in the ordering phase,
as we will see in the full fledged evaluation later on.

3.5.2 Early Transaction Abort using Concurrency Control

The reordering mechanism previously described not only tries to minimize the number
of unnecessary aborts, it also enables a form of early abort. Transactions, that are
removed from S because of their participation in conflict cycles can be aborted already
in the ordering phase instead of later on the validation phase. This assures that less
transactions are distributed across the network.

3.5. Fabric++ 65

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500
 0

 200

 400

 600

 800

 1000

N
u

m
b
e

r
o

f
v
a

lid
 t

ra
n

s
a

c
ti
o

n
s

T
im

e
 [

m
s
]

Number of transactions per cycle

Arrival order
Reordered

Time to Reorder

Figure 3.7: Workload 2: Varying the length of the cycles.

In the following, we want to push this concept of aborting transactions as early as
possible in the pipeline to the limits. Additionally to early aborting transactions that
occur in conflict cycles, we can integrate two more applications of early abort, as we
will describe in Section 3.5.2 and Section 3.5.2. The first one is happening already in
the simulation phase. Let us see in the following how this works.

Early Abort in the Simulation Phase

To realize early abort in the simulation phase, we first have to extend Fabric by a more
fine-grained concurrency control mechanism, that allows for the parallel execution of
simulation and validation phase within a peer. With such a mechanism at hand, we have
the chance of identifying stale reads during the simulation already.

To understand the concept, let us consider the example from Section 3.4.2 again.
With a fine-grained concurrency control mechanism, the block containing T1, T2, T3,
and T4 would not have to pend for validation while the smart contract bound to the
proposal T5 is simulating. Instead, the four transactions would apply their updates in an
atomic fashion while T5 is simulating. As a consequence of this design, for every read T5
performs, we can check whether the read value is still up-to-date. As soon as we detect
a stale read, we can abort the simulation of the transaction proposal. Additionally, we
directly notify the corresponding client about the abort, such that it can resubmit the
proposal without delay.

Let us discuss in the following, how exactly our fine-grained concurrency control
mechanism works and how we realize it in Fabric++. In the context of modern database
systems, advanced concurrency control mechanisms are well established [50, 93, 94,

Chapter 3. Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 66

99, 56, 82]. Instead of locking the entire store, these techniques typically perform a
fine-grained locking on the record level or even at the level of individual cells/values.
As there is conceptually no difference between the store of a database system and the
store used within the Fabric peers, similar techniques can be applied here.

simulation
starts

last-block-ID=4

Validation Phase

Simulation Phase
update balA=50

read balB=100
block-ID=5

abort
simulation

Current State

Ledger

balA=(70,block-ID=4)
balB=(80,block-ID=3)

last-block-ID=4

read balA=70
block-ID=4✓

balA=(70,block-ID=5)
balB=(100,block-ID=5)

✘

block 5 validated

last-block-ID=5

update balB=100

balA=(50,block-ID=5)
balB=(80,block-ID=3)

Figure 3.8: Parallelization with early abort using our fine-grained concurrency control.

As discussed in Section 3.2, Fabric implements its current state in form of a key-
value store, which maps each individual key to a pair of value and version-number.
The version-number is actually composed of the ID of the transaction, that performed
the update, as well as the ID of the block that contains the transaction. In the original
version of Fabric, the sole purpose of the version-numbers is to identify stale reads. In
the validation phase, for every transaction we check whether the version-number of the
read value still matches the one in the current state.

We can go one step further and exploit the available version-numbers to imple-
ment a lock-free concurrency control mechanism protecting the current state. To do so,
in Fabric++, we first remove the read-write lock, that was unnecessarily sequentializ-
ing simulation and validation phase. The version-number, that is maintained with each
value, is sufficient to ensure the same transaction isolation semantics as the vanilla ver-
sion. As no lock is acquired anymore, we need a mechanism to ensure that updates
performed by the validation phase are not seen by simulation phases running in parallel.
To achieve this behavior, during simulation, we have to inspect the version-number of
every read value and test whether it is still up-to-date.

Figure 3.8 visualizes this concept using a concrete example. At the start of the
simulation phase, we first identify the block-ID of the last block that made it into
the ledger. Let us refer to this block-ID as the last-block-ID. In our example,
last-block-ID = 4. During the simulation of a smart contract bound to a transac-
tion proposal Texec, no read must encounter a version-number containing a block-ID
higher than the last-block-ID. If it does see a higher block-ID it means that dur-
ing the simulation phase, a validated transaction Tvalid in the validation phase modified
a value in the read set of Texec and thus, the read set is outdated.

3.6. Experimental Evaluation 67

In our example, the read of balA = 70 in the simulation phase happens before
the update of balA to 50 in the validation phase. This is reflected by the version-
number of balA, namely block-ID = 4. Therefore, this read is up-to-date and the
simulation continues. In contrast to that, the read of balB happens after the update of
balB to 100 in the validation phase. This is reflected by the version-number of balB,
namely block-ID = 5. As 5 is higher than the last-block-ID = 4, we can di-
rectly classify Texec as invalid, as the transaction will not have a chance to pass the
validation phase later on. Please note that the overall correctness of our lock-free mech-
anism is ensured by the atomic updates of the version-numbers.

Early Abort in the Ordering Phase

In addition to the early abort in the simulation phase, as explained in Section 3.5.2, we
can transition a similar concept also to the ordering phase. As Fabric performs commits
at the granularity of whole blocks, two transactions within the same block, that read
the same key, must read the same version of that key. For example, let us consider two
transactions T6 and T7, where T6 is ordered before T7 within the same block (T6 ⇒ T7).
If T6 read version v1 of a key k and T7 read version v2 of k in their respective simulations,
then T6 is invalid. Such a version mismatch can happen, if between the simulations of T6
and T7, a change to the value of k was committed by a valid transaction from a previous
block. Therefore, as soon as we detect a version mismatch between transactions within
the same block, we can early abort the earlier transaction. Again, this strategy assures
that only those transactions end up in a block, that have a realistic chance of commit.

3.6 Experimental Evaluation

In the previous section, we have extended and modified core components of Fabric in
several ways, turning it into Fabric++. It is now time to evaluate the modifications in
terms of effectiveness. Primarily, we are interested in the throughput of valid/successful
and invalid/failed transactions, that make it through the system. Secondarily, we are
interested on the influence of certain system configurations and the workload character-
istics on the system.

Chapter 3. Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 68

3.6.1 Setup

Before starting with the actual experiments, let us discuss the setup. Our cluster consists
of six identical servers, that are located within the same rack and connected via gigabit-
ethernet. Four machines serve as peers, one machine runs the ordering service, and one
machine serves as the client, which fires transaction proposals. Each server consists of
two quad-core Intel Xeon CPU E5-2407 (SandyBridge architecture) running at 2.2 GHz
with 32KB of L1 cache, 256KB of L2 cache, and 10MB of a shared L3 cache. 24GB of
DDR3 ram are attached to each of the two NUMA regions. The operating system used
is a 64-bit Arch Linux with kernel version 4.17. Fabric is set up to use LevelDB as the
current state database.

3.6.2 Benchmark Framework and Workload

In the database community, there exist numerous established benchmarking suites and
workloads that can be used to test and to compare systems, such as TPC-C [15], TPC-
H [12], or YCSB [16]. Unfortunately, since blockchains are still a relatively young field,
there exist only very few benchmarks with standardized workloads.

Framework

First, we have to identify a framework that can be used to run a workload against Fab-
ric. There are essentially three options available right now: Caliper [2], Gauge [13],
and BlockBench [29]. Caliper feels like a natural candidate, as it originates from the
Hyperledger project just like Fabric. While it is compatible with Fabric 1.2, it suffers
from certain limitations: it supports only a single channel, it supports only one trans-
action type per run, it fires transactions non-uniformly with respect to time, and it is
prone to failing with missed events at high firing rates [4]. As a consequence, Gauge
was forked from Caliper, which addresses some of these problems. Unfortunately, it
lacks compatibility with Fabric 1.2. The same incompatibility holds for BlockBench.

As none of the available frameworks is fully satisfying and since the framework is
just a tool for running experiments, we decided to build our own benchmarking frame-
work. It allows us to fire transaction proposals uniformly at a specified rate from mul-
tiple clients in multiple channels and reports the throughput of successful and aborted
transactions per second. We use our framework for all main experiments in the up-
coming evaluation. Still, we include an experimental run on Caliper with a compatible
workload in Section 3.6.7 to ease for other groups the comparison with our work.

3.6. Experimental Evaluation 69

Workload

In the following experiments, we use two different types of workloads.

The first one is the Smallbank [11] workload, which is perfectly suited to test a
blockchain system, as it simulates a typical asset transfer scenario. Initially, it creates
for a certain number of users a checking account and a savings account each and ini-
tializes them with random balances. The workload consists of six transactions, where
five of them update the account balances in certain ways: TransactSavings and
DepositChecking increase the savings account and the checking account by a cer-
tain amount respectively. SendPayment transfers money between two checking ac-
counts. WriteCheck decreases a checking account, while Amalgamate transfers all
funds from a savings account to a checking account. Additionally, there is a read-only
transaction Query, which reads both the checking as well as the savings account of a
user. During a single run, we repeatedly fire these six transactions in a random fashion,
where we uniformly pick one of the five modifying transactions with a certain proba-
bility Pw, and the reading transaction with a probability 1− Pw. For each picked trans-
action, we determine the accounts to access by following a Zipfian distribution, which
we can configure in terms of skewness by setting the s-value. Note that an s-value of 0
corresponds to a uniform distribution.

Experiment Parameters Values
Fired transaction proposals per second per client 512
Duration in which transaction proposals are fired 90 sec
Number of channels 1
Number of clients per channel 4

Table 3.5: Experiment and system configuration.

Our second workload consists solely of a single, highly configurable transaction,
which performs a certain number of read and write accesses on a set of account balances.
Initially, we create a certain number of accounts (N), each initialized with a random
integer. Our transaction performs a certain number of reads and writes (RW) on a subset
of these accounts. Among the accounts, there exist a certain number of hot accounts
(HSS), that are picked for a read respectively write access with a higher probability.
This probability for picking a hot account for reading (HR) respectively for writing
(HW) can also be configured.

In a single run, we fire a constant stream of transactions for a certain amount of
time at a certain firing rate. In the following experiments, we fix the experimental

Chapter 3. Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 70

and system configuration to the parameters as shown in Table 3.5 and Table 3.6. We
identified these parameter values empirically with the goal to find a configuration, that
sustains the system without overloading it.

System Parameters Values
Maximum time to form a block 1 sec
Maximum number of keys accessed per block 16384
Maximum size per block 2MB
Maximum number of transactions per block (BS) 1024 (see Section 4.8.5)

Table 3.6: Experiment and system configuration.

3.6.3 The Impact of the Blocksize

We start our evaluation by investigating the effect of the blocksize on Fabric and Fab-
ric++. By default, Fabric’s sample network limits the blocksize to only up to 10
transactions. In the following experiment, we vary the blocksize from 16 transac-
tions to 2048 transactions in logarithmic steps and observe the impact on the num-
ber of successful transactions. As workload, we test Smallbank as defined above with
100,000 users under a write heavy workload with Pw = 95%, and a uniform distribution
with s-value = 0. Figure 3.9 shows the average number of successful transactions per
second over the entire run of 90 seconds.

As we can see, increasing the blocksize also increases the throughput of successful
transactions for both Fabric and Fabric++. This is due to the fact, that the usage of
larger blocks causes less network communication. Obviously, Fabric’s default setting
of 10 transactions per block is clearly too small and severely limits the throughput.
We can also observe, that Fabric++ gains more over Fabric with an increase in the
blocksize. This already gives us a first impression of the effectiveness of our reordering
mechanism, which benefits from larger blocks. As we aim for a high overall throughput,
for the remaining experiments, we use a blocksize of 1024 transactions.

3.6.4 Transactional Throughput

Let us now test Fabric and Fabric++ under probably the most important criterium for a
transaction processing system, namely the throughput of successful transactions.

3.6. Experimental Evaluation 71

Throughput under Smallbank

First, as workload, we use Smallbank as defined in Section 3.6.2 and configure it as
shown in Table 3.7. Again, we initialize 100,000 users, each equipped with a checking
account and a savings account. However, this time we vary the probability of picking
a modifying transaction over the reading transaction in three steps: We test Pw = 95%
(write-heavy), Pw = 50% (balanced), and Pw = 5% (read-heavy). Further, we vary the
skewness of the Zipf distribution, that is used to select the accounts: We go from an
s-value = 0.0 (uniform) to an s-value = 2.0 (highly skewed) in steps of 0.2. Table 3.7
summarizes the configuration again.

Av
g.

 S
uc

ce
ss

fu
l T

ra
ns

ac
tio

ns
 p

er
 s

ec
on

d

0

200

400

600

800

1000

1200

16 32 64 128 256 512 1024 2048

Fabric Fabric++ (reordering & early abort)

Blocksize [Number of Transactions]

Figure 3.9: Effect of the blocksize on the average number of successful transactions
under Fabric and Fabric++.

Workload Parameters Values
Number of users (two accounts per user) 100,000
Probability for picking a modifying transactions (Pw) 95%, 50%, 5%
s-value of Zipf distribution 0.0 – 2.0 in steps of 0.2

Table 3.7: Smallbank workload configuration.

In Figure 3.10, we can see the results. We show one plot each for the read-heavy,
balanced, and write-heavy workload. Within each plot, on the x-axis, we vary the s-
value as described and report on the y-axis the average number of successful trans-
actions per second over the run. Overall, we can see that Fabric++ shows a higher
throughput of successful transactions for all tested runs. We can observe, that for little

Chapter 3. Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 72

(a) Pw = 5% (read-heavy)

(b) Pw = 50% (balanced)

(c) Pw = 95% (write-heavy)

Figure 3.10: Average number of successful transactions per second of Fabric and Fab-
ric++ under the Smallbank workload, as defined in Table 3.7.

3.6. Experimental Evaluation 73

to no skew (up to an s-value of 0.6), the throughput of both Fabric and Fabric++ is rela-
tively high, as the number of potential conflicts between transactions is small by default.
Still, we see that with around 1000 successful transactions per second, the throughput of
Fabric++ is a bit higher than for Fabric with around 900 transactions, which is mainly
caused by cleaning the pipeline from transactions, that have no chance to commit. For
higher skew (s-value ≥ 1.0), we can see that Fabric++ drastically improves over Fab-
ric, especially for the balanced and write-heavy workloads. For an s-value of 1.0, we
observe improvement factors between 1.15x and 1.37x, while for an s-value of 2.0,
Fabric++ shows an improvement between 2.68x and 12.61x. High skew in the access
leads to a large number of potential conflicts, which can be resolved by our optimiza-
tions. For such a high contention, our optimizations make the difference between a
system, that is essentially jammed (30 successful transactions per second for Fabric un-
der Pw = 95%, s-value = 2.0) and a system, that fluently processes transactions (370
successful transactions per second for Fabric++ under Pw = 95%, s-value = 2.0).

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

HW: 5% HW: 10% HW: 10% HW: 10%HW: 5% HW: 5%

HR: 10% HR: 20% HR: 40%

RW: 4

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

HW: 5% HW: 10% HW: 10% HW: 10%HW: 5% HW: 5%

HR: 10% HR: 20% HR: 40%

RW: 8

Fabric Fabric++ (reordering & early abort)

A
vg

. S
uc

ce
ss

fu
l T

ra
ns

ac
tio

ns
 p

er
 s

ec
on

d

Figure 3.11: Average number of successful transactions per second of Fabric and Fab-
ric++ under 36 different configurations, as defined in Table 3.8. We vary the number of
read & written balances per transaction (RW), the probability for picking a hot account
for reading (HR) and writing (HW), and the number of hot account balances (HSS).

Throughput under custom workload

Let us now investigate the throughput under our custom workload. Again, we use the
experimental configuration as well as the system configuration of Table 3.8. We con-
figure our workload such that we use N = 10,000 accounts. We test both RW = 4
and RW = 8 read and write accesses per transaction. The probability of picking a hot
account for reading is varied between HR = 10%, HR = 20%, and HR = 30%. The
probability of picking a hot account for a writing access is varied from HW = 5% to
HW = 10%. Additionally, we vary the number of hot accounts from HSS = 1%

Chapter 3. Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 74

over HSS = 2% to HSS = 4% from the total number of accounts. In total, we test
36 configurations, which are summarized in Table 3.8.

Workload Parameters Values
Number of account balances (N) 10,000
Number of read & written balances per transaction (RW) 4, 8
Probability for picking a hot account for reading (HR) 10%, 20%, 40%
Probability for picking a hot account for writing (HW) 5%, 10%
Number of hot account balances (HSS) 1%, 2%, 4%

Table 3.8: Custom workload configuration.

Figure 3.11 shows summary of the results. We can see that Fabric++ significantly
increases the throughput of successful transactions over Fabric for all tested configura-
tions. The largest improvement of Fabric++ over Fabric in terms of successful transac-
tions we observe is around factor 3x for the configuration BS=1024, RW=8, HR=40%,
HW=10%, HSS=1%. See Figure 3.14 for a wide-spectrum evaluation of Fabric++ on
all 108 tested configurations.

Observations

We observe a significant decrease in the throughput of the successful transactions with
the increase in the hotness of the transactions in both workloads. Each block bi roughly
updates every hot key. This forces most of the transactions in the next block bi+1 to
abort because of read-write conflicts. In comparison to Fabric, which suffers heavily
from this scenario, Fabric++ reorders the transactions within the block to remove the
within-block conflicts to improve the overall throughput of successful transactions.

Fabric++ is also capable of improving the throughput of successful transactions
significantly under workloads (Smallbank) which read and modify the same set of keys.
Fabric++ prefers to select more transactions that access fewer keys rather than selecting
fewer transactions with large number of accesses to improve the end-to-end throughput
of successful transactions (as shown in Figure 3.10). For the workload that potentially
has a non-overlapping read and write sets, Fabric++ is able to re-organize the transaction
block to minimize the number of unnecessary aborts (as shown in Figure 3.11).

3.6. Experimental Evaluation 75

3.6.5 Optimization Breakdown

In Section 4.8.2, we measured the throughput of Fabric++ with both optimizations acti-
vated. Let us now see at a sample configuration, how much the individual optimizations
of reordering and early abort contribute to the improvement. Figure 3.12 shows the
improvement breakdown for the configuration BS=1024, RW=8, HR=40%, HW=10%,
HSS=1% in comparison to standard Fabric. While Fabric achieves only a throughput of
around 100 successful transactions per second, activating one of our two optimization
techniques alone improves this to around 150 transactions per second. In comparison
to that, activating both techniques at the same time results in the highest throughput
of successful transactions with around 220 transactions per second. This shows nicely
how both techniques work together: Transactions, that are already early aborted in the
simulation phase do not end up in a block in the ordering phase. As a consequence,
only transactions, that have a realistic chance of being successful, are considered in the
reordering process.

Su
cc

es
sf

ul
 T

ra
ns

ac
tio

ns
 p

er
 s

ec
on

d

0

50

100

150

200

250

Fabric
Fabric++ (only reordering)
Fabric++ (only early abort)
Fabric++ (reordering & early abort)

Figure 3.12: Breakdown of the individual impact of our optimizations on the throughput
of successful transactions for the configuration BS=1024, RW=8, HR=40%, HW=10%,
HSS=1%.

3.6.6 Scaling Channels and Clients

In all of our previous experiments we used four clients to fire transactions on a single
channel. We now vary the number of channels, and the number of clients to see the effect
on the throughput. We use the configuration BS=1024, RW=8, HR=40%, HW=10%,

Chapter 3. Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 76

HSS=1% to evaluate the average throughput of successful transactions for Fabric and
Fabric++.

Su
cc

es
sf

ul
 T

ra
ns

ac
tio

ns
 p

er
 s

ec
on

d

0

100

200

300

400

1 2 4 8

Fabric Fabric++ (reordering & early abort)

Number of channels

(a) Varying the number of channels from 1 to 8. Per channel, we use 2
clients to fire the transaction proposals.

Su
cc

es
sf

ul
 T

ra
ns

ac
tio

ns
 p

er
 s

ec
on

d

0

50

100

150

200

250

1 2 4 8
Number of clients per channel

(b) Varying the number of clients per channel from 1 to 8. All clients
fire their transaction proposals in a single channel.

Figure 3.13: The impact of the number of channels as well as the number of clients per
channel on the throughput of successful transactions for the configuration BS=1024,
RW=8, HR=40%, HW=10%, HSS=1%.

First, we vary the number of channels in Figure 3.13(a) from 1 to 8. Per channel,
we use 2 clients to fire transaction proposals. We can see that when going from 1 channel
to 4 channels, the throughput of both Fabric and Fabric++ significantly increases. Obvi-
ously, the additional mechanisms of Fabric++ do not harm the scaling with the number
of channels. Only when using 8 channels, the throughput decreases again for both Fab-
ric and Fabric++. This is simply the case because individual channels start competing

3.6. Experimental Evaluation 77

for resources. This also increases the number of failed transactions: Scaling from 1 to
8 channels increases the number of failed transactions from 213 TPS to 837 TPS for
Fabric and from 81 TPS to 704 TPS for Fabric++. Due to the competition for resources,
individual simulations phase take longer and increase the chance of working on stale
data.

After varying the number of channels, let us now vary the number of clients per
channel in Figure 3.13(b). We test 1, 2, 4, and 8 clients, where all clients fire their
transaction proposals into a single channel. Here, the picture is a slightly different to
the behavior when scaling channels. The throughput of Fabric increases very gently
with the number of clients, and we see an improvement from around 60 to 105 suc-
cessful transactions per seconds when going from 1 to 8 clients. For Fabric++, we see
the highest throughput with around 205 successful transactions per second already for
2 clients. For 8 clients, the throughput drops by around factor 2 to the throughput of
Fabric, clearly showing that the firing clients also compete for resources. This is also
visible in an increase in failed transactions when going from 1 to 8 clients per channel,
which increase from 86 TPS to 928 TPS for Fabric and from 20 TPS to 841 TPS for
Fabric++.

3.6.7 Hyperledger Caliper

For completeness, let us finally see how Fabric and Fabric++ perform under a run of
the Hyperledger Caliper benchmarking framework. As said, Caliper severely struggles
with high transaction firing rates, so we cannot use the configuration of Table ?? as
before. Instead, we fire at a lower rate of 150 transactions per second per client, resulting
in 600 transactions per second in total. As a consequence of this low firing rate, we
also tune down the block size to 512 transactions. We test our custom workload with
N = 10000, RW = 4, HR = 40%, HW = 10%, HSS = 1%. Table 3.9 shows the
results.

Metric Fabric Fabric++
Max. Latency [seconds] 1.44 1.14
Min. Latency [seconds] 0.26 0.12
Avg. Latency [seconds] 0.47 0.28
Avg. Successful Transactions per second 188 299

Table 3.9: Latency and Throughput as measured by Caliper for Fabric and Fabric++.

Interestingly, Caliper also produces latency numbers additionally to the measured

Chapter 3. Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 78

throughput of successful transactions. We can see that the average latency of Fabric++
is almost half the latency of the vanilla Fabric. As less virtually invalid transactions trash
the pipeline in Fabric++, valid transactions can commit earlier. The run of Caliper also
confirms our findings on the throughput: Fabric++ significantly increases the number of
successful transactions per second.

3.7 Conclusion

In this work, we identified strong similarities of the transaction pipeline of contempo-
rary permissioned-blockchain systems at the case of Hyperledger Fabric and distributed
database systems in general. We analyzed these similarities in detail and exploited them
to transition mature techniques from the context of database systems to Fabric, namely
transaction reordering to remove serialization conflicts as well as early abort of transac-
tions, that have no chance to commit. In an extended experimental evaluation, where we
tested Fabric++ and the vanilla version under the Smallbank benchmark as well as under
a custom workload, we show that Fabric++ is able to significantly outperform Fabric by
up to a factor of 12x for the number of successful transactions per second. Further, we
are able to almost half the transaction latency, while keeping the scaling capabilities of
the system intact.

Overall, in this chapter, we tried to bridge the gap between the relational database
systems and the permissioned-blockchain system by utilizing well-established research
from the former to optimize the latter class of data management systems. We saw sig-
nificant improvements, with some great insights on the permissioned-blockchain sys-
tem’s architecture. We use the knowledge gained from this chapter to propose all new
framework that aims to come up with a permissioned-blockchain system which has per-
formance comparable to the modern database systems. To achieve such a high goal, we
approach this problem in a different direction: aiming to transform a database system
into a permissioned-blockchain system, rather than utilizing database technology inside
permissioned-blockchain systems.

3.7. Conclusion 79

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

HW: 5% HW: 10% HW: 10% HW: 10%HW: 5% HW: 5%

HR: 10% HR: 20% HR: 40%

RW: 4

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

HW: 5% HW: 10% HW: 10% HW: 10%HW: 5% HW: 5%

HR: 10% HR: 20% HR: 40%

RW: 8

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

Fa
br

ic
Fa

br
ic

++
B

S:
 2

56

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

Fa
br

ic
Fa

br
ic

++
B

S:
 5

12

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

Fa
br

ic
Fa

br
ic

++
B

S:
 1

02
4

Time in seconds

All Transactions Failed TransactionsSuccessful Transactions

Figure 3.14: Transactional Throughput of Fabric and Fabric++ under 108 different con-
figurations.

Chapter 3. Fabric++: Optimizing Transaction Processing in Hyperledger Fabric 80

Algorithm 1: Reordering mechanism in pseudo code.

func reordering(Transaction[] S) {
Graph cg = buildConflictGraph(S)

Graph[] cg_subgraphs = divideIntoSubgraphs(cg)

Cycle[] cycles = emptyList()
foreach subgraph in cg_subgraphs:

if(subgraph.numNodes() > 1):
cycles.add(subgraph.getAllCycles())

MaxHeap transactions_in_cycles = emptyMaxHeap()
foreach Cycle c in cycles:

foreach Transaction t in c:
if transactions_in_cycles.contains(t)

transactions_in_cycles[t]++
else

transactions_in_cycles[t] = 1
Transaction[] S’ = S
while not cycles.empty():

Transaction t = transactions_in_cycles.popMax()
S’.remove(t)
foreach Cycle c in cycles:

if c.contains(t):
c.remove(t)
cycles.remove(c)

foreach Transaction t’ in c:
transactions_in_cycles[t’]--

Graph cg’ = buildConflictGraph(S’)
Transactions[] order = emptyList()
Node startNode = cg’.getNextNode()
while order.length() < cg’.numNodes():

addNode = true
if startNode.alreadyScheduled():

startNode = cg’.getNextNode()
continue

foreach Node parentNode in startNode.parents():
if not parentNode.alreadyScheduled():

startNode = parentNode
addNode = false
break

if addNode:
startNode.scheduled()
order.append(startNode)
foreach Node childNode in startNode.children():

if not childNode.alreadyScheduled():
startNode = childNode
break

return order.invert()
}

Chapter 4

ChainifyDB: A Non-invasive
Transformation of Database Systems
into a Blockchain System

Today’s permissioned blockchain systems come in a stand-alone fashion and require
the users to integrate yet another full-fledged transaction processing system into their
already complex data management landscape. This seems odd as blockchains and tra-
ditional DBMSs share large parts of their processing stack. Thus, rather than replacing
the established data systems altogether, we advocate to simply ‘chainify’ them with a
blockchain layer on top.

Unfortunately, this task is far more challenging than it sounds: As we want to build
upon heterogenous transaction processing systems, which potentially behave differently,
we cannot rely on every organization to execute every transaction deterministically in
the same way. Further, as these systems are already filled with data and being used by
top-level applications, we also cannot rely on every organization being resilient against
tampering with its local data.

Therefore, in this work, we will drop these assumptions and introduce a pow-
erful processing model that avoids them in the first place: The so-called Whatever-
LedgerConsensus (WLC) model allows us to create a highly flexible permissioned
blockchain layer coined ChainifyDB that (a) is centered around bullet-proof database
technology, (b) makes even stronger guarantees than existing permissioned systems,
(c) provides a sophisticated recovery mechanism, (d) has an up to 6x higher throughput
than the permissioned blockchain system Fabric, and (e) can easily be integrated into an
existing heterogeneous database landscape.

81

Chapter 4. ChainifyDB: A Non-invasive Transformation of Database Systems into a
Blockchain System 82

4.1 Introduction

The vast majority of modern permissioned blockchain systems (PBS) [29, 1, 18, 7, 5, 70,
33], in which all organizations are known at any time, come as stand-alone end-to-end
transaction processing systems. As a consequence, an organization that wants to utilize
blockchain technology is currently forced to add yet another data management system
to its infrastructure. However, since this infrastructure typically already consists of var-
ious established systems, which are filled with data and used by top-level applications,
this approach is extremely troublesome. Data must be migrated, applications must be
rewritten, personnel must be retrained — in general, the integration and maintenance of
a new full-fledged system is associated with high costs and immense effort.

This raises the question, whether it is actually necessary to reinvent the wheel
and design blockchain systems in a stand-alone fashion in the first place. Large parts
of the transaction processing stack are conceptually shared with traditional database
management systems [80]. Why not simply reuse these parts and build upon them?
Precisely, instead of replacing the established database management systems altogether,
we advocate to extend them with the missing and desired blockchain functionality.

Unfortunately, this task is far more challenging than it sounds at first. This has to
do with two fundamental differences between stand-alone PBSs and our design.

First, due to their restrictive design, stand-alone PBSs can make the convenient
assumption that:

1) Every organization executes every transaction deterministically in the same way.

As every organization runs the very same storage system and the very same transaction
processing engine, it can be assumed comfortably that every transaction is interpreted in
exactly the same way and results in the same effect across all organizations. In contrast
to that, in a heterogeneous setup we don’t have the luxury to rely on this assumption. As
one organization of the network might build upon DBMS X while another one builds
upon DBMS Y, the exact same transaction could result in different effects across orga-
nizations. Reasons for this are manifold: Systems might implement a different interpre-
tation of the SQL standard or of the used data types.

The second fundamental difference is that, due to their restrictive design, stand-
alone PBSs can assume that:

2) Every organization is resilient against tampering with its local data.

4.1. Introduction 83

As stand-alone PBSs employ their own dedicated storage system, they fully control all
access that is happening to it. Thus, in practice, it is unlikely that the data is corrupted
externally. However, in our design we cannot make this assumption. As we want to
utilize arbitrary database systems containing various forms of data, which are accessed
from top-level applications aside from our blockchain layer, the chances of corruption
are significantly higher in our case.

In summary, the processing model employed by the vast majority of stand-alone
systems is obviously not powerful enough to handle the challenges of our highly flex-
ible design. To understand the precise problem and to come up with a new and more
powerful model, let us inspect the general workflow that is currently applied.

4.1.1 Order-Consensus-Execute

The model, that is currently implemented by the vast majority of stand-alone PBSs [29,
1, 18, 7, 5, 70, 33] is called order-consensus-execute (OCE). First, in the order-phase,
an order on a batch of transactions is proposed. Then, in the consensus-phase, the orga-
nizations try to globally agree on this ordered batch using some sort of consensus mech-
anism. If a consensus is reached, in the final execute-phase, the agreed-upon ordered
batch is executed locally by every organization. As a result, all honest organizations
reach the same state.

The problem lies in the assumption, that if a consensus is reached on the result of
the order-phase, every honest organization will be in the same state after the execution-
phase. In other words, it assumes that everything goes well after the consensus-phase.
Figure 4.1 visualizes the problem: OCE assumes deterministic behavior on anything
happening after the consensus-phase, namely on the execute-phase.

Execute-phase

assumptionsno assumptions

Order-phase (Order)
Consensus-phase

Ledger
Consensus-phaseOrder-phase Execute-phase

no assumptions

Ledger
Consensus-phaseWhatever-phase

no assumptions

batch
of inputs
of round t

batch
of inputs
of round t

batch
of inputs
of round t

Figure 4.1: The order-consensus-execute model (OCE). The consensus-phase sits be-
tween the order-phase and the execute-phase. As a consequence of this design, assump-
tions must be made on everything after the consensus-phase, namely on the execute-
phase.

Unfortunately, this assumption is not compatible with our design as we want to

Chapter 4. ChainifyDB: A Non-invasive Transformation of Database Systems into a
Blockchain System 84

chainify heterogeneous infrastructures, that potentially behave differently and that are
potentially prone to tampering with the data.

4.1.2 Whatever-LedgerConsensus

To eliminate the need for assumptions, we argue that the consensus-phase must be
pushed towards the end of the processing pipeline. Figure 4.2 shows the effect of doing
so, resulting in the order-execute-consensus model (OEC). If we reach consensus on the
effects of the execute-phase instead of reaching consensus on the order established by
the order-phase, no assumptions must be made on the order-phase and execute-phase.

Execute-phase

assumptionsno assumptions

Order-phase (Order)
Consensus-phase

Ledger
Consensus-phaseOrder-phase Execute-phase

no assumptions

Ledger
Consensus-phaseWhatever-phase

no assumptions

batch
of inputs
of round t

batch
of inputs
of round t

batch
of inputs
of round t

Figure 4.2: The order-execute-consensus model (OEC). The consensus-phase sits at
the end of the pipeline, after both order-phase and the execute-phase. As consensus
is reached on the effects of the execute-phase, no assumptions must be made on any
previous phase.

From this perspective, we are actually able to abstract from the concrete order-
phase and the execute-phase: Whatever happens in these phases, we are able to detect
all differences in the produced effects in the consensus-phase afterwards.

This results in a new, highly flexible processing model we call the Whatever-
LedgerConsensus model or WLC for short (pronounced “We’ll see!”). Figure 4.3 vi-
sualizes the two phases of our WLC model:

1. Whatever-phase. Each organization does whatever it deems necessary to pass the
LC-phase later on.

2. LedgerConsensus-phase. We perform a consensus round on the effects of the
whatever-phase to check whether a consensus can be reached on them. If yes, the
effects are committed to a ledger. If an organization is non-consenting, it must
perform a recovery. If no consensus is reached at all, all organizations must try to
recover.

4.1. Introduction 85

Execute-phase

assumptionsno assumptions

Order-phase (Order)
Consensus-phase

Ledger
Consensus-phaseOrder-phase Execute-phase

no assumptions

Ledger
Consensus-phaseWhatever-phase

no assumptions

batch
of inputs
of round t

batch
of inputs
of round t

batch
of inputs
of round t

Figure 4.3: Our Whatever-LedgerConsensus model (WLC). We do not make assump-
tions on the behavior of the whatever-phase. In the consensus-phase, consensus is
reached on the effects of the whatever-phase.

This WLC model finally allows us to design and implement our highly flexible per-
missioned blockchain system: ChainifyDB. It supports different transaction processing
systems across organizations to build a heterogeneous blockchain network.

4.1.3 Contributions

(1) We present a new processing model coined the Whatever-LedgerConsensus model
(WLC). In contrast to existing processing models, our model does not make any as-
sumptions on the behavior of the local engines. Still, we are able to detect any deviation
of an organization, irrespective of the cause. Our model allows us to realize highly flex-
ible blockchain systems while being able to express existing models like OCE as special
cases.

(2) We present the Whatever Recovery Landscape and discuss the different classes of
recovery algorithms possible in the WLC model, depending on the amount of informa-
tion available regarding actions and effects.

(3) We present a concrete system instance of WLC coined ChainifyDB. We start with
a set of heterogeneous database systems and show how to connect them to a network
providing permissioned blockchain-properties. We only requires the DBMSs providing
a trigger mechanism as defined in SQL 99 or similar.

(4) We show initial results with a vendor-independent recovery algorithm allowing
ChainifyDB to efficiently recover non-consenting organizations. Notice that systems
like Fabric [18] do not have any recovery mechanism.

(5) We perform an extensive experimental evaluation of ChainifyDB in comparison
with the comparable state-of-the-art permissioned blockchain systems Fabric [18] and
Fabric++ [80] and achieve an up to 6x higher throughput. Further, we show that Chaini-
fyDB is able to fully utilize the performance of the underlying database systems and

Chapter 4. ChainifyDB: A Non-invasive Transformation of Database Systems into a
Blockchain System 86

demonstrate its robustness and recovery capabilities experimentally.

The paper is structured as follows. In Section 4.2, we first discuss related works,
which sit at the intersection of databases and blockchains and contrast WLC and
ChainifyDB to them from a conceptual perspective. In Section 4.3, we formalize our
Whatever-LedgerConsensus model (WLC). In Section 4.4, we present the Whatever
Recovery Landscape. In Section 4.5, we present the logical design of ChainifyDB and
its components, including the recovery mechanism. In Section 4.6, we present inter-
esting optimizations possible in ChainifyDB. In Section 4.7, we present concrete im-
plementation details of ChainifyDB. Finally, in Section 4.8, we perform an extensive
experimental evaluation.

4.2 Related Work

As stated, the vast majority of permissioned blockchain systems implement variants of
the OCE model, with [1, 7, 5, 70, 33] being prominent examples. Even Fabric [18, 23],
which uses a model the authors call execute-order-validate, implements in the end a
form of OCE: In the execute-phase, the effect of transactions are computed. After or-
dering the transactions, the effects of non-conflicting transactions are used to update
the state in the given order. Thus, the validate-phase in Fabric highly resembles the
execute-phase in OCE. Interestingly, none of these system integrate any form of recov-
ery mechanism: As soon as an organization deviates, it is considered as being malicious
independent of the cause and implicitly banned from further transaction processing.

Apart from the execution model, there are other projects that sit at the intersection
of databases and blockchains. In [70], the authors extend the relational system Post-
greSQL with blockchain features. This results in a “blockchain relational database”,
which is capable of performing trusted transactions between multiple PostgreSQL in-
stances. While this project is clearly a step in the right direction, it does not go far
enough: the blockchain relational database still comes in a stand-alone fashion and
forces the users to integrate a whole new system into their infrastructure. Further,
they heavily modify the internals of PostgreSQL to integrate the blockchain features.
In contrast to that, in ChainifyDB we install the blockchain features on-top of black-
box DBMSs without changing them in any way. We intended to compare ChainifyDB
against this system, however, the source code is not available.

A project with a similar attitude is BlockchainDB [33, 34]. In contrast to [70]
and to ChainifyDB, the authors of [33, 34] install a database layer on top of an existing
blockchain, such as Ethereum [3] or Hyperledger Fabric [18]. This database layer allows
the user to manage and access the underlying shared data in a more convenient way

4.3. Whatever-Ledger Consensus 87

than directly communicating with the blockchain system. Unfortunately, the comfort is
relatively limited: To support a variety of blockchain systems, the authors have to stick
to a key-value data model and a simple put()/get() query interface.

Another project at the intersection of databases and blockchains is Veritas [41].
This visionary paper also proposes to extend existing database systems by blockchain
features; however, they focus on a cloud infrastructure. To synchronize instances, they
utilize log shipping. Therefore, this solution requires the underlying database system to
provide log shipping in the first place and disallows the connection of different database
systems in one network, if their log shipping mechanisms are not compatible with each
other. Of course, they are not in general.

The project ChainSQL [68] takes the open-source blockchain system Ripple [19]
and integrates relational and NoSQL databases into the storage backend. This en-
ables it to run SQL-style respectively JSON-style transactions. However, by integrating
database systems into the heavy-weight blockchain system Ripple, the authors limit the
transaction processing performance to that of Ripple — thus overshadowing the high
performance of the underlying database systems. In contrast to that, ChainifyDB is
designed from the get-go to leverage the power of the underlying systems — in par-
ticular using highly parallel transaction execution, even across heterogeneous database
systems.

The project BigchainDB [1] combines the blockchain framework Tendermint [14]
with the document store MongoDB and therefore extends it with blockchain features.
In contrast to ChainifyDB, the system is shipped in a stand-alone fashion and focuses
on the query interface of MongoDB.

Apart from works aiming at closing the gap between databases and blockchains
from an architectural perspective, there is a considerable amount of research improving
the performance of permissioned blockchains. In [80], [45], [25], and [61], the au-
thors apply various optimizations to improve the throughput of successful transactions
in Fabric.

4.3 Whatever-Ledger Consensus

Let us now start by introducing our novel process model Whatever-Ledger Consensus
(WLC) and formalize it.

Chapter 4. ChainifyDB: A Non-invasive Transformation of Database Systems into a
Blockchain System 88

4.3.1 Core Idea

In short, the core idea of WLC is to not seek consensus on what should be done-actions,
but rather seek consensus on the effect of the actions after they have been performed.
This allows us to drop assumptions on the concrete transaction processing behavior
of the organizations. It also allows us to detect any external tampering with the data.
The WLC model implies that if consensus on the effects of certain actions cannot be
reached, the organizations must not commit the effects of their actions. Note that WLC
is also more powerful than classical 2PC or 3PC-style protocols in the sense that they
still assume deterministic behavior of the organizations without looking back at the
produced effects. In WLC, we simply do not care about whether organizations claim to
be prepared for a transaction and what they claim to commit. In contrast, we solely look
at the outcome. If we can reach consensus on the outcome, it does not matter anymore
which actions those organizations used to get to the same outcome in the first place. In
summary, we measure the outcome rather than the promises.

4.3.2 Processing Model

In the following, let us formalize WLC in detail.

Let O1, . . . , Ok be the k participating organizations in the network. As always,
these organizations do not trust each other. Still, they want to perform a mutual sequence
of inputs, which is fed into the system batch-wise round by round, as visualized in
Figure 4.3. The following description shows the W-phase and the LC-phase in round t.

Whatever-phase. Note that although the same sequence of inputs enters the system,
each organization might actually receive a potentially different set of actions for pro-
cessing, as we do not make any assumptions on what exactly is happening in the W-
phase. For instance, an ordering service could distribute different actions to different
organizations for whatever reason. Thus, we define Al,1, . . . , Al,t as the sequence of
actions, that the individual organization Ol receives till round t.

Effect Functions: Further, we assume that there is an effect function Fl(). Only if the
effect contains the state, an action can be applied on the effect to generate a new effect.
We compute for each organization Ol the accumulated effect El,t as:

El,t = Fl(El,t−1, [Al,t])

with El,0 = ∅ being the initial empty effect. Notice the iterative construction of this
function (which will later on create our blockchain-style chaining of effects):

El,t = Fl(Fl(Fl(. . .), [Al,t−1]), [Al,t]).

4.4. Whatever Recovery 89

Notice that we use El,t = Fl(∅, [Al,1, . . . , Al,t]), as a shorthand, still there will be a
separate effect function call for each of the t actions.

LedgerConsensus-phase. On the accumulated effects El,t for 1 ≤ l ≤ k, a consensus
must be reached (and not necessarily on the entire state!). Otherwise, the system is
not allowed to proceed to round t + 1. To decide whether consensus is reached, a
consensus policy c specifies how many organization must at least have reached the same
accumulated effect. Thus, consensus in round t is reached if

∃Ocons = {Oi, ..., Oj} : |Ocons| ≥ c : (Ei,t = . . . = Ej,t) = Econs,t.

We summarize the effect on which consensus has been reached as Econs,t. If consensus
has been reached, each organization Ol has to decide on its own whether its local ef-
fect El,t matches the consensus effect Econs,t. If it matches, the effect can be committed
to a ledger and round t ends. Otherwise, Ol can not proceed to round t + 1 and tries to
recover. If no consensus can be reached at all, i.e. Econs,t = undefined, then no organi-
zation can proceed to round t + 1. In this case, all organizations try to recover. We will
discuss in Section 4.4 the detailed recovery behavior and introduce a concrete database
vendor-independent recovery algorithm in Section 4.5.

4.4 Whatever Recovery

Actions
not accessible accessible (blackbox) accessible (whitebox)

Effects State not contained — + full replay + optimized full replay
State contained + restore state + partial replay + optimized partial replay

Table 4.1: The 2 × 3 Whatever Recovery Landscape. The two-dimensions of Whatever
recovery (accessibility of effects vs actions) and their implications on the classes of
recovery algorithms possible

Let us now see how we perform recovery and what levels of recovery are actually
possible in the WLC model.

4.4.1 Non-Consenting Organization Scenario

As described formally in Section 4.3.2, we must perform recovery on an organization Ol

if El,t 6= Econs,t. The reasons for this are multitude: It could be that Ol simply inter-
preted Al,t differently than the others or that non-determinism is hidden in Al,t. It could
also be that someone, e.g. an administrator, tampered with El,t.

Chapter 4. ChainifyDB: A Non-invasive Transformation of Database Systems into a
Blockchain System 90

Irrespective of the cause, during recovery, we have to compute a new effect E ′l,t. If
E ′l,t 6= El,t, then the computed effect differs from the original effect, which was used for
consensus, and Ol has a chance to recover. If now E ′l,t = Econs,t, then Ol has recovered
and can proceed with round t + 1. If not, then it can not recover and is excluded from
the network.

If no consensus has been reached at all, i.e. Econs,t = undefined, then we perform
a new consensus round on the new effects. The network can recover, if

∃O′cons = {Oi, ..., Oj} : |O′cons| ≥ c : E ′i,t = . . . = E ′j,t.

4.4.2 The 2 × 3 Recovery Landscape

There are tradeoffs and optimizations involved in practical recovery. For example, in-
stead of starting with an empty state and replaying the entire sequence of actions there
are many more options. Table 4.1 introduces the whatever recovery landscape. That
landscape has two dimensions Effects and Actions. For the dimension Effects, we dis-
tinguish between whether the state is not contained and the state is contained. For the
dimension Actions, we distinguish between not accessible, blackbox actions (we have
access but do not understand the semantics in any way), and whitebox actions (we have
access and understand the semanics, i.e. we see the individual operations carried out).
Like that we receive six different classes of recovery algorithms. Note that each cell in
that landscape includes all cells with weaker accessibility levels (i.e. all cells that are
further left and/or up). In the following we discuss each cell individually. We label each
subsection with a visual notation of its position in the whatever recovery landscape,
e.g. for (State: accessible, Actions: whitebox).

4.4.3 No Recovery

Accessibility: State: na, Actions: na.

If neither state nor actions are available to us, we cannot recover a non-consenting or-
ganization.

Recovery: —

4.4. Whatever Recovery 91

4.4.4 Recovery from a State

Accessibility: State: contained, Actions: na.

We have access to the state computed by the individual organizations but do not under-
stand their semantics. As we don’t have access to actions, we cannot apply them in any
way.

Recovery: In order to recover organization Ol in round t, we overwrite its local ef-
fect El,t with the effect Ei,t of any other organization Oi 6=l, that is matching the consen-
sus effect Econs,t

E ′l,t = Fl(Ei,t, []).
If Econs,t = undefined, i.e. no consensus was reached in round t, then Ol cannot recover.

4.4.5 Full Replay

Accessibility: State: na, Actions: blackbox.

The state is not contained, but we have access to the sequence of blackbox actions.

Recovery: In order to recover organization Ol in round t, we can (blindly) replay the
entire history of blackbox actions Al,1, . . . , Al,t from the very beginning to restore the
accumulated effect

E ′l,t = Fl(∅, [Al,1, . . . , Al,t]).
If E ′l,t = Econs,t, then Ol may rejoin the network.

4.4.6 Partial Replay from a State

Accessibility:

State: contained, Actions: blackbox.

The state is contained. Further, we have access to blackbox actions but do not under-
stand their semantics.

Recovery: In order to recover Ol in round t, we can perform a partial replay. In
other words, we start with an older effect El,s<t and partially replay the blackbox ac-
tions Al,s+1, . . . , Al,t (redo in database lingo):

E ′l,t = Fl(El,s<t, [Al,s+1, . . . , Al,t])

Chapter 4. ChainifyDB: A Non-invasive Transformation of Database Systems into a
Blockchain System 92

If E ′l,t = Econs,t, then Ol may rejoin the network.

4.4.7 Optimized Full Replay

Accessibility:

State: na, Actions: whitebox.

The effect does not contain the state, but we have access to the sequence of whitebox
actions and understand the precise semantics of the actions.

Recovery: In order to recover organization Ol in round t, we can replay the entire his-
tory of actions from the very beginning to restore the accumulated effect. However, as
we have whitebox actions available, we can also optimize the replay: For example, if we
know that an action Al,t consists of a sequence of three transactions Al,t = [T1, T2, T3],
where all three transactions update the same record, then we could safely drop T1 and
T2 and use A′l,t = [T3] for the replay. Further possible optimizations include changing
the order of operations and to allow for parallel execution of non-conflicting opera-
tions [98], as we show in Section 4.6.3. Thus, we restore the effect using the optimized
actions A′l,1, . . . , A′l,t:

E ′l,t = Fl(∅, [A′l,1, . . . , A′l,t])

If E ′l,t = Econs,t, then Ol may rejoin the network.

4.4.8 Optimized Partial Replay from a State

Accessibility:

State: contained, Actions: whitebox.

We have access to the state as well as access to whitebox actions.

Recovery: In order to recover Ol in round t, we start with an older effect El,s<t and
partially replay the optimized actions A′l,s+1, . . . , A′l,t (redo in database lingo):

E ′l,t = Fl(El,s<t, [A′l,s+1, . . . , A′l,t])

If E ′l,t = Econs,t, then Ol may rejoin the network.

4.5. Chainify DB 93

4.4.9 Abstraction vs Implementation

Notice that we use the concepts of ‘effect’ and ‘action’ to abstract from the details of
a concrete implementation. For example, conceptually, it is not strictly necessary to
physically materialize an effect: Replaying the entire history of actions is sufficient to
restore an effect. This is similar to log-only databases (“the log is the database”) [32,
88, 92] that regard the database store as a performance optimized representation of the
database log.

In ChainifyDB, which we will describe in detail in the next section, effects are
materialized in form of database states and snapshots of those to enable high perfor-
mance transaction processing and recovery. Actions represent blocks of transactions,
which modify the database state and thereby generate new effects. Let us now see how
it works in detail.

4.5 Chainify DB

In Section 4.3 we have introduced and formalized our novel WLC model which is able
to detect deviation of effects without making any assumptions on the behavior of the
whatever-phase. In Section 4.4, we presented the different recovery options in the WLC
landscape depending on the accessibility of effects and actions.

In this section we present ChainifyDB, a concrete system that instantiates the WLC
model. The core feature of ChainifyDB is to equip established infrastructures, which al-
ready consist of several database management systems, with blockchain functionality as
a layer on top. The challenge is that these infrastructures can be highly heterogeneous,
i.e. every participant potentially runs a different DBMS where each system can interpret
a certain transaction differently. As a result, the effects across participants might differ.

As mentioned earlier, the classical OCE model, which relies on the previously
discussed strong assumptions, is not capable of handling such a heterogeneous setup:
The execution across participants is neither guaranteed to be deterministic nor equal.
In contrast to that, our WLC model is perfectly suited to handle such heterogeneous
scenarios, where no assumptions on the behavior of the organizations are made.

Chapter 4. ChainifyDB: A Non-invasive Transformation of Database Systems into a
Blockchain System 94

4.5.1 Overview on our WLC-Implementation

Let us now see in detail how we implement the W-phase as well as the LC-phase in
ChainifyDB. Just like our model, the implementation operates in rounds and consumes
a batch of input transactions, which have been proposed by clients to the system, in
every round.

Whatever-phase. In its simplest variant, ChainifyDB instantiates the W-phase of the
WLC model with two subphases: the order-subphase and the execute-subphase. Fig-
ure 4.4 visualizes the instantiation.

no assumptions

Whatever-phase

Order
subphase

Execute
subphase

Recovery
subphase

Ledger Consensus-phase

Outcome
Consensus

non-consenting nodes

consenting
nodes

append to
Ledger

batch
of inputs
of round t

Figure 4.4: ChainifyDB as a concrete instance of the Whatever-LedgerConsensus model
(WLC).

Order-subphase. In the order-subphase of round t, a batch of input transaction is
globally ordered and grouped in a block. Note that an action in our earlier formalization
resembles a block of transactions here, i.e. Al,t = [T1, T2, T3]. Packing transactions into
blocks is merely a performance optimization in order to amortize the costs for consen-
sus later on. There is no conceptual need to form blocks. Notice that our order-subphase
fully resembles the order-phase in the classical OCE-model. However, in strong con-
trast to the OCE-model, we do not perform a consensus round on the established order
afterwards, even if we do not trust the ordering service in any way. For now, we simply
take whatever the ordering service outputs.

Execute-subphase. In the execute-subphase, each organization Ol receives an ac-
tion Al,t = [T1, T2, T3] produced by the order-phase. Each transaction of that block,
that has valid signatures, is then executed against the local relational database. This
execution potentially updates the database and thereby produces an effect El,t. In Sec-
tion 4.5.2 and Section 4.5.3, we will outline in detail how this effect looks like in Chaini-
fyDB. For now, let us simply assume that the effect captures all modifications done by
the valid transactions of the block to the database.

4.5. Chainify DB 95

Again, we want to point out that in contrast to the OCE-model, we do not assume
deterministic execution across all organizations: The different DBMSs of two organiza-
tions could have interpreted a transaction slightly differently or two organizations could
have received different blocks from the order-phase altogether.

LedgerConsensus-phase. In the ledger consensus phase, all organizations have to
reach consensus on the effects produced by the whatever-phase of the individual orga-
nizations. Thus, in a consensus round, which we will describe in Section 4.5.4 in detail,
the organizations first try to agree on one particular effect. Then, each organization
whose effect is consenting commits it to its local ledger and proceeds with round t + 1.
Again, only if consensus on an effect is reached, we consider it as globally committed.

Recovery-subphase. If the effect of an organization is non-consenting, the organi-
zation must at least try to recover from this situation. This is done using a variant of
Optimized Partial Replay from a (Logical) Snapshot as introduced in Section 4.4. We
will explain our recovery mechanism in detail in Section 4.5.5.

4.5.2 Logical per Block Digests

In the previous section, we mentioned that the execution of a block on the local database
produces an effect as a side-product of execution. On this effect, the consensus round is
performed. It is also eventually committed to the ledger. Thus, let us see in the following
how we precisely generate the effect.

In ChainifyDB we assume SQL-99 compliant relational DBMSs to keep the state
at each organization. This has two reasons: On the one hand, we want to allow for
existing organizations with existing DBMS-products to be able to easily build WLC-
networks with blockchain-style guarantees. On the other hand, we can utilize SQL 99
triggers to realize a vendor-independent digest versioning mechanism, that specifically
versions the data of ChainifyDB in form of a digest table.

The digest table is computed per block. We instrument every shared table in
our system with a trigger mechanism to automatically populate this digest as follows:
for every tuple changed by an INSERT, UPDATE, and DELETE-statement, we create a
corresponding digest tuple. A digest tuple has the following schema: [PK:<as of

Foo>, serial:int, hash:int, T]. Here, PK is the primary key of the original ta-
ble (which may of course also be a compound key), serial is a strictly monotonously
rising counter used to distinguish entries with the same PK (every new version of a tuple
increases this counter), hash is the digest of the values of the tuple after it was changed
(for a delete: its state before removing it from the table), T is the type of change that
was performed, i.e. (I)nsert, (U)pdate or (D)elete. Notice that in contrast to recovery

Chapter 4. ChainifyDB: A Non-invasive Transformation of Database Systems into a
Blockchain System 96

block 42

Foo
PK A B C
1 43 q 3.4
2 67 b 1.2
3 88 k 7.8
4 87 i 5.6
5 12 q 3.2
6 16 c 1.9

initial state: after update on pk 4:

Foo
PK A B C
1 43 q 3.4
2 67 b 1.2
3 88 k 7.8
4 42 z 7.9
5 12 q 3.2
6 16 c 1.9

Foo_Digest
P serial hash T
4 0 3B50 U
2 0 F68D U
3 0 B2F9 D
9 0 0AE

F
I

2 1 E5A
A

U

Foo_Digest
P serial hash T
4 0 3B50 U
2 0 F68D U
3 0 B2F9 D
9 0 0AE

F
I

2 1 E5A
A

U

Trigger

Executed
T1

Executed
T2

Executed
T3

time

Foo
PK A B C
1 43 q 3.4
2 67 b 1.2
4 42 z 7.9
5 12 q 3.2
6 16 c 1.9

Foo_Digest
P serial hash T
4 0 3B50 U
3 0 B2F9 D

Trigger

after delete on pk 3: after insert on pk 9:

Foo
PK A B C
1 43 q 3.4
2 67 b 1.2
4 42 z 7.9
5 12 q 3.2
6 16 c 1.9
9 11 c 3.3

Foo_Digest
P serial hash T
4 0 3B50 U
3 0 B2F9 D
9 0 0AE

F
I

Trigger

Figure 4.5: Logical tuple-wise per block digest computation on an example table Foo.
All changes are automatically tracked and digested through SQL 99 triggers.

algorithms like ARIES [64], in those tuples we do not preserve the information how to
undo/redo changes, as we simply do not need that information.

Figure 4.5 shows an example how to process a block of three transactions: we
start with a particular state of table Foo and an empty digest table Foo Digest. Now,
we perform an update on tuple with PK=4. As a result, the tuple in Foo is changed to
(4, 42, z, 7.9) and we insert a new digest tuple (4, 0, 3B50, U) into Foo Digest. After
that a delete of record with PK=3 is performed. The tuple in Foo is deleted and we insert
a new digest tuple (3, 0, B2F9, D) into Foo Digest. We proceed until we processed
all three transactions TA1–TA3 available in this particular block. For the next block to
process we start with an empty digest table.

4.5.3 LedgerBlocks

Although the digest table captures all changes done to a table by the last block of trans-
actions, it does not represent the effect yet. The actual effect is represented in form of a
so called LedgerBlock, which consists of the following fields:

4.5. Chainify DB 97

1. TA list: The list of transactions that were part of this block. Each transaction is
represented by its SQL code.

2. TA successful: A bitlist flagging the successfully executed transactions. This
is important as transactions may of course fail and that behavior should be part of
consensus across all organizations.

3. hash digest: A hash of the logical contents of the digest table. In our case,
this is a hash over the hash-values present in the diff table. The hash values are
concatenated in lexicographical [PK, serial]-order and then input into SHA256.

4. hash previous LedgerBlock: A hash value of the entire contents of the previ-
ous LedgerBlock appended to the ledger, again in form of a SHA256 hash. This
backward chaining of hashes allows anyone to verify the integrity of the ledger in
linear time.

This LedgerBlock now leaves the W-phase and enters the LC-phase to determine
whether consensus can be reached.

4.5.4 Consensus Algorithm

In our permissioned setup, we can safely make the assumption, that all organizations
of the network are known at any time and that no organization can join the network
during a consensus round. This allows us to use a lightweight voting algorithm for
this purpose, instead of having to rely on more heavyweight consensus algorithms such
as [24, 103, 101, 76]. To determine whether consensus was reached, a consensus policy c
must be specified by all organizations in advance during the bootstrapping process of
the network. The constant c specifies how many organizations must have reached the
same effect.

In the first step of the consensus algorithm, the individual organization has to count
how often each LedgerBlock occurred in the network. To do so, it requests the so
called LedgerBlockHashes from all other organizations and counts the occurrences,
including its own local LedgerBlockHash. This LedgerBlockHash is essentially a
compressed form of the contents of a LedgerBlock.

Consensus is reached if two conditions hold: (a) There must be a
LedgerBlockHash that occurred at least c times. (b) This consensus
LedgerBlockHash equals the local LedgerBlockHash. If both hold, then the or-
ganization can append/commit its LedgerBlock to its local ledger.

Chapter 4. ChainifyDB: A Non-invasive Transformation of Database Systems into a
Blockchain System 98

4.5.5 Logical Checkpointing and Recovery

If an organization is non-consenting, it must enter recovery as outlined in Section 4.5.1
and presented in Figure 4.4.

For recovery, ChainifyDB implements Optimized Partial Replay from a (Logical)
Snapshot as introduced in Section 4.4.8. Again, like the digests (see Section 4.5.2)
our approach is DBMS-system independent: we do not need access to the source code
of the DBMS. The Figures 4.6 and 4.7 show an example run of our checkpointing and
recovery algorithm.

time

Foo_block_44
PK A B C
1 5 q 1.3
2 8 a 4.2
4 42 z 8.8
5 12 r 3.2
7 9 d 0.2
8 12 x 5.4

snapshot

Foo
PK A B C
1 5 q 1.3
2 8 a 4.2
4 42 z 8.8
5 12 r 3.2
7 9 d 0.2
8 12 x 5.4

block 42

T1

T2

T3

block 43

T1

T2

T3

block 44

T1

T2

T3

checkpoint 44

processing

block 42

processing

block 43

processing

block 44

block 45

T1

T2

T3

block 46

T1

T2

T3

block 47

T1

T2

T3

checkpoint 41

processing

block 45

processing

block 46

processing

block 47

consenting

Foo_block_41
PK A B C
1 5 q 1.3
2 8 a 4.2
4 35 z 8.8
5 12 q 3.2
7 9 d 0.2
8 11 c 3.3

snapshot

Foo
PK A B C
1 5 q 1.3
2 8 a 4.2
4 35 z 8.8
5 12 q 3.2
7 9 d 0.2
8 11 c 3.3

Figure 4.6: ChainifyDB’s checkpointing mechanism. Here, a checkpoint is created after
every three blocks.

timeblock 42

TA1

TA2

TA3

block 43

TA1

TA2

TA3

block 44

TA1

TA2

TA3

block 45

TA1

TA2

TA3

block 46

TA1

TA2

TA3

non-consenting

non-
consenting

ledger 
block

restore
from local
copy

block 45

TA1

TA2

TA3

block 46

TA1

TA2

TA3

checkpoint 44

processing

block 42

processing

block 43

processing

block 44

processing

block 45

processing

block 46

recover

from local

restore snapshotprocessing

block 45

processing

block 46

recover

from global

restore
from older
snapshot

block 42

TA1

TA2

TA3

block 43

TA1

TA2

TA3

processing

block 42

processing

block 43

non-
consenting

ledger 
blocksnapshot

Foo
PK A B C
1 5 q 1.3
2 8 a 4.2
4 35 z 8.8
5 12 q 3.2
7 9 d 0.2
8 11 c 3.3 Foo_block_41

PK A B C
1 5 q 1.3
2 8 a 4.2
4 35 z 8.8
5 12 q 3.2
7 9 d 0.2
8 11 c 3.3

snapshot

checkpoint 41 block 45

TA1

TA2

TA3

block 44

TA1

TA2

TA3

block 46

TA1

TA2

TA3

snapshot

Foo
PK A B C
1 5 q 1.3
2 8 a 4.2
4 42 z 8.8
5 12 r 3.2
7 9 d 0.2
8 12 x 5.4

Foo_block_44
PK A B C
1 5 q 1.3
2 8 a 4.2
4 42 z 8.8
5 12 r 3.2
7 9 d 0.2
8 12 x 5.4

Foo
PK A B C
1 5 q 1.3
2 8 a 4.2
4 42 z 8.8
5 12 r 3.2
7 9 d 0.2
8 12 x 5.4

Foo
PK A B C
1 5 q 1.3
2 8 a 4.2
4 35 z 8.8
5 12 q 3.2
7 9 d 0.2
8 11 c 3.3

Foo
PK A B C
1 5 q 1.3
2 8 a 4.2
4 42 z 8.8
5 12 r 3.2
7 9 d 0.2
8 12 x 5.4

Foo_block_44
PK A B C
1 5 q 1.3
2 8 a 4.2
4 42 z 8.8
5 12 r 3.2
7 9 d 0.2
8 12 x 5.4

processing

block 44

processing

block 45

processing

block 46

checkpoint 44

Figure 4.7: ChainifyDB’s Recovery using checkpoints. As block 46 is non-consenting
it has to enter the recovery phase. It will first try to recover using the most recent local
checkpoint. This fails in this example and hence recovery from an older checkpoint is
performed.

Figure 4.6 shows the normal operation mode of a single organization that is con-
senting: we create a checkpoint by creating a snapshot of table Foo after every k blocks

4.5. Chainify DB 99

(k = 3 in the example). Snapshots are created on the SQL-level through either a non-
maintained materialized view or by a CREATE TABLE command. If the source code
of the DBMS and the operating system is available, the snapshotting support from the
operating system could be exploited at this point as well [82, 50] – however, we do not
make this assumption in our design. The snapshot is created for all tables that were
changed since the last consistent snapshot. Creating such a snapshot is surprisingly
fast: Snapshotting the accounts table with 1,000,000 rows, which is part of the Small-
bank [11] benchmark used in our experiment evaluation, takes only 827ms in total on
our machine of type 2 running PostgreSQL (see Section 4.8). Notice that there is no
need to store this checkpoint in the ledger, as done in ARIES [64] for instance: As the
information contained in a checkpoint can be fully recomputed from the ledger, it has
to pass the LC-phase anyways again.

Figure 4.7 shows an organization switching to recovery mode. This organization
is in normal (consenting) mode for all blocks shown up to and including block 45. For
block 46 this organization is non-consenting. Hence, it must enter the recovery phase.

First, we have to reset Foo to the state of the latest consistent snapshot
Foo block 44. Then, we replay block 45 which is consenting. Then, we replay
block 46 which is unfortunately again non-consenting. In this situation we have to
assume that this local snapshot has an issue, i.e. it was corrupted externally. Thus, we
reset the local table Foo to the second latest snapshot Foo block 41. Now, we replay
all blocks starting from block 42 up to block 46. This time block 46 is consenting.

In our implementation, we keep three committed snapshots per organizations. If
replaying from all of these snapshots does not lead to a consenting organization, then we
can try to replay the entire history. If even this fails, we have to assume that the ordering
service acts maliciously and can try again after starting a fresh ordering service, possibly
by a different organization.

Notice that, of course, there is no 100% guarantee that any of these measures will
lead to a consenting organization. Severe problems such as a hardware error (in particu-
lar an error that is not detected and transparently fixed by hardware or operating system
itself) are out of reach for repair by ChainifyDB. The important point here is that we de-
tect the problem early on (after every block of transactions and not only eventually), try
to “rehabilitate” this organization through recovery, and reintegrate it into the network.

Chapter 4. ChainifyDB: A Non-invasive Transformation of Database Systems into a
Blockchain System 100

4.6 Optimizations

Before we come to the experimental evaluation of ChainifyDB, let us discuss a set of
interesting optimizations.

4.6.1 Transaction Agreement

A powerful feature of ChainifyDB is that clients can propose arbitrary transactions to
the system. These transactions are then simply executed against the local DBMSs of
the individual organizations without any restrictions. However, there might be situa-
tions where such a plain execution without any restrictions is highly undesired by the
organizations.

For example, consider the scenario where two organizations would like to log their
mutual trades in a shared table. A transaction inserting a trade could look as follows

INSERT INTO Trades(TID,product,amount,totalprice)
VALUES (42,"Gearbox",5,60000):

Obviously, this transaction is only meaningful if certain integrity constraints hold: The
selling organization must have enough products in stock (at least five gearboxes in
our example) and the buying organization must have enough money available (at least
60,000 in our example). To enforce such integrity constraints, we prepend an optional
agreement-subphase to our pipeline, through which any transaction proposed to Chaini-
fyDB must go first. Only if all involved organizations agree to the proposed transaction,
the transction may enter the subsequent order-phase.

To enable the optional agreement phase, two steps must be carried out by the or-
ganizations: First, an agreement policy must be installed in consent when creating the
shared table. It specifies for the shared table which organizations have to agree upon
a transaction operating on that table. For our trading example, the policy of the table
Trades could look as in Algorithm 2, enforcing both involved organizations to decide
for agreement.

Algorithm 2: Agreement policy on the table Trades.

AgreementPolicy(Trades) =
{ SellingOrganization, BuyingOrganization }

4.6. Optimizations 101

Second, each organization has to implement its individual integrity constraints, which
are evaluated against each proposed transaction. Note that these constraints could be
formulated to compare the transaction against local data. For example, the agreements
for the selling organization and the buying organization could look as in Algorithm 3.
Only if both organizations agree to a transaction operating on the Trades table, it is
passed on for further processing.

Algorithm 3: Agreement of two organizations.

SellingOrganization.agree(T) =
{ return T.amount <= Stocks.amount

WHERE T.product == Stocks.product }
BuyingOrganization.agree(T) =

{ return T.totalprice <= Fund.availableMoney }

4.6.2 Iterative WLC-Setups

From a 10,000 feet perspective an agreement can be considered a different
WLC-iteration where the participants agree upon the string describing the SQL-
transaction to be executed rather than the outcome of running that transac-
tion. This is visualized in Figure 4.8. In WLC 1 the organizations must
first agree upon a trade to be done (represented as an SQL-transaction). If
the organizations agree, a SQL string is inserted into a table PlannedTrades:

INSERT INTO PlannedTrades(TID,SQL_string)
VALUES (42,"UPDATE line SET..."):

If there is consent, that the tuple was inserted, i.e. that this trade should be done, the
corresponding SQL string will be send to WLC 2 which executes the SQL string.

In summary, mapping subphases to incremental rounds of the WLC model enables in-
teresting abstractions. In future work, we plan to investigate these mappings in depth.

4.6.3 Parallel Transaction Execution

Apart from the interplay of the phases, we did not precisely specify how the execute-
subphase actually runs transactions in the underlying database system.

Naively, we could simply execute all valid transactions of a block one by one in a

Chapter 4. ChainifyDB: A Non-invasive Transformation of Database Systems into a
Blockchain System 102

no assumptions

Whatever-phase

Order
subphase

Execute
subphase

Recovery
subphase

Ledger Consensus-phase

Outcome
Consensus

non-consenting
nodes

consenting
nodes

append to
Ledger

no assumptions

Whatever-phase

Order
subphase

Execute
subphase

Recovery
subphase

Ledger Consensus-phase

Outcome
Consensus

non-consenting
nodes

consenting
nodes

Transaction:
INSERT INTO PlannedTrades(TID,SQL_string)
VALUES (42, 

"UPDATE line SET A = 5 WHERE B = 100;
 UPDATE line SET A = 8 WHERE B = 42;
 commit;“);

commit;

WLC 1 “transaction agreement“

WLC 2 “effect agreement“

Transaction:
UPDATE line SET A = 5 WHERE B = 100;
UPDATE line SET A = 8 WHERE B = 42;
commit;

consens on what?

table Trades changed!table Trades not changed!

append to
Ledger

Figure 4.8: Transaction agreement can be regarded as running a separate pre-WLC
phase on transaction agreement before executing the actual transaction.

sequential fashion. However, this strategy drastically wastes performance if the under-
lying system is able to execute transactions in parallel.

This leads us to an alternative strategy, where we could simply submit all valid
transactions of a block to the underlying (potentially parallel) database system in one
batch and let it execute them concurrently. While this strategy leverages the perfor-
mance of the underlying system, it creates another problem: it is very likely that every
DBMS schedules the same batch of transactions differently for parallel execution. As
a consequence, the commit order of the transactions likely differs across organizations,
thus increasing the likelihood of non-consent.

The strategy we apply in ChainifyDB sits right between the previously mentioned
strategies and is inspired by the parallel transaction execution proposed in [98] and
relates to the ideas of [37, 28, 75]. When a block of transactions is received by the
execute-subphase, we first identify all existing conflict dependencies between transac-
tions. This allows us to form mini-batches of transactions, that can be executed safely
in parallel, as they have no conflicting dependencies.

4.6. Optimizations 103

Let us see in detail how it works. The process can be decomposed into three phases:

(1) Semantic Analysis. First, for a block of transactions, we do a semantic analysis of
each transaction. Effectively, this means parsing the SQL statements and extracting the
read and write set of each transaction. These read and write sets are realized as intervals
on the accessed columns to support capturing both point query and range query accesses.
For instance, assume the following two single-statement transactions:

T1:UPDATE Foo SET A = 5 WHERE PK = 100;
T2:UPDATE Foo SET A = 8 WHERE PK > 42;

The extracted intervals for these transactions are:

T1: A is updated where PK is in [100,100]
T2: A is updated where PK is in [42,infinity]

(2) Creating the Dependency Graph. With the intervals at hand, we can create the de-
pendency graph for the block. For two transactions having a read-write, write-write, or
write-read conflict, we add a corresponding edge to the graph. Note that as transactions
are inserted into the dependency graph in the execution order given by the block, no
cycles can occur in the graph.

Let us extend the example from our Semantic Analysis Phase and let us assume,
that T1 has been added to the dependency graph already. By inspecting T2 we can
determine that PK[42, inf] overlaps with PK[100,100] of T1. As T2 is an update trans-
action, there is a conflict between T2 and T1 and add a dependency edge from T1 to T2.
Figure 4.9 presents an example dependency graph for 9 transactions.

T3

T1

T6

T4

T5

T2
T8

T7

T9

Stage 1 Stage 2 Stage 3 Stage 4

Figure 4.9: A topological sort of the dependency graph with k = 9 transactions yielding
four execution stages.

Chapter 4. ChainifyDB: A Non-invasive Transformation of Database Systems into a
Blockchain System 104

(3) Executing the Dependency Graph. Finally, we can start executing the transactions
in parallel. To do so, we perform topological sorting, i.e. we traverse the execution
stages of the graph, that are implicitly given by the dependencies. Our example graph
in Figure 4.9 has four stages in total. Within one stage, all transactions can be executed
in parallel, as no dependencies exist between those transactions.

The actual parallel execution on the underlying database system is realized using
k client connections to the DBMS. To execute the transactions within an execution stage
in parallel, the k clients pick transactions from the stage and submit them to the under-
lying system. As our method is conflict free, it guarantees the generation of serializable
schedules.

Therefore we can basically switch off concurrency control on the underlying sys-
tem. This can be done by setting the isolation level of the underlying system to
READ UNCOMMITTED1 [20] to get the best performance out of the DBMS.

4.7 System Architecture
With a good knowledge of the logical design of the Whatever-LedgerConsensus model,
let us now map this logical model to a concrete implementation of ChainifyDB. We
implemented the ChainifyDB majority in Golang, with some additional bits of C++ in
just under 11, 000 LOC. Different components of ChainifyDB, both within and across
the organization, interact using remote procedure calls (RPC). Moreover, ChainifyDB
uses the elliptic package of Golang to sign every message that flows in the network to
preserve integrity.

ChainifyDB consists of three loosely coupled components: ChainifyServer, Exe-
cutionServer, and the CommitServer. A single organization of a ChainifyDB network is
entitled to run as many instances of these components. The components can be scaled
in order to sustain the incoming workload or can be entirely left out if the organization
does not require its functionality. Let us now briefly explore the function of each distinct
component of the ChainifyDB.

ChainifyServer: It is an entry point of a transaction in the ChainifyDB network. It is
responsible for authenticating the client, validating the integrity of the Proposal, assess-
ing the agreement policy for the Proposal, and creating a so-called ChainedTransaction
which wraps the Proposal and other transaction-specific metadata. We will learn more
about ChainedTransaction in the upcoming running example in Section 4.7.1.

1Note however, that typical MVCC-implementations do not provide this level, e.g. in PostgreSQL the
weakest isolation level possible is READ COMMITTED.

4.7. System Architecture 105

Chainify
Server

Commit
Server

Execution
Server

Chainify
Server

Commit
Server

Execution
Server

Ch
ai

ni
fy

Se

rv
er

Co
m

m
it

Se
rv

er
Ex

ec
ut

io
n

Se
rv

erOrdering
Server

Local
Ledger

DBMS X

Local
Ledger

DBMS Y

Lo
ca

l
Le

dg
er

D
BM

S
Z

4

4

4

7

2

Client

1

3

5

5

5

6

6

6

8

8

8

Organization1

Organization2

O
rg

an
iza

tio
n 3

Figure 4.10: Architecture of a sample ChainifyDB network: A concrete instance of the
Whatever-LedgerConsensus model (WLC).

OrderingServer. The ChainifyServer transmits the ChainedTransaction to the Order-
ingServer. Then the OrderingServer batches the received ChainedTransactions and
forwards them to every ExecutionServer in the network. Please note that the Order-
ingServer in ChainifyDB is entirely untrusted. If the OrderingServer is malicious in any
way (sends a different block to the ExecutionServers), organizations will fail to reach
the consensus for the misformed block and elect a new OrderingServer.

ExecutionServer. Once the ExecutionServer receives the block of ChainedTransac-
tions from the OrderingServer, it computes an execution graph for the block using trans-
action dependency analysis described in Section 4.6.3. The ExecutionServer then exe-

Chapter 4. ChainifyDB: A Non-invasive Transformation of Database Systems into a
Blockchain System 106

cutes the graph with the maximum possible parallelism and computes the diff between
the initial and the final state. It forwards the digest of the diff and the block to the local
CommitServer in Step 6.

CommitServer. The CommitServer hashes the LedgerBlockHash of the previous
block, the current block, and the diff together to compute the LedgerBlockHash for
the current block. In other words, the CommitServer encodes the previous consistent
state, the effect of how the current block changed the state, and the next state into a
single LedgerBlockHash. The LedgerBlockHash, along with the block, is then sent
to the CommitServer.

The CommitServer then runs a simple voting-based consensus algorithm to verify
whether a majority of nodes in the network computed the same LedgerBlockHash. If
the LedgerBlockHash satisfies the commit policy, the block appends to the ledger. If
not, this node must recover.

struct Proposal {
struct Payload {

... header;
String sql_tx;

}

Payload payload;
Byte[] signature;

}

Listing 4.1: Proposal format.

struct Agreement {
struct Payload {

... header;
Byte[] proposal_hash;
Bool status;

}

Payload payload;
Byte[] signature;

}

Listing 4.2: Agreement format.

struct ChainedTx {
struct Payload {

... header;
Proposal proposal;
Agreement[] agreements;

}

Payload payload;
Byte[] signature;

}

Listing 4.3: ChainedTx format.

struct Block {
struct Payload {

... header;
ChainedTx[] txns;

}

Payload payload;
Byte[] signature;

}

Listing 4.4: Block format.

4.7. System Architecture 107

struct CommitBlock {
struct Payload {

... header;
Block block;
Byte[] ledger_block_hash;
Bool[] tx_commit_status;

}

Payload payload;
Byte[] signature;

}

Listing 4.5: CommitBlock format.

4.7.1 Running Example

Let us now look at a running example of how the transaction flows in a sample Chaini-
fyDB network shown in Figure 4.4. In Step 1, the client wraps a SQL transaction into a
Proposal. The Proposal, as shown in Listing 4.1, holds the original transaction in SQL
format along with some metadata information such as client id encoded in the header.
The client also signs the transaction and appends the valid signature into the Proposal.
The client then sends the Proposal to the ChainifyServer of Organization 1.

The ChainifyServer of Organization 1 has access to the authentication policy of
the client, the public key of the client, and the policy that defines the subset of organiza-
tions that must agree to this transaction. For simplicity, let us assume that the agreement
policy for this example is ALL, meaning that every organization must agree to execute
every transaction in the system. If the ChainifyServer of Organization 1 successfully au-
thenticates the client, and the verification of the Proposal is successful, it forwards the
Proposal to the Organizations 2 and 3 in Step 2. Every ChainifyServer in the network
executes the agreement logic for the transaction and computes the Agreement as spec-
ified in Listing 4.2. It must incorporate the digest of the Proposal into the Agreement
to guarantee a one to one mapping between the Proposal and the Agreement. We must
make sure that a malicious ChainifyServer cannot pack an Agreement of some Proposal
as an Agreement for some another Proposal. The ChainifyServers of Organizations 2
and 3, then send the Agreement back to the ChainifyServer of Organization 1.

In Step 3, the ChainifyServer of Organization 1 creates a ChainedTx (see List-
ing 4.3) using the original Proposal and the Agreements, and send it to the Order-
ingServer. The OrderingServer queues this ChainedTx into a batch.

Chapter 4. ChainifyDB: A Non-invasive Transformation of Database Systems into a
Blockchain System 108

When the batch has adequate size, or enough time has elapsed, the OrderingServer
produces a block (as shown in Listing 4.4) from this batch. In Step 4, the dispatch
service of OrderingServer forwards the block to every ExecutionServer in the network.

In Step 5, the ExecutionServer of each organization computes the near-optimal
execution graph and executes the transactions in the block using maximum possible
parallelism. After execution, it computes the LedgerBlockHash and forwards the
block and the LedgerBlockHash to the local CommitServer in Step 6.

In Step 7, the CommitServer of each organization acquires the votes for consen-
sus from other organizations. If the LedgerBlockHash is same for the majority of
the organizations, the CommitServer generates the CommitBlock (See Listing 4.5) and
appends it to the local ledger in Step 8. If in case the consensus LedgerBlockHash is
different to the local LedgerBlockHash, a recovery process is instantiated. If consen-
sus fails globally, a new OrderingServer must be elected.

In summary, the ChainifyServer and the ExecutionServer cover the W-phase,
whereas the CommitServer falls under the LC-phase of the Whatever-Ledger Consensus
model. Note that if we purely follow the WLC model, we can exclude the transactions
of the block from the consensus round and the ledger, since technically, we do not care
about how an organization reaches a certain state. However, we still keep the informa-
tion about the transactions per block to enable a recovery phase.

4.8 Experimental Evaluation

To evaluate ChainifyDB we use the following system setup.

4.8.1 Setup and Workload

Type 1 (small): Two quad-core Intel Xeon CPU E5-2407 running at 2.2 GHz, equipped
with 48GB of DDR3 RAM.

Type 2 (large): Two hexa-core Intel Xeon CPU X5690 running at 3.47 GHz, equipped
with 192GB of DDR3 RAM.

Unless stated otherwise, we use a heterogeneous network consisting of three inde-
pendent organizations O1, O2, and O3. Organization O1 owns two machines of type 1,
where PostgreSQL 11.2 is running on one of these machines. Organization O2 owns two
machines of type 1 as well, but MySQL 8.0.18 is running on one of them. Finally, orga-

4.8. Experimental Evaluation 109

Av
g.

 T
hr

ou
gh

pu
t

of
 S

uc
ce

ss
fu

l T
ra

ns
ac

tio
ns

 [T
PS

]

0

1000

2000

3000

4000

5000

6000

Number of clients

3 6 12 24

Fabric Fabric++
ChainifyDB (Any-2) ChainifyDB (All-3)

(a) Throughput of ChainifyDB with Any-2 and All-3 policy for vary-
ing number of clients. Additionally, we evaluate Fabric [18] and Fab-
ric++ [80]. We use the Smallbank workload following a Zipf distribution.

Av
g.

 T
hr

ou
gh

pu
t

of
 S

uc
ce

ss
fu

l T
ra

ns
ac

tio
ns

 [T
PS

]

0

1000

2000

3000

4000

5000

6000

Number of clients

3 6 12 24

MySQL PostgreSQL

(b) Throughput of standalone MySQL and PostgreSQL for varying num-
ber of clients. The same workload as in Figure 4.11(a) is fired using
OLTP-bench. Note that OLTP-bench follows a uniform distribution.

Figure 4.11: Throughput of successful transactions for the heterogeneous setup as de-
scribed in Section 4.8.1.

nization O3 owns two machines of type 2, where again PostgreSQL is running on one of
the machines. The individual components of ChainifyDB, as described in Section 4.7,
are automatically distributed across the two machines of each organization. Addition-
ally, there is a dedicated machine of type 2 that represents the client firing transactions
to ChainifyDB as well as a type 2 machine that solely runs the ordering service.

Chapter 4. ChainifyDB: A Non-invasive Transformation of Database Systems into a
Blockchain System 110

As consensus policy, we configure two different options: In the first option Any-2
we set c = 2 such that at least two out of our three organizations have to produce the
same effect to reach consensus. In the second option All-3 we set c = 3 and consensus
is reached only if all three organizations produce the same effect. In any case, all three
organizations have to agree to every transaction. Besides, empirical evaluation revealed
a block size of 4096 transactions to be a good fit (see Section 4.8.5). Of course, we also
activate parallel transaction execution as described in Section 4.6.3.

As workload we use transactions from Smallbank [11], which simulate a typical
asset transfer scenario. To bootstrap the test, we create for 100,000 users a checking ac-
count and a savings account each and initialize them with random balances. The work-
load consists of the following four transactions: TransactSavings and DepositChecking
increase the savings account and the checking account by a certain amount. SendPay-
ment transfers money between two given checking accounts. WriteCheck decreases a
checking account by a certain amount. During a single run, we repeatedly fire these four
transactions at a fire rate of 4096 transactions per client, where we uniformly pick one
of the transactions in a random fashion. For each picked transaction, we determine the
accounts to access based on a Zipfian distribution with a s-value of 1.1 and a v-value
of 1, unless stated otherwise.

4.8.2 Throughput

We start the experimental evaluation of ChainifyDB by inspecting the most important
metric of a blockchain system: the throughput of successful transactions, that make it
through the system.

Therefore, we first inspect the throughput of ChainifyDB in our heterogeneous
setup under our two different consensus policies Any-2 and All-3. Additionally to
ChainifyDB, we show the following two PBS baselines: (a) Vanilla Fabric [18] v1.2,
probably the most prominent PBS system currently. (b) Fabric++ [80], an improved
version of Fabric v1.2. Both Fabric and Fabric++ are also distributed across the same
set of machines and the blocksize is set to 1024.

Figure 4.11(a) shows the results. On the x-axis, we vary the number of clients
firing transactions concurrently from 3 clients to 24 clients. On the y-axis, we show the
average throughput of successful transactions, excluding a ramp-up phase of the first
five seconds. We can observe that ChainifyDB using the Any-2 strategy shows a signifi-
cantly higher throughput than Fabric++ with up to almost 5000 transactions per second.
In comparison, Fabric++ achieves only around 1000 transactions per second, although
it makes considerably more assumptions than ChainifyDB: First, it assumes the order-

4.8. Experimental Evaluation 111

ing service to be trustworthy. Second, it assumes the execution to be deterministic and
therefore does not perform any consensus round on the state.

Organization 1: Recovery finishes

Organization 3: Failure

Organization 1:
Deviation detected
Recovery starts

Organization 1:

Continues progressing as
Organization 2 catches up.

(a) Heterogeneous Setup (2x PostgreSQL, 1x MySQL).

Organization 1: Recovery finishes

Organization 1: Deviation detected

Organization 2:

Continues progressing as
Organization 1 catches up.

Organization 3: Failure

Recovery starts

Organization 2: Stops progressing

(b) Homogeneous Setup (3x PostgreSQL).

Figure 4.12: Robustness and recovery of ChainifyDB under the Any-2 consensus policy.

Regarding ChainifyDB, we can also observe that there is a large performance gap
between the Any-2 and the All-3 strategy. The reason for this lies in the heterogeneous
setup we use. The two organizations running PostgreSQL are able to process the work-
load significantly faster than the single organization running MySQL. Thus, under the
Any-2 strategy, the two organizations using PostgreSQL are able to lead the progress,

Chapter 4. ChainifyDB: A Non-invasive Transformation of Database Systems into a
Blockchain System 112

without having to wait for the significantly slower third organization. Under the All-3
strategy, the progress is throttled by the slowest organizations running MySQL.

The difference in processing speed also becomes visible, if we inspect the through-
put of the stand-alone single-instance database systems in Figure 4.11(b) under the same
workload. This time, we fire the transactions using OLTP-bench [27]. Note that both
system are configured with a buffer size of 2GB to keep the working set in main mem-
ory. As we can see, PostgreSQL significantly outperforms MySQL under this workload
independent of the number of clients.

There is one more observation we can make: By comparing Figure 4.11(a) and Fig-
ure 4.11(b) side-by-side, we can see that ChainifyDB introduces only negligible over-
head over the raw database systems. In fact, for 3, 6, and 12 clients, ChainifyDB under
the Any-2 policy actually produces a slightly higher throughput than raw PostgreSQL.
The reasons for this lies in our optimized parallel transaction execution, which exploits
the batch-wise inflow of transactions, and executes the transaction at the lowest possible
isolation level.

For completeness, we also show in Table 4.2 the throughput for Smallbank, where
the accounts are picked following a uniform distribution. As we can see, the throughput
under a uniform distribution is even higher with up to 6144 transactions per second than
under the skewed Zipf distribution, as it allows for a higher degree of parallelism during
execution due to less conflicts between transactions.

Distribution 3 Clients 6 Clients 12 Clients 24 Clients
Zipf 2757 TPS 3676 TPS 4709 TPS 4812 TPS
Uniform 2279 TPS 3840 TPS 5774 TPS 6144 TPS

Table 4.2: Average throughput of successful transactions for ChainifyDB (Any-2) under
Smallbank following a Zipf distribution and a uniform distribution.

4.8.3 Robustness and Recovery

Apart from the transaction processing performance, the robustness and recovery capa-
bilities are crucial properties of ChainifyDB as well. To put these capabilities to the test,
in the following experiment, we will disturb our ChainifyDB network in two different
ways: First, we forcefully corrupt the database of one organization and see whether
ChainifyDB is able to detect and recover from it. Afterwards, we bring down one orga-
nization entirely and see whether the network is able to continue progressing. Of course,
we are also interested in the performance of the recovery processes.

4.8. Experimental Evaluation 113

Precisely, we have the following setup for this experiment: In the first phase, we
sustain our ChainifyDB network with transactions of the Smallbank workload. These do
not cause the organizations to deviate in any way. Consequently, this phase essentially
resembles the standard processing situation of ChainifyDB. Then, after a certain amount
of time, we manually inject an update to the table of organization O1 and see how fast O1
is able to recover from the deviation. Note that we do not perform this update through a
ChainifyDB transaction, but externally by directly modifying the table in the database.
Finally, we simulate a complete failure of one organization by removing it from the
network. The remaining two organizations then have to reach consensus to be able to
progress under the Any-2 policy.

In Figure 4.12(a), we visualize the progress of all organizations for our typical het-
erogeneous setup. Additionally, in Figure 4.12(b), we test a homogeneous setup, where
all three organizations run PostgreSQL. On the x-axis, we plot the time of commit for
each block. On the y-axis, we plot the corresponding block IDs. Every five committed
blocks, each organizations creates a local checkpoint.

Let us start with our typical heterogeneous setup in Figure 4.12(a). First of all, we
can observe that the organizations O1 and O3, which run PostgreSQL, progress much
faster than organization O2 running MySQL. Shortly after the update has been applied
to O1, it detects the deviation in the consensus round and starts recovery from the most
recent checkpoint. Interestingly, this also stops the progression of organization O3,
as O3 is not able to reach consensus anymore according to the Any-2 policy: O1 is
busy with recovery and O2 is too far behind. As soon as O1 recovers, which takes
around 17 seconds, O3 also restarts progressing, as consensus can be reached again.
Both O1 and O3 progress until we let O3 fail. Now, O1 can not progress anymore, as
O3 is not reachable and O2 still too far behind due its slow database system running
underneath. Thus, O1 halts until O2 has caught up. As soon as this is the case, both O1
and O2 continue progressing at the speed of the slower organization, namely O2.

In Figure 4.12(b), we retry this experiment on a homogeneous setup, where all
organization run PostgreSQL. Thus, this time there is no drastically slower organiza-
tion throttling the network. Again, at a certain point in time, we externally corrupt the
database of organization O1 by performing an update and O1 starts to recover from the
most recent checkpoint. In contrast to the previous experiment, this time the recovery
of O1 does not negatively influence any other organization: O2 and O3 can still reach
consensus under the Any-2 policy and continue progressing, as none of the two is be-
hind the other one. Recovery itself takes only around 4 seconds this time and in this
case, another organization is ready to perform a consensus round right after recovery.
When organization O3 fails, O2 has to halt processing for a short amount of time, as
organization O1 has to catch up.

Chapter 4. ChainifyDB: A Non-invasive Transformation of Database Systems into a
Blockchain System 114

In summary, these experiments show (a) that we can detect state deviation and re-
cover from it, (b) that the network can progress in the presence of organization failures,
(c) that all organizations respect the consensus policy at all times, and (d) that recover
neither penalizes the individual organizations nor the entire network significantly.

4.8.4 Cost Breakdown

In Section 4.8.2, we have seen the end-to-end performance of ChainifyDB. In the fol-
lowing, we want to analyze how much individual components contribute to this perfor-
mance.

Precisely, we want to investigate: (a) The cost of all cryptographic computation,
such as signing and validation, that is happening at several stages in the pipeline (see
Section 4.7 for details). (b) The impact of parallel transaction execution on the underly-
ing database system (see Section 4.6.3 for details).

Av
g.

 T
hr

ou
gh

pu
t

of
 S

uc
ce

ss
fu

l T
ra

ns
ac

tio
ns

 [T
PS

]

0

1000

2000

3000

4000

5000

6000

ChainifyDB Configuration Options
Crypto & SerialExec No Crypto & SerialExec Crypto & ParallelExec No Crypto & ParallelExec

ChainifyDB (Any-2) ChainifyDB (All-3)

Figure 4.13: Cost breakdown of ChainifyDB.

Figure 4.13 shows the results. We can observe that the overhead caused by cryp-
tographic computation is surprisingly small. Under the Any-2 policy, turning on all
cryptographic components decreases the throughput only by 7% for parallel execution.
Under the All-3 policy, the decrease is only 8.5%. While our cryptographic compo-
nents have little negative effects, our parallel transaction execution obviously has a very
positive one. With activated cryptography, parallel transaction execution improves the
throughput by up to 5x.

4.9. Conclusion 115

4.8.5 Varying Blocksize

Finally, let us inspect the effect of the blocksize, which is an important configuration
parameter in any blockchain system. We vary the blocksize from 256 transactions per
block in logarithmic steps up to 4096 transactions per block and report the average
throughput of successful transactions.

Av
g.

 T
hr

ou
gh

pu
t

of
 S

uc
ce

ss
fu

l T
ra

ns
ac

tio
ns

 [T
PS

]

0

1000

2000

3000

4000

5000

6000

Number of transactions per block

256 512 1024 2048 4096

ChainifyDB (Any-2) ChainifyDB (All-3)

Figure 4.14: The effect of varying the blocksize.

Figure 4.14 shows the results. We can see that both under the Any-2 and All-3 policy, the
throughput increases with the blocksize. This increase is mainly caused by our parallel
transaction execution mechanism, which analyzes the whole block of transactions and
schedules them for parallel conflict-free execution.

4.9 Conclusion

In this work, we introduced a highly flexible processing model for permissioned
blockchain systems called the Whatever-LedgerConsensus model. WLC avoids mak-
ing assumptions on the deterministic behavior of individual organizations by reaching
consensus on the effects instead of the actions. We clearly formalized WLC and dis-
cussed in detail the recovery options in that landscape. To showcase the strengths of
WLC, we proposed ChainifyDB, an implementation of a blockchain layer, which is
able to chainify arbitrary data management systems and connect them in a network. In
an extensive experimental evaluation, we showed that ChainifyDB does not only offer a
6x higher throughput than comparable baselines, but also introduces a robust recovery
mechanism, which grant organizations the chance to rehabilitate.

Chapter 5

Conclusion

Data management requirements have grown immensely in the last decade to support
evolving business requirements. And with the growing diversity of workloads, enter-
prises are faced with the necessity to add new systems to their technology stack, adding
to the complexity and cost of their business. If firms keep selecting a new data man-
agement system for every new problem, soon they will have a technology stack that is
infeasible both in terms of maintenance and cost. This problem demands the necessity
of a unified system that can handle at least some distinct data management workload
efficiently. In this work, we argued that a single system can efficiently serve both the
transactional and the analytical workloads. We also propose a platform to transform an
existing database infrastructure in a non-invasive manner to support transactions with a
blockchain-level guarantee without adding an all-new system into the technology stack.

In the first part of this thesis, we investigated and introduced different solutions to
unify transactional and analytical workloads. We recognized only one way to achieve
this without hampering the performance of the system, which is by running these work-
loads in isolation. And this degree of separation requires an efficient snapshotting mech-
anism that helps the system to isolate these workloads efficiently. We proposed two dis-
tinct ways to create a snapshot of a virtual memory area. The first user-space technique
exploits the concept of main-memory files using rewiring to create a copy of a virtual
memory area. We utilized signal handlers provided by the Linux kernel to manually
perform the copy-on-write operation and keep the copies isolated. We observed that the
manual copy-on-write is expensive, and the cost of creating the snapshot using rewiring
is highly dependent on the fragmentation of the virtual memory area. To overcome the
snapshot management cost, we propose an alternative snapshotting system call imple-
mented inside the Linux kernel. The system call allows us to handover the snapshot
maintenance and copy-on-write mechanism to the operating system. So, the user uses

117

Chapter 5. Conclusion 118

the snapshotting system call like a simple memcpy(), and everything else is hidden un-
derneath by the OS. While our system call has a similar performance in terms of GB/s to
fork(), it gives us the flexibility to create snapshots at a granularity of a virtual page.

To show the impact of fast snapshotting, we developed a prototype main-memory
database system that implements a variant of the multi-version concurrency control. We
evaluated our database system using different snapshotting strategies to show the impact
of efficient snapshotting on the execution of the hybrid workload. We observed that a
simple scan can be as much as 6x slower while running it simultaneous to the transac-
tional workload. For the evaluated workload, even while creating a fresh snapshot for
every incoming analytical query, we achieved up to 4x lower latency for OLAP queries
even in the presence of concurrency transaction processing. We also showed that using
our snapshotting technique, we can execute an analytical query under full-serializability
as fast as if the isolation level is read-uncommitted, giving much stronger guarantees for
the transactional system. Hence, achieving the goal of integrating hybrid workload pro-
cessing into a single system without any significant impact on the performance of the
system.

Another category of data management system that has recently gained immense
popularity is the blockchain system. While these systems bring trust into an untrusted
environment, making the state and history tamper-proof, they are way off in terms of
performance in comparison to the relational database systems. And above all, they
are mostly an all-new system in our technology stack. In Chapter 3, we investigated
the transaction processing pipeline of a state-of-the-art permissioned-blockchain system
to show its weaknesses and pinpoint the components of the transaction-pipeline that
can learn a great deal from the mature database research. We extended Fabric with
database technology to show the impact of using relational database research on the
performance of the system under contended workloads, improving the throughput by
up to 12x when compared to the vanilla Fabric. On our journey through this project,
we observed the naiveness of the design of these systems and realized that bringing the
permissioned-blockchain system on the same page to the relational database systems in
terms of performance requires a much deeper modification to these systems.

Lastly, we looked at an entirely new system architecture for blockchain systems:
the WhateverLedger Consensus model. It aims to drop some critical assumptions that
make the permissioned-blockchain systems weak. Instead of running consensus on the
order of the transactions, like other blockchain systems, our proposed architecture de-
lays the consensus until the very end. This model allows us to ignore what was done
by the nodes, and accept the transactions if all nodes are in the same state after execu-
tion. We also proposed ChainifyDB, an instance of a WL-C model that can transform a
set of database nodes into a blockchain system without adding much overhead in terms

5.1. Future Work 119

of performance. Our evaluation showed that we achieve up to 6x higher throughput
in comparison to our state-of-the-art baselines, and our concurrency control mecha-
nism implemented outside the database system can outperform the concurrency control
protocol implemented by the evaluated database systems. ChainifyDB gives us high
throughput, stronger blockchain-level guarantees, and much more without adding any
new system to the technology stack. Thus businesses can keep all their data in one place
inside the database system and still get all the functionalities of a blockchain system.

In summary, we analyzed transaction processing pipelines of main-memory
database systems and the permissioned-blockchain systems, proposed innovative op-
timizations, carefully examined the impact of snapshots on the performance of these
systems, and presented a platform to transform an existing database infrastructure into
a blockchain infrastructure.

5.1 Future Work

Proper research is all about opening new chapters rather than closing them. So, let us
discuss some possible extensions of the contributions made by this thesis.

Snapshot Manager. Now that we can create snapshots at a much faster rate, we get
into the problem of managing the created virtual-snapshots. Also, we should keep in
mind that the snapshotting cost is still dependent on the size of the snapshot itself.
So, as soon as the size of the virtual-snapshot is too large, we might have to think
about alternatives. It might also be infeasible to snapshot for every individual analytical
query. Here comes the task of the snapshot manager. We can develop the snapshot
manager to make some decisions based on the workload, like when to snapshot? Or
what to snapshot? It may decide to snapshot the optimal subset of columns or even
a horizontal slice of the table, which might be sufficient for executing the incoming
analytical query. We might also utilize machine learning or even deep learning to learn
the best-snapshotting strategy. This strategy may try to optimize the model for the cost
of snapshots, the SLA concerning the real-time analytics guarantee of the system, or
even the overall memory consumption of the system. We have to be careful about the
memory because as we keep more and more prepared virtual-snapshots, we increase the
total memory consumption of the system.

Transactions, analytics, and blockchain in a single system. This thesis presents two
distinct systems AnKerDB and ChainifyDB, which provide us with two very different

Chapter 5. Conclusion 120

features. One of the next tasks can be to combine the two projects to create one system
with OLTP, OLAP, and the blockchain features into a single system. Enabling OLAP
on blockchain systems brings a lot of exciting challenges concerning the guarantees of
the blockchain system [87]. Having a fast snapshotting mechanism can also help us in
efficiently identifying state modifications, presenting a significant optimization for the
ChainifyDB.

Optimizing ChainifyDB’s external concurrency control. As shown already in
Chapter 4, our external concurrency control implementation outperforms the inbuilt
concurrency control of PostgreSQL and MySQL. However, it is not perfect. It is tough
to predict the conflicting nature of two transactions that select on two completely differ-
ent attributes, adding an edge in their dependency graph. Our next goal can be to move
from pessimistic to optimistic execution of these two transactions and identify the con-
flicts after executing the transaction. The goal of this project is to execute transactions
in a pessimistic way if we can identify the conflict and optimistically for the case where
we cannot say anything about the nature of the conflict. We may also use machine learn-
ing here to learn the correlation between different attributes to filter out the optimistic
execution of transactions that have a very high chance of conflict. Solving this problem
has its challenges since, efficiently validating the transactions for conflict from outside
of the database is not so trivial.

Appendix A

AnKer’s System Call Implementation

We have attached the patchfile [17] for the Linux kernel v4.16 for interested readers.
Please note that this code and technology is provided for academic use only. The snap-
shotting mechanism can be used commercially only after receiving a written permission
form the authors.

d i f f −uNr l i n u x . v a n i l l a / a r c h / x86 / a n k e r / a n k e r . c l i n u x . a n k e r / a r c h / x86 / a n k e r / a n k e r . c
−−− l i n u x . v a n i l l a / a r c h / x86 / a n k e r / a n k e r . c 1970 −01 −01 0 1 : 0 0 : 0 0 . 0 0 0 0 0 0 0 0 0 +0100
+++ l i n u x . a n k e r / a r c h / x86 / a n k e r / a n k e r . c 2018 −05 −20 1 8 : 4 2 : 3 3 . 6 9 8 5 2 9 4 9 2 +0200
@@ −0 ,0 +1 ,119 @@
+/**
+ * F i l e : a r c h / x86 / a n k e r / a n k e r . c
+ * Author : Ankur Sharma <ankur . sharma@uni − s a a r l a n d . de>
+ * Date : 0 9 . 0 7 . 2 0 1 7
+ * L a s t Modi f i ed Date : 0 9 . 1 0 . 2 0 1 7
+
+ * C o p y r i g h t (c) 2018 Ankur Sharma <ankur . sharma@uni − s a a r l a n d . de>
+ * /
+
+# i n c l u d e <l i n u x /mm. h>
+# i n c l u d e <l i n u x / mman . h>
+# i n c l u d e <l i n u x / mm types . h>
+# i n c l u d e <l i n u x / s y s c a l l s . h>
+
+# i n c l u d e <asm / t l b f l u s h . h>
+# i n c l u d e <asm / s y s c a l l s . h>
+
+# i n c l u d e ” . . /mm/ i n t e r n a l . h ”
+
+# d e f i n e PAGE ALIGNMENT ((1 << PAGE SHIFT) − 1)
+
+/*
+ * SYSCALL NR 333
+ * a n k e r : vm snapsho t (vo id * , u n s i g n e d long) ;
+ * /
+SYSCALL DEFINE2 (vm snapshot , u n s i g n e d long , s r c a d d r , u n s i g n e d long , l e n)

121

Chapter A. AnKer’s System Call Implementation 122

+{
+ s t r u c t m m s t r u c t *mm = c u r r e n t −>mm;
+ s t r u c t v m a r e a s t r u c t *vma ;
+ u n s i g n e d long r e t = −EINVAL ;
+ boo l l o c k e d = f a l s e ;
+ s t r u c t v m u s e r f a u l t f d c t x u f = NULL VM UFFD CTX ;
+ u n s i g n e d long m a p f l a g s = 0 ;
+ u n s i g n e d long new addr = 0 , c h a r g e d = 0 ;
+ u n s i g n e d long new len = PAGE ALIGN (l e n) ;
+ LIST HEAD (u f u n m a p e a r l y) ;
+ LIST HEAD (uf unmap) ;
+
+ i f (o f f s e t i n p a g e (s r c a d d r))
+ r e t u r n r e t ;
+
+ / *
+ * We a l l o w a z e r o old − l e n as a s p e c i a l c a s e
+ * f o r DOS−emu ” d u p l i c a t e shm a r e a ” t h i n g . But
+ * a z e r o new− l e n i s n o n s e n s i c a l .
+ * /
+ i f (! new len)
+ r e t u r n r e t ;
+
+ i f (d o w n w r i t e k i l l a b l e (&mm−>mmap sem))
+ r e t u r n −EINTR ;
+
+ / *
+ * We weren ’ t a b l e t o j u s t expand or s h r i n k t h e a rea ,
+ * we need t o c r e a t e a new one and move i t . .
+ * /
+ r e t = −ENOMEM;
+
+ vma = f ind vma (mm, s r c a d d r) ;
+
+ i f (! vma) go to o u t ;
+
+ i f (vma−>v m f l a g s & VM MAYSHARE)
+ m a p f l a g s |= MAP SHARED;
+
+ new addr = g e t u n m a p p e d a r e a (vma−>v m f i l e , 0 , new len ,
+ vma−>vm pgoff +
+ ((s r c a d d r − vma−>v m s t a r t) >> PAGE SHIFT) ,
+ m a p f l a g s) ;
+
+ i f (o f f s e t i n p a g e (new addr))
+ {
+ r e t = new addr ;
+ go to o u t ;
+ }
+
+ f o r (; vma && c h a r g e d < new len ; vma = vma−>vm next)
+ {
+ l e n = vma−>vm end − (s r c a d d r + c h a r g e d) ;
+ l e n = (new len − c h a r g e d < l e n) ? new len − c h a r g e d : l e n ;
+
+ r e t = anke r copy vma (vma , s r c a d d r + charged ,
+ new addr + charged , l en , &locked ,
+ &uf , &uf unmap) ;
+
+ / * unmap new copy i f a n y t h i n g f a i l e d * /
+ i f (r e t == −ENOMEM) {
+ u p w r i t e (& c u r r e n t −>mm−>mmap sem) ;

123

+ vm munmap (new addr , new addr + c h a r g e d) ;
+ r e t u r n r e t ;
+ }
+
+ c h a r g e d += l e n ;
+ }
+
+ o u t :
+ u p w r i t e (& c u r r e n t −>mm−>mmap sem) ;
+ i f (l o c k e d)
+ mm populate (new addr , new len) ;
+ r e t u r n r e t ;
+}
d i f f −uNr l i n u x . v a n i l l a / a r c h / x86 / a n k e r / M a k e f i l e l i n u x . a n k e r / a r c h / x86 / a n k e r / M a k e f i l e
−−− l i n u x . v a n i l l a / a r c h / x86 / a n k e r / M a k e f i l e 1970 −01 −01 0 1 : 0 0 : 0 0 . 0 0 0 0 0 0 0 0 0 +0100
+++ l i n u x . a n k e r / a r c h / x86 / a n k e r / M a k e f i l e 2018 −05 −20 1 8 : 4 2 : 3 3 . 6 9 8 5 2 9 4 9 2 +0200
@@ −0 ,0 +1 @@
+obj −$ (CONFIG ANKER VMSNAPSHOT) := a n k e r . o
d i f f −uNr l i n u x . v a n i l l a / a r c h / x86 / e n t r y / s y s c a l l s / s y s c a l l 6 4 . t b l l i n u x . a n k e r / a r c h / x86 /

e n t r y / s y s c a l l s / s y s c a l l 6 4 . t b l
−−− l i n u x . v a n i l l a / a r c h / x86 / e n t r y / s y s c a l l s / s y s c a l l 6 4 . t b l 2018 −05 −20

1 8 : 1 8 : 2 2 . 3 1 5 5 5 2 2 6 6 +0200
+++ l i n u x . a n k e r / a r c h / x86 / e n t r y / s y s c a l l s / s y s c a l l 6 4 . t b l 2018 −05 −20 1 8 : 4 2 : 3 3 . 7 0 8 5 2 9 3 2 5

+0200
@@ −339 ,6 +339 ,8 @@
330 common p k e y a l l o c s y s p k e y a l l o c
331 common p k e y f r e e s y s p k e y f r e e
332 common s t a t x s y s s t a t x
+333 64 vm snapsho t s y s v m s n a p s h o t
+

#
x32 − s p e c i f i c sys tem c a l l numbers s t a r t a t 512 t o a v o i d cache im pa c t
d i f f −uNr l i n u x . v a n i l l a / a r c h / x86 / M a k e f i l e l i n u x . a n k e r / a r c h / x86 / M a k e f i l e
−−− l i n u x . v a n i l l a / a r c h / x86 / M a k e f i l e 2018 −05 −20 1 8 : 1 8 : 2 2 . 3 1 5 5 5 2 2 6 6 +0200
+++ l i n u x . a n k e r / a r c h / x86 / M a k e f i l e 2018 −05 −20 1 8 : 4 2 : 3 3 . 6 9 8 5 2 9 4 9 2 +0200
@@ −271 ,7 +271 ,7 @@
l i b s −y += a r c h / x86 / l i b /

See a r c h / x86 / Kbui ld f o r c o n t e n t o f c o r e p a r t o f t h e k e r n e l
−core −y += a r c h / x86 /
+ core −y += a r c h / x86 / a r c h / x86 / a n k e r /

d r i v e r s −y a r e l i n k e d a f t e r core −y
d r i v e r s −$ (CONFIG MATH EMULATION) += a r c h / x86 / math −emu /
d i f f −uNr l i n u x . v a n i l l a / i n c l u d e / l i n u x / huge mm . h l i n u x . a n k e r / i n c l u d e / l i n u x / huge mm . h
−−− l i n u x . v a n i l l a / i n c l u d e / l i n u x / huge mm . h 2018 −05 −20 1 8 : 1 8 : 2 2 . 3 1 5 5 5 2 2 6 6 +0200
+++ l i n u x . a n k e r / i n c l u d e / l i n u x / huge mm . h 2018 −05 −20 1 8 : 4 2 : 3 5 . 6 0 5 1 6 4 1 8 5 +0200
@@ −43 ,6 +43 ,9 @@
e x t e r n boo l move huge pmd (s t r u c t v m a r e a s t r u c t *vma , u n s i g n e d long o l d a d d r ,
u n s i g n e d long new addr , u n s i g n e d long o ld end ,
pmd t * old pmd , pmd t *new pmd , boo l * n e e d f l u s h) ;
+ e x t e r n boo l anke r copy huge pmd (s t r u c t v m a r e a s t r u c t *vma , s t r u c t v m a r e a s t r u c t *

new vma ,
+ u n s i g n e d long o l d a d d r , u n s i g n e d long new addr , u n s i g n e d long o ld end ,
+ pmd t * old pmd , pmd t *new pmd , boo l * n e e d f l u s h) ;
e x t e r n i n t change huge pmd (s t r u c t v m a r e a s t r u c t *vma , pmd t *pmd ,
u n s i g n e d long addr , p g p r o t t newprot ,
i n t p ro t numa) ;
d i f f −uNr l i n u x . v a n i l l a / i n c l u d e / l i n u x /mm. h l i n u x . a n k e r / i n c l u d e / l i n u x /mm. h
−−− l i n u x . v a n i l l a / i n c l u d e / l i n u x /mm. h 2018 −05 −20 1 8 : 1 8 : 2 2 . 3 1 8 8 8 5 5 3 8 +0200
+++ l i n u x . a n k e r / i n c l u d e / l i n u x /mm. h 2018 −05 −20 1 8 : 4 2 : 3 5 . 6 2 5 1 6 3 8 4 9 +0200

Chapter A. AnKer’s System Call Implementation 124

@@ −1312 ,6 +1312 ,9 @@
u n s i g n e d long end , u n s i g n e d long f l o o r , u n s i g n e d long c e i l i n g) ;
i n t c o p y p a g e r a n g e (s t r u c t m m s t r u c t * d s t , s t r u c t m m s t r u c t * s r c ,
s t r u c t v m a r e a s t r u c t *vma) ;
+ e x t e r n u n s i g n e d long anker copy vma (s t r u c t v m a r e a s t r u c t *vma ,
+ u n s i g n e d long o l d a d d r , u n s i g n e d long new addr , u n s i g n e d long len ,
+ boo l * locked , s t r u c t v m u s e r f a u l t f d c t x * uf , s t r u c t l i s t h e a d * uf unmap

) ;
i n t f o l l o w p t e p m d (s t r u c t m m s t r u c t *mm, u n s i g n e d long a d d r e s s ,
u n s i g n e d long * s t a r t , u n s i g n e d long *end ,
p t e t ** ptepp , pmd t **pmdpp , s p i n l o c k t ** p t l p) ;
d i f f −uNr l i n u x . v a n i l l a / i n c l u d e / l i n u x / s y s c a l l s . h l i n u x . a n k e r / i n c l u d e / l i n u x / s y s c a l l s . h
−−− l i n u x . v a n i l l a / i n c l u d e / l i n u x / s y s c a l l s . h 2018 −05 −20 1 8 : 1 8 : 2 2 . 3 1 8 8 8 5 5 3 8 +0200
+++ l i n u x . a n k e r / i n c l u d e / l i n u x / s y s c a l l s . h 2018 −05 −20 1 8 : 4 2 : 3 5 . 6 5 8 4 9 6 6 2 5 +0200
@@ −940 ,5 +940 ,6 @@
a s m l i n k a g e long s y s p k e y f r e e (i n t pkey) ;
a s m l i n k a g e long s y s s t a t x (i n t dfd , c o n s t c h a r u s e r * pa th , u n s i g n e d f l a g s ,
u n s i g n e d mask , s t r u c t s t a t x u s e r * b u f f e r) ;
−
+/* a n k e r * /
+ a s m l i n k a g e long s y s v m s n a p s h o t (u n s i g n e d long , u n s i g n e d long) ;
e n d i f
d i f f −uNr l i n u x . v a n i l l a / i n c l u d e / u a p i / asm− g e n e r i c / u n i s t d . h l i n u x . a n k e r / i n c l u d e / u a p i / asm−

g e n e r i c / u n i s t d . h
−−− l i n u x . v a n i l l a / i n c l u d e / u a p i / asm− g e n e r i c / u n i s t d . h 2018 −05 −20 1 8 : 1 8 : 2 2 . 3 1 8 8 8 5 5 3 8

+0200
+++ l i n u x . a n k e r / i n c l u d e / u a p i / asm− g e n e r i c / u n i s t d . h 2018 −05 −20 1 8 : 4 2 : 3 5 . 6 9 8 4 9 5 9 5 3

+0200
@@ −732 ,9 +732 ,10 @@

SYSCALL (N R p k e y f r e e , s y s p k e y f r e e)
d e f i n e N R s t a t x 291

SYSCALL (N R s t a t x , s y s s t a t x)
−
+# d e f i n e NR vm snapsho t 333
+ SYSCALL (NR vm snapshot , s y s v m s n a p s h o t)
unde f N R s y s c a l l s
−# d e f i n e N R s y s c a l l s 292
+# d e f i n e N R s y s c a l l s 293

/ *
* A l l s y s c a l l s below h e r e s h o u l d go away r e a l l y ,
d i f f −uNr l i n u x . v a n i l l a / i n i t / Kconf ig l i n u x . a n k e r / i n i t / Kconf ig
−−− l i n u x . v a n i l l a / i n i t / Kconf ig 2018 −05 −20 1 8 : 1 8 : 2 2 . 3 1 8 8 8 5 5 3 8 +0200
+++ l i n u x . a n k e r / i n i t / Kconf ig 2018 −05 −20 1 8 : 4 2 : 3 5 . 7 2 8 4 9 5 4 5 1 +0200
@@ −37 ,7 +37 ,6 @@
and p u t t a s k s t a c k () i n s a v e t h r e a d s t a c k t s k () and ge t wchan () .

menu ” G e n e r a l s e t u p ”
−
c o n f i g BROKEN
boo l

@@ −97 ,8 +96 ,7 @@
r e l e a s e t r e e by l o o k i n g f o r g i t t a g s t h a t be lon g t o t h e c u r r e n t
t o p o f t r e e r e v i s i o n .

− A s t r i n g o f t h e f o r m a t −gxxxxxxxx w i l l be added t o t h e l o c a l v e r s i o n
− i f a g i t − based t r e e i s found . The s t r i n g g e n e r a t e d by t h i s w i l l be
+ A s t r i n g o f t h e f o r m a t −gxxxxxxxx w i l l be added t o t h e l o c a l v e r s i o n i f a g i t −

based t r e e i s found . The s t r i n g g e n e r a t e d by t h i s w i l l be
appended a f t e r any match ing l o c a l v e r s i o n * f i l e s , and a f t e r t h e v a l u e
s e t i n CONFIG LOCALVERSION .

125

d i f f −uNr l i n u x . v a n i l l a / k e r n e l / s y s n i . c l i n u x . a n k e r / k e r n e l / s y s n i . c
−−− l i n u x . v a n i l l a / k e r n e l / s y s n i . c 2018 −05 −20 1 8 : 1 8 : 2 2 . 3 1 8 8 8 5 5 3 8 +0200
+++ l i n u x . a n k e r / k e r n e l / s y s n i . c 2018 −05 −20 1 8 : 4 2 : 3 5 . 7 5 1 8 2 8 3 9 3 +0200
@@ −259 ,3 +259 ,6 @@
c o n d s y s c a l l (s y s p k e y m p r o t e c t) ;
c o n d s y s c a l l (s y s p k e y a l l o c) ;
c o n d s y s c a l l (s y s p k e y f r e e) ;
+
+/* a n k e r : vm snapsho t ˜ d e f i n e d i n mm/ mremap . c * /
+ c o n d s y s c a l l (s y s v m s n a p s h o t) ;
d i f f −uNr l i n u x . v a n i l l a /mm/ huge memory . c l i n u x . a n k e r /mm/ huge memory . c
−−− l i n u x . v a n i l l a /mm/ huge memory . c 2018 −05 −20 1 8 : 1 8 : 2 2 . 3 1 8 8 8 5 5 3 8 +0200
+++ l i n u x . a n k e r /mm/ huge memory . c 2018 −05 −20 1 8 : 4 2 : 3 5 . 7 7 5 1 6 1 3 3 4 +0200
@@ −7 ,7 +7 ,7 @@

d e f i n e p r f m t (fmt) KBUILD MODNAME ” : ” fmt

−# i n c l u d e <l i n u x /mm. h>
+# i n c l u d e <l i n u x /mm. h>
i n c l u d e <l i n u x / sched . h>
i n c l u d e <l i n u x / sched / coredump . h>
i n c l u d e <l i n u x / sched / n u m a b a l a n c i n g . h>

@@ −1836 ,6 +1836 ,77 @@
r e t u r n f a l s e ;
}

+ boo l anke r copy huge pmd (s t r u c t v m a r e a s t r u c t *vma , s t r u c t v m a r e a s t r u c t *new vma ,
+ u n s i g n e d long o l d a d d r , u n s i g n e d long new addr , u n s i g n e d long o ld end ,
+ pmd t * old pmd , pmd t *new pmd , boo l * n e e d f l u s h)
+{
+ s p i n l o c k t * o l d p t l , * n e w p t l ;
+ pmd t pmd ;
+ s t r u c t page * s r c p a g e ;
+ s t r u c t m m s t r u c t *mm = vma−>vm mm ;
+ boo l f o r c e f l u s h = f a l s e ;
+
+ i f ((o l d a d d r & ˜HPAGE PMD MASK) | |
+ (new addr & ˜HPAGE PMD MASK) | |
+ o l d e n d − o l d a d d r < HPAGE PMD SIZE)
+ r e t u r n f a l s e ;
+
+ / *
+ * The d e s t i n a t i o n pmd shouldn ’ t be e s t a b l i s h e d , f r e e p g t a b l e s ()
+ * s h o u l d have r e l e a s e i t .
+ * /
+ i f (WARN ON(! pmd none (* new pmd))) {
+ VM BUG ON(p m d t r a n s h u g e (* new pmd)) ;
+ r e t u r n f a l s e ;
+ }
+
+ / *
+ * We don ’ t have t o worry a b o u t t h e o r d e r i n g o f s r c and d s t
+ * p t l o c k s b e c a u s e e x c l u s i v e mmap sem p r e v e n t s d e a d l o c k .
+ * /
+ o l d p t l = p m d t r a n s h u g e l o c k (old pmd , vma) ;
+ i f (o l d p t l) {
+ n e w p t l = p m d l o c k p t r (mm, new pmd) ;
+ i f (n e w p t l != o l d p t l)
+ s p i n l o c k n e s t e d (new p t l , SINGLE DEPTH NESTING) ;
+ pmd = * old pmd ;
+ i f (p m d p r e s e n t (pmd) && p m d d i r t y (pmd))

Chapter A. AnKer’s System Call Implementation 126

+ f o r c e f l u s h = t r u e ;
+ VM BUG ON (! pmd none (* new pmd)) ;
+
+ i f (i s cow mapp ing (vma−>v m f l a g s)) {
+ p m d p s e t w r p r o t e c t (mm, o l d a d d r , old pmd) ;
+ pmd = p m d w r p r o t e c t (pmd) ;
+ }
+
+ i f (vma−>v m f l a g s & VM SHARED)
+ pmd = pmd mkclean (pmd) ;
+
+ pmd = pmd mkold (pmd) ;
+
+ s r c p a g e = pmd page (pmd) ;
+
+ i f (s r c p a g e) {
+ g e t p a g e (s r c p a g e) ;
+ p ag e a d d a no n r ma p (s r c p a g e , new vma , new addr , t r u e) ;
+ }
+
+ / / add mm counter (mm, MM ANONPAGES, HPAGE PMD NR) ;
+ s e t p m d a t (mm, new addr , new pmd , pmd) ;
+
+ i f (n e w p t l != o l d p t l)
+ s p i n u n l o c k (n e w p t l) ;
+ i f (f o r c e f l u s h)
+ f l u s h t l b r a n g e (vma , o l d a d d r , o l d a d d r + PMD SIZE) ;
+ e l s e
+ * n e e d f l u s h = t r u e ;
+ s p i n u n l o c k (o l d p t l) ;
+ r e t u r n t r u e ;
+ }
+ r e t u r n f a l s e ;
+}
+
+
/ *
* R e t u r n s
* − 0 i f PMD c o u l d n o t be l o c k e d
d i f f −uNr l i n u x . v a n i l l a /mm/ Kconf ig l i n u x . a n k e r /mm/ Kconf ig
−−− l i n u x . v a n i l l a /mm/ Kconf ig 2018 −05 −20 1 8 : 1 8 : 2 2 . 3 1 8 8 8 5 5 3 8 +0200
+++ l i n u x . a n k e r /mm/ Kconf ig 2018 −05 −20 1 8 : 4 2 : 3 5 . 7 7 5 1 6 1 3 3 4 +0200
@@ −422 ,6 +422 ,13 @@
b e n e f i t .
e n d c h o i c e

+ c o n f i g ANKER VMSNAPSHOT
+ boo l ” vm snapsho t () s u p p o r t ”
+ depends on TRANSPARENT HUGEPAGE
+ d e f a u l t n
+ h e l p
+ Use k e r n e l based v i r t u a l memory copy s u p p o r t .
+
c o n f i g ARCH WANTS THP SWAP
d e f b o o l n

d i f f −uNr l i n u x . v a n i l l a /mm/ mmap . c l i n u x . a n k e r /mm/ mmap . c
−−− l i n u x . v a n i l l a /mm/ mmap . c 2018 −05 −20 1 8 : 1 8 : 2 2 . 3 1 8 8 8 5 5 3 8 +0200
+++ l i n u x . a n k e r /mm/ mmap . c 2018 −05 −20 1 8 : 4 2 : 3 5 . 7 8 1 8 2 7 8 8 9 +0200
@@ −3170 ,6 +3170 ,87 @@
}

127

d i f f −uNr l i n u x . v a n i l l a /mm/ mremap . c l i n u x . a n k e r /mm/ mremap . c
−−− l i n u x . v a n i l l a /mm/ mremap . c 2018 −05 −20 1 8 : 1 8 : 2 2 . 3 1 8 8 8 5 5 3 8 +0200
+++ l i n u x . a n k e r /mm/ mremap . c 2018 −05 −20 1 8 : 4 2 : 3 5 . 7 8 1 8 2 7 8 8 9 +0200
@@ −643 ,3 +643 ,235 @@
u s e r f a u l t f d u n m a p c o m p l e t e (mm, &uf unmap) ;
r e t u r n r e t ;
}
+
+/*
+ * AnKer : copy p t e s t o new v i r t u a l a d d r e s s .
+ * /
+ s t a t i c vo id a n k e r c o p y p t e s (s t r u c t v m a r e a s t r u c t *vma , pmd t * old pmd ,
+ u n s i g n e d long o l d a d d r , u n s i g n e d long o ld end ,
+ s t r u c t v m a r e a s t r u c t *new vma , pmd t *new pmd ,
+ u n s i g n e d long new addr , boo l n e e d r m a p l o c k s , boo l * n e e d f l u s h)
+{
+ s t r u c t m m s t r u c t *mm = vma−>vm mm ;
+ p t e t * o l d p t e , * new pte , p t e ;
+ s p i n l o c k t * o l d p t l , * n e w p t l ;
+ boo l f o r c e f l u s h = f a l s e ;
+ s t r u c t page * page ;
+ u n s i g n e d long l e n = o l d e n d − o l d a d d r ;
+
+ i f (n e e d r m a p l o c k s)
+ t a k e r m a p l o c k s (vma) ;
+
+ / *
+ * We don ’ t have t o worry a b o u t t h e o r d e r i n g o f s r c and d s t
+ * p t e l o c k s b e c a u s e e x c l u s i v e mmap sem p r e v e n t s d e a d l o c k .
+ * /
+ o l d p t e = p t e o f f s e t m a p l o c k (mm, old pmd , o l d a d d r , &o l d p t l) ;
+ new pte = p t e o f f s e t m a p (new pmd , new addr) ;
+ n e w p t l = p t e l o c k p t r (mm, new pmd) ;
+
+ i f (n e w p t l != o l d p t l)
+ s p i n l o c k n e s t e d (new p t l , SINGLE DEPTH NESTING) ;
+
+ f l u s h t l b b a t c h e d p e n d i n g (vma−>vm mm) ;
+ a r c h e n t e r l a z y m m u m o d e () ;
+
+ f o r (; o l d a d d r < o l d e n d ; o l d p t e ++ , o l d a d d r += PAGE SIZE ,
+ new pte ++ , new addr += PAGE SIZE) {
+ i f (p t e n o n e (* o l d p t e))
+ c o n t i n u e ;
+
+ p t e = * o l d p t e ;
+
+ / *
+ * I f we a r e remapping a d i r t y PTE , make s u r e
+ * t o f l u s h TLB b e f o r e we drop t h e PTL f o r t h e
+ * o l d PTE or we may r a c e wi th page mkc lean () .
+ *
+ * Th i s check has t o be done a f t e r we removed t h e
+ * o l d PTE from page t a b l e s o r a n o t h e r t h r e a d may
+ * d i r t y i t a f t e r t h e check and b e f o r e t h e remova l .
+ * /
+
+ i f (p t e p r e s e n t (p t e) && p t e d i r t y (p t e))
+ f o r c e f l u s h = t r u e ;
+
+ / *
+ * I f i t ’ s a COW mapping , w r i t e p r o t e c t bo th p a r e n t and c h i l d

Chapter A. AnKer’s System Call Implementation 128

+ *
+ * /
+ i f (i s cow mapp ing (vma−>v m f l a g s)) {
+ p t e p s e t w r p r o t e c t (mm, o l d a d d r , o l d p t e) ;
+ p t e = p t e w r p r o t e c t (p t e) ;
+ }
+
+ / *
+ * I f i t s a s h a r e d mapping , mark i t c l e a n i n t h e c h i l d
+ * /
+ i f (vma−>v m f l a g s & VM SHARED)
+ p t e = p t e m k c l e a n (p t e) ;
+
+ p t e = p t e m k o l d (p t e) ;
+
+ page = vm normal page (vma , o l d a d d r , p t e) ;
+
+ i f (page) {
+ g e t p a g e (page) ;
+ i n c m m c o u n t e r (mm, mm counter (page)) ;
+ i f (vma is anonymous (new vma))
+ p ag e a dd a no n r ma p (page , new vma , new addr , f a l s e) ;
+ e l s e
+ p a g e a d d f i l e r m a p (page , f a l s e) ;
+ }
+
+ / / s e t t h e p t e a t new a d d r e s s
+ s e t p t e a t (mm, new addr , new pte , p t e) ;
+ }
+
+ a r c h l e a v e l a z y m m u m o d e () ;
+
+ i f (n e w p t l != o l d p t l)
+ s p i n u n l o c k (n e w p t l) ;
+ pte unmap (new pte − 1) ;
+
+ i f (f o r c e f l u s h)
+ f l u s h t l b r a n g e (vma , o l d e n d − len , o l d e n d) ;
+ e l s e
+ * n e e d f l u s h = t r u e ;
+
+ p t e u n m a p u n l o c k (o l d p t e − 1 , o l d p t l) ;
+
+ i f (n e e d r m a p l o c k s)
+ d r o p r m a p l o c k s (vma) ;
+}
+
+/*
+ * AnKer : copy t h e page t a b l e s b a c k i n g t h e g i v e n VMA
+ * /
+ u n s i g n e d long a n k e r c o p y p a g e t a b l e s (s t r u c t v m a r e a s t r u c t *vma ,
+ s t r u c t v m a r e a s t r u c t *new vma , u n s i g n e d long o l d a d d r ,
+ u n s i g n e d long new addr , u n s i g n e d long len , boo l n e e d r m a p l o c k s)
+{
+ u n s i g n e d long e x t e n t , nex t , o l d e n d ;
+ pmd t * old pmd , *new pmd ;
+ boo l n e e d f l u s h = f a l s e ;
+ u n s i g n e d long mmun s t a r t ; / * For m m u n o t i f i e r s * /
+ u n s i g n e d long mmun end ; / * For m m u n o t i f i e r s * /
+
+ o l d e n d = o l d a d d r + l e n ;
+ f l u s h c a c h e r a n g e (vma , o l d a d d r , o l d e n d) ;

129

+
+ mmun s t a r t = o l d a d d r ;
+ mmun end = o l d e n d ;
+ m m u n o t i f i e r i n v a l i d a t e r a n g e s t a r t (vma−>vm mm, mmun s ta r t , mmun end) ;
+
+ f o r (; o l d a d d r < o l d e n d ; o l d a d d r += e x t e n t , new addr += e x t e n t) {
+ c o n d r e s c h e d () ;
+
+ n e x t = (o l d a d d r + PMD SIZE) & PMD MASK;
+
+ / * even i f n e x t ove r f lowed , e x t e n t below w i l l be ok * /
+ e x t e n t = n e x t − o l d a d d r ;
+
+ i f (e x t e n t > o l d e n d − o l d a d d r)
+ e x t e n t = o l d e n d − o l d a d d r ;
+
+ old pmd = g e t o l d p m d (vma−>vm mm, o l d a d d r) ;
+
+ i f (! old pmd)
+ c o n t i n u e ;
+
+ new pmd = a l loc new pmd (vma−>vm mm, vma , new addr) ;
+
+ i f (! new pmd)
+ b r e a k ;
+
+ i f (i s swap pmd (* old pmd) | | p m d t r a n s h u g e (* old pmd)) {
+ i f (e x t e n t == HPAGE PMD SIZE) {
+ boo l moved = f a l s e ;
+ / * See comment i n move p te s () * /
+ i f (n e e d r m a p l o c k s)
+ t a k e r m a p l o c k s (vma) ;
+
+ moved = anke r copy huge pmd (vma , new vma , o l d a d d r , new addr ,
+ o ld end , old pmd , new pmd , &n e e d f l u s h) ;
+
+ i f (n e e d r m a p l o c k s)
+ d r o p r m a p l o c k s (vma) ;
+
+ i f (moved)
+ c o n t i n u e ;
+ }
+
+ s p l i t h u g e p m d (vma , old pmd , o l d a d d r) ;
+
+ i f (p m d t r a n s u n s t a b l e (old pmd))
+ c o n t i n u e ;
+ }
+
+ i f (p t e a l l o c (new vma−>vm mm, new pmd , new addr))
+ b r e a k ;
+
+ n e x t = (new addr + PMD SIZE) & PMD MASK;
+
+ i f (e x t e n t > n e x t − new addr)
+ e x t e n t = n e x t − new addr ;
+
+ i f (e x t e n t > LATENCY LIMIT)
+ e x t e n t = LATENCY LIMIT ;
+
+ a n k e r c o p y p t e s (vma , old pmd , o l d a d d r , o l d a d d r + e x t e n t , new vma ,
+ new pmd , new addr , n e e d r m a p l o c k s , &n e e d f l u s h) ;

Chapter A. AnKer’s System Call Implementation 130

+ }
+
+ i f (n e e d f l u s h)
+ f l u s h t l b r a n g e (vma , o ld end − len , o l d a d d r) ;
+
+ m m u n o t i f i e r i n v a l i d a t e r a n g e e n d (vma−>vm mm, mmun s ta r t , mmun end) ;
+
+ r e t u r n l e n + o l d a d d r − o l d e n d ; / * how much done * /
+}
+
+/*
+ * AnKer : copy a l l VMAs b a c k i n g t h e g i v e n v i r t u a l memory a r e a .
+ * * /
+ u n s i g n e d long anker copy vma (s t r u c t v m a r e a s t r u c t *vma ,
+ u n s i g n e d long o l d a d d r , u n s i g n e d long new addr , u n s i g n e d long len ,
+ boo l * locked , s t r u c t v m u s e r f a u l t f d c t x * uf , s t r u c t l i s t h e a d * uf unmap

)
+{
+ s t r u c t m m s t r u c t *mm = vma−>vm mm ;
+ s t r u c t v m a r e a s t r u c t *new vma ;
+ u n s i g n e d long v m f l a g s = vma−>v m f l a g s ;
+ u n s i g n e d long new pgof f ;
+ u n s i g n e d long moved len ;
+ boo l n e e d r m a p l o c k s ;
+
+ / *
+ * We’ d p r e f e r t o a v o i d f a i l u r e l a t e r on i n do munmap :
+ * which may s p l i t one vma i n t o t h r e e b e f o r e unmapping .
+ * /
+ i f (mm−>map count >= s y s c t l m a x m a p c o u n t − 3)
+ r e t u r n −ENOMEM;
+
+ new pgof f = vma−>vm pgoff + ((o l d a d d r − vma−>v m s t a r t) >> PAGE SHIFT) ;
+ new vma = copy vma(&vma , new addr , l en , new pgoff , &n e e d r m a p l o c k s) ;
+
+ i f (! new vma)
+ r e t u r n −ENOMEM;
+
+ moved len = a n k e r c o p y p a g e t a b l e s (vma , new vma , o l d a d d r , new addr ,
+ len , n e e d r m a p l o c k s) ;
+
+ i f (moved len < l e n) {
+ r e t u r n −ENOMEM;
+ }
+
+ v m s t a t a c c o u n t (mm, vma−>vm f lags , l e n >> PAGE SHIFT) ;
+
+ i f (v m f l a g s & VM LOCKED) {
+ mm−>locked vm += l e n >> PAGE SHIFT ;
+ * l o c k e d = t r u e ;
+ }
+
+ r e t u r n new addr ;
+}
d i f f −uNr l i n u x . v a n i l l a /README l i n u x . a n k e r /README
−−− l i n u x . v a n i l l a /README 2018 −05 −20 1 8 : 1 8 : 2 2 . 3 1 5 5 5 2 2 6 6 +0200
+++ l i n u x . a n k e r /README 1970 −01 −01 0 1 : 0 0 : 0 0 . 0 0 0 0 0 0 0 0 0 +0100
@@ −1 ,18 +0 ,0 @@
−Linux k e r n e l
−============
−
− Th i s f i l e was moved t o Documenta t ion / admin − g u i d e /README. r s t

131

−
− P l e a s e n o t i c e t h a t t h e r e a r e s e v e r a l g u i d e s f o r k e r n e l d e v e l o p e r s and u s e r s .
−These g u i d e s can be r e n d e r e d i n a number o f f o r m a t s , l i k e HTML and PDF .
−
− In o r d e r t o b u i l d t h e documen ta t i on , use ‘ ‘ make htmldocs ‘ ‘ o r
− ‘ ‘ make pdfdocs ‘ ‘ .
−
−There a r e v a r i o u s t e x t f i l e s i n t h e Documenta t ion / s u b d i r e c t o r y ,
− s e v e r a l o f them u s i n g t h e R e s t r u c t u r e d Text markup n o t a t i o n .
−See Documenta t ion /00 −INDEX f o r a l i s t o f what i s c o n t a i n e d i n each f i l e .
−
− P l e a s e r e a d t h e Documenta t ion / p r o c e s s / changes . r s t f i l e , a s i t c o n t a i n s t h e
− r e q u i r e m e n t s f o r b u i l d i n g and r u n n i n g t h e k e r n e l , and i n f o r m a t i o n a b o u t
− t h e prob lems which may r e s u l t by u p g r a d i n g your k e r n e l .
d i f f −uNr l i n u x . v a n i l l a /README. md l i n u x . a n k e r /README. md
−−− l i n u x . v a n i l l a /README. md 1970 −01 −01 0 1 : 0 0 : 0 0 . 0 0 0 0 0 0 0 0 0 +0100
+++ l i n u x . a n k e r /README. md 2018 −05 −20 1 8 : 4 2 : 3 3 . 1 7 8 5 3 8 2 1 1 +0200
@@ −0 ,0 +1 ,50 @@
+Linux k e r n e l
+============
+ A c t u a l l i n u x d o c u m e n t a t i o n i s a v a i l a b l e i n ‘ Documenta t ion / admin − g u i d e /README. r s t ‘
+Commit hash o f f i r s t commit 48 c0dcc537 (needed t o c r e a t e a p a t c h) .
+
+#### B u i l d r e q u i r e m e n t s f o r ubun tu 18 .04
+ ‘ sudo ap t − g e t i n s t a l l g i t b u i l d − e s s e n t i a l k e r n e l − package f a k e r o o t l i b n c u r s e s 5 −dev

l i b s s l −dev c ca c he b i s o n f l e x ‘
+
+#### s y s c a l l s p e c i f i c a t i o n :
+ ‘ ‘ ‘ c
+SYSCALL NR 333
+
+ vo id * vm snapsho t (vo id * s r c , u n s i g n e d long l e n g t h) ;
+
+ / / use s y s c a l l d e f i n e d i n u n i s t d . h t o in vok e t h e sys tem c a l l or ,
+ / / use t h e h e a d e r f i l e (a n k e r . h) d e f i n e d i n r a p i d o / t e s t s / i n c l u d e /
+
+ vo id * copy = s y s c a l l (3 3 3 , s r c , l e n g t h) ;
+ ‘ ‘ ‘
+#### C o n f i g u r e k e r n e l w i th VMSNAPSHOT s u p p o r t
+1 . Use ‘ make menuconfig ‘ t o g e n e r a t e a ‘ . c o n f i g ‘ f i l e .
+2 . Enab le t r a n s p a r e n t hugepages by e d i t i n g ‘ . c o n f i g ‘ f i l e .
+ * S e t ‘CONFIG TRANSPARENT HUGEPAGE=y ‘ and ‘CONFIG TRANSPARENT HUGEPAGE MADVISE=y ‘ .
+ * These o p t i o n s a r e n e c e s s a r y t o run t h e t e s t s s p e c i f i e d unde r r a p i d o / t e s t s / s r c /
+3 . Enab le ‘ vm snapsho t () ‘ by s e t t i n g ‘CONFIG ANKER VMSNAPSHOT=y ‘ .
+4 . C u r r e n t l y ‘TRANSPARENT HUGEPAGE‘ must be e n a b l e d t o use ‘ vm snapsho t () ‘ .
+
+#### T e s t i n g t h e k e r n e l
+ Th i s k e r n e l was d e v e l o p e d u s i n g t h e t e s t b e d backed by ‘Qemu ‘ . I have used a tr immed

down v e r s i o n o f [Rapido] (h t t p s : / / g i t h u b . com / r a p i d o − l i n u x / r a p i d o) t h a t p r o v i d e s a
s e t o f s c r i p t s t o q u i ck y g e n e r a t e ‘VM Image ‘ and n e c e s s a r y modules u s i n g Dr a cu t
and b o o t s t h e image u s i n g ‘Qemu ‘ .

+
+#### B u i l d i n s t r u c t i o n s
+1 . G e n e r a t e r e l e v a n t c o n f i g u r e f i l e a s men t ioned above .
+2 . make − j
+3 . INSTALL MOD PATH = . / mods make m o d u l e s i n s t a l l
+
+#### Running t e s t s
+1 . ‘ cd r a p i d o / t e s t s ‘
+2 . ‘ cmake −DCMAKE CXX FLAGS=−O2 . ‘
+3 . ‘ make −j4 ‘
+4 . ‘ cd . . ‘

Chapter A. AnKer’s System Call Implementation 132

+5 . ‘ . / c u t a n k e r . sh ‘
+6 . Boot t h e ‘VM‘ u s i n g ‘ . / vm . sh ‘ .
+7 . T e s t s a r e i n s t a l l e d i n p a t h ‘ / t e s t s / ‘ i n s i d e t h e VM.
+8 . Use ‘ shutdown ‘ t o powerdown t h e ‘VM‘ .
+
+#### P a t c h i n g l i n u x
+1 . C r e a t e p a t c h u s i n g ‘ d i f f ‘ .
+ * ‘ d i f f −uNr l i n u x . v a n i l l a l i n u x . new > p a t c h f i l e ‘
+2 . Apply p a t c h u s i n g ‘ pa tch ‘ .
+ * ‘ cd l i n u x && p a t c h −p1 < . . / p a t c h f i l e ‘
\ No n e w l i n e a t end of f i l e

List of Figures

2.1 Hybrid processing in AnKer. 18

2.2 Visualization of rewiring as shown in [77]. The start address of the
virtual memory area is denoted as b and the page size as p. A consec-
utive virtual memory area of two pages is mapped to a main-memory
file, which is transparently mapped to two potentially scattered physical
pages (left part). The system call mmap can be used to manipulate the
mapping at runtime (right part). 23

2.3 Visualization of the relationship between VMAs and PTEs. The VMAs
store the information about the currently allocated virtual memory areas
alongside with all necessary meta-information. 23

2.4 Comparison of vm snapshot and rewiring in terms of snapshotting
and write cost. After every write to a page, a new snapshot is taken.
Additionally, we show the number of VMAs per column for rewiring
on the right y-axis. 31

2.5 Runtime of scanning versioned tables. We vary the amount of ver-
sioned rows and perform a full scan. 32

2.6 Snapshot creation cost for the individual columns of LINEITEM,
ORDERS, and PART utilizing our system call vm snapshot in compari-
son with using fork. 33

2.7 The eight OLAP queries we use in the evaluation. 36

2.8 Snapshotting Cost and Latency of OLAP queries. 38

2.9 Throughput of OLTP Transactions. 40

2.10 Varying the number of streams used for processing. 41

133

LIST OF FIGURES 134

2.11 Varying the number of streams used for processing. 42

3.1 Transactions per second of vanilla Fabric when meaningful transactions
are fired as described in Section 3.6 for the configuration BS=1024,
RW=8, HR=40%, HW=10%, HSS=1%. Additionally, we show the
throughput when blank transactions are fired. 47

3.2 High-level workflow of Fabric. 50

3.3 Conflict graph C(S) of the transactions in S. 60

3.4 The three strongly connected subgraphs of the conflict graph of Figure 3.3. 60

3.5 The cycle-free conflict graph C(S ′), containing only the transactions
T1, T3, T4, and T5. 61

3.6 Workload 1: Varying the number of conflicts. 63

3.7 Workload 2: Varying the length of the cycles. 65

3.8 Parallelization with early abort using our fine-grained concurrency control. 66

3.9 Effect of the blocksize on the average number of successful transactions
under Fabric and Fabric++. 71

3.10 Average number of successful transactions per second of Fabric and
Fabric++ under the Smallbank workload, as defined in Table 3.7. 72

3.11 Average number of successful transactions per second of Fabric and
Fabric++ under 36 different configurations, as defined in Table 3.8.
We vary the number of read & written balances per transaction (RW),
the probability for picking a hot account for reading (HR) and writing
(HW), and the number of hot account balances (HSS). 73

3.12 Breakdown of the individual impact of our optimizations on the
throughput of successful transactions for the configuration BS=1024,
RW=8, HR=40%, HW=10%, HSS=1%. 75

3.13 The impact of the number of channels as well as the number of clients
per channel on the throughput of successful transactions for the config-
uration BS=1024, RW=8, HR=40%, HW=10%, HSS=1%. 76

3.14 Transactional Throughput of Fabric and Fabric++ under 108 different
configurations. 79

LIST OF FIGURES 135

4.1 The order-consensus-execute model (OCE). The consensus-phase sits
between the order-phase and the execute-phase. As a consequence
of this design, assumptions must be made on everything after the
consensus-phase, namely on the execute-phase. 83

4.2 The order-execute-consensus model (OEC). The consensus-phase sits at
the end of the pipeline, after both order-phase and the execute-phase. As
consensus is reached on the effects of the execute-phase, no assumptions
must be made on any previous phase. 84

4.3 Our Whatever-LedgerConsensus model (WLC). We do not make as-
sumptions on the behavior of the whatever-phase. In the consensus-
phase, consensus is reached on the effects of the whatever-phase. . . . 85

4.4 ChainifyDB as a concrete instance of the Whatever-LedgerConsensus
model (WLC). 94

4.5 Logical tuple-wise per block digest computation on an example table
Foo. All changes are automatically tracked and digested through SQL
99 triggers. 96

4.6 ChainifyDB’s checkpointing mechanism. Here, a checkpoint is created
after every three blocks. 98

4.7 ChainifyDB’s Recovery using checkpoints. As block 46 is non-
consenting it has to enter the recovery phase. It will first try to recover
using the most recent local checkpoint. This fails in this example and
hence recovery from an older checkpoint is performed. 98

4.8 Transaction agreement can be regarded as running a separate pre-WLC
phase on transaction agreement before executing the actual transaction. 102

4.9 A topological sort of the dependency graph with k = 9 transactions
yielding four execution stages. 103

4.10 Architecture of a sample ChainifyDB network: A concrete instance of
the Whatever-LedgerConsensus model (WLC). 105

4.11 Throughput of successful transactions for the heterogeneous setup as
described in Section 4.8.1. 109

4.12 Robustness and recovery of ChainifyDB under the Any-2 consensus
policy. 111

4.13 Cost breakdown of ChainifyDB. 114

LIST OF FIGURES 136

4.14 The effect of varying the blocksize. 115

List of Tables

1.1 List of personal contributions to different projects. 10

2.1 Creating a snapshot using state-of-the-art techniques. We vary the num-
ber of columns on which we snapshot. For rewiring, the number of
modified pages influences the runtime. Thus, we show the snapshotting
cost after 0, 500, 5000, and 50000 pages were modified per column. . . 27

2.2 Varying the number of warehouses and observing the throughput de-
crease. The throughput is given in transactions per second. The last
column shows the slowdown in throughput from 1 warehouse to 40
warehouses. 43

3.1 For the order T1 ⇒ T2 ⇒ T3 ⇒ T4, only one out of four transactions
is valid: T2, T3, and T4 read the outdated version v1 of key k1, that has
been updated by T1 to v2 before. 55

3.2 The order T4 ⇒ T2 ⇒ T3 ⇒ T1 results in all four transactions being valid. 55

3.3 Ten unique keys that are accessed by six transactions, separated in read
set and write set. 59

3.4 If a transaction Ti is a part of a cycle cj , the corresponding cell is set
to 1, otherwise 0. The last row contains for every transaction the total
number of cycles, in which it appears. 61

3.5 Experiment and system configuration. 69

3.6 Experiment and system configuration. 70

3.7 Smallbank workload configuration. 71

137

LIST OF TABLES 138

3.8 Custom workload configuration. 74

3.9 Latency and Throughput as measured by Caliper for Fabric and Fabric++. 77

4.1 The 2 × 3 Whatever Recovery Landscape. The two-dimensions of
Whatever recovery (accessibility of effects vs actions) and their impli-
cations on the classes of recovery algorithms possible 89

4.2 Average throughput of successful transactions for ChainifyDB (Any-2)
under Smallbank following a Zipf distribution and a uniform distribution. 112

Bibliography

[1] Bigchaindb: https://www.bigchaindb.com.

[2] Caliper: https://github.com/hyperledger/caliper.

[3] Ethereum: https://github.com/ethereum/wiki/wiki/white-paper.

[4] Guage github: https://github.com/persistentsystems/gauge/blob/master/docs/caliper-
changes.md.

[5] https://github.com/jpmorganchase/quorum.

[6] Memsql: http://www.memsql.com.

[7] Multichain: https://www.multichain.com/download/multichain-white-paper.pdf.

[8] Mysql: http://www.mysql.com.

[9] NuoDB: http://www.nuodb.com.

[10] Peloton: http://www.pelotondb.org.

[11] Smallbank: http://hstore.cs.brown.edu/documentation/deployment/ benchmark-
s/smallbank/.

[12] Tpc-h: http://www.tpc.org/tpch/.

[13] Guage: https://github.com/persistentsystems/gauge, 2019.

[14] Tendermint: https://tendermint.com/, 2019.

[15] Tpc-c: http://www.tpc.org/tpcc/, 2019.

[16] Ycsb: https://github.com/brianfrankcooper/ycsb, 2019.

[17] Anker: https://github.com/sh-ankur/anker, 2020.

139

BIBLIOGRAPHY 140

[18] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, et al. Hy-
perledger fabric: A distributed operating system for permissioned blockchains.
CoRR, abs/1801.10228, 2018.

[19] Frederik Armknecht, Ghassan O. Karame, Avikarsha Mandal, Franck Youssef,
and Erik Zenner. Ripple: Overview and outlook. In TRUST, volume 9229 of
Lecture Notes in Computer Science, pages 163–180. Springer, 2015.

[20] Philip A. Bernstein. SQL isolation levels. In Encyclopedia of Database Systems
(2nd ed.). Springer, 2018.

[21] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

[22] Jan Böttcher, Viktor Leis, Thomas Neumann, and Alfons Kemper. Scalable
garbage collection for in-memory MVCC systems. PVLDB, 13(2):128–141,
2019.

[23] Christian Cachin. Architecture of the hyperledger blockchain fabric. In Work-
shop on distributed cryptocurrencies and consensus ledgers, volume 310, page 4,
2016.

[24] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Third
USENIX Symposium on Operating Systems Design and Implementation (OSDI),
New Orleans, Louisiana, USA, February 22-25, pages 173–186, 1999.

[25] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,
and Beng Chin Ooi. Towards scaling blockchain systems via sharding. In SIG-
MOD Conference, pages 123–140. ACM, 2019.

[26] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. Hekaton: SQL server’s
memory-optimized OLTP engine. In SIGMOD 2013, New York, NY, USA, June
22-27, 2013, pages 1243–1254, 2013.

[27] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. Oltp-bench: An extensible testbed for benchmarking relational
databases. PVLDB, 7(4):277–288, 2013.

[28] Bailu Ding, Lucja Kot, and Johannes Gehrke. Improving optimistic concur-
rency control through transaction batching and operation reordering. PVLDB,
12(2):169–182, 2018.

BIBLIOGRAPHY 141

[29] Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, et al. Untangling
blockchain: A data processing view of blockchain systems. IEEE Trans. Knowl.
Data Eng., 30(7):1366–1385, 2018.

[30] Jens Dittrich, Lukas Blunschi, and Marcos Antonio Vaz Salles. Indexing mov-
ing objects using short-lived throwaway indexes. In Nikos Mamoulis, Thomas
Seidl, Torben Bach Pedersen, Kristian Torp, and Ira Assent, editors, Advances
in Spatial and Temporal Databases, 11th International Symposium, SSTD 2009,
Aalborg, Denmark, July 8-10, 2009, Proceedings, volume 5644 of Lecture Notes
in Computer Science, pages 189–207. Springer, 2009.

[31] Jens Dittrich, Lukas Blunschi, and Marcos Antonio Vaz Salles. MOVIES: index-
ing moving objects by shooting index images. GeoInformatica, 15(4):727–767,
2011.

[32] Jens Dittrich and Alekh Jindal. Towards a one size fits all database architecture.
In CIDR, pages 195–198. www.cidrdb.org, 2011.

[33] Muhammad El-Hindi, Carsten Binnig, Arvind Arasu, Donald Kossmann, and
Ravi Ramamurthy. Blockchaindb - a shared database on blockchains. PVLDB,
12(11):1597–1608, 2019.

[34] Muhammad El-Hindi, Martin Heyden, Carsten Binnig, Ravi Ramamurthy,
Arvind Arasu, and Donald Kossmann. Blockchaindb - towards a shared database
on blockchains. In SIGMOD Conference, pages 1905–1908. ACM, 2019.

[35] Aaron J. Elmore, Jennie Duggan, Mike Stonebraker, Magdalena Balazinska,
Ugur Çetintemel, Vijay Gadepally, Jeffrey Heer, Bill Howe, Jeremy Kepner, Tim
Kraska, Samuel Madden, David Maier, Timothy G. Mattson, Stavros Papadopou-
los, Jeff Parkhurst, Nesime Tatbul, Manasi Vartak, and Stan Zdonik. A demon-
stration of the bigdawg polystore system. PVLDB, 8(12):1908–1911, 2015.

[36] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van Renesse. Bitcoin-
ng: A scalable blockchain protocol. In Katerina J. Argyraki and Rebecca Isaacs,
editors, 13th USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI 2016, Santa Clara, CA, USA, March 16-18, 2016, pages 45–59.
USENIX Association, 2016.

[37] Jose M. Faleiro, Daniel Abadi, and Joseph M. Hellerstein. High performance
transactions via early write visibility. PVLDB, 10(5):613–624, 2017.

[38] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg,
and Wolfgang Lehner. SAP HANA database: data management for modern busi-
ness applications. SIGMOD Record, 40(4):45–51, 2011.

BIBLIOGRAPHY 142

[39] Alan Fekete, Elizabeth J. O’Neil, and Patrick E. O’Neil. A read-only transaction
anomaly under snapshot isolation. SIGMOD Record, 33(3):12–14, 2004.

[40] Zhenfeng Gao, Yushun Fan, Cheng Wu, Jia Zhang, and Chang Chen. DSES:
A blockchain-powered decentralized service eco-system. In 11th IEEE Interna-
tional Conference on Cloud Computing, CLOUD 2018, San Francisco, CA, USA,
July 2-7, 2018, pages 25–32. IEEE Computer Society, 2018.

[41] Johannes Gehrke, Lindsay Allen, Panagiotis Antonopoulos, Arvind Arasu,
Joachim Hammer, James Hunter, Raghav Kaushik, Donald Kossmann, Ravi Ra-
mamurthy, Srinath T. V. Setty, Jakub Szymaszek, Alexander van Renen, Jonathan
Lee, and Ramarathnam Venkatesan. Veritas: Shared verifiable databases and ta-
bles in the cloud. In CIDR. www.cidrdb.org, 2019.

[42] Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. Shareddb: Killing
one thousand queries with one stone. PVLDB, 5(6):526–537, 2012.

[43] Jana Giceva, Gerd Zellweger, Gustavo Alonso, and Timothy Rosco. Customized
os support for data-processing. In DaMon’ 16, pages 2:1–2:6, New York, NY,
USA, 2016. ACM.

[44] Anil K. Goel, Jeffrey Pound, Nathan Auch, Peter Bumbulis, Scott MacLean,
Franz Färber, Francis Gropengießer, Christian Mathis, Thomas Bodner, and
Wolfgang Lehner. Towards scalable real-time analytics: An architecture for
scale-out of olxp workloads. PVLDB, 8(12):1716–1727, 2015.

[45] Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. Fast-
fabric: Scaling hyperledger fabric to 20, 000 transactions per second. In IEEE
ICBC, pages 455–463. IEEE, 2019.

[46] Siyuan Han, Zihuan Xu, and Lei Chen. Jupiter: A blockchain platform for mo-
bile devices. In 34th IEEE International Conference on Data Engineering, ICDE
2018, Paris, France, April 16-19, 2018, pages 1649–1652. IEEE Computer Soci-
ety, 2018.

[47] Zhengyu He and Bo Hong. Impact of early abort mechanisms on lock-based
software transactional memory. In 16th International Conference on High Per-
formance Computing, HiPC 2009, December 16-19, 2009, Kochi, India, Pro-
ceedings, pages 225–234, 2009.

[48] Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and Liuba Shrira.
Opportunities for optimism in contended main-memory multicore transactions.
PVLDB, 13(5):629–642, 2020.

BIBLIOGRAPHY 143

[49] Donald B. Johnson. Finding all the elementary circuits of a directed graph. SIAM
J. Comput., 4(1):77–84, 1975.

[50] Alfons Kemper and Thomas Neumann. Hyper: A hybrid oltp&olap main mem-
ory database system based on virtual memory snapshots. In ICDE, pages 195–
206. IEEE Computer Society, 2011.

[51] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. ER-
MIA: fast memory-optimized database system for heterogeneous workloads. In
Proceedings of the 2016 International Conference on Management of Data, SIG-
MOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages
1675–1687, 2016.

[52] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papa-
manthou. Hawk: The blockchain model of cryptography and privacy-preserving
smart contracts. In IEEE Symposium on Security and Privacy, SP 2016, San Jose,
CA, USA, May 22-26, 2016, pages 839–858. IEEE Computer Society, 2016.

[53] Alan G. Labouseur and Carolyn C. Matheus. Dynamic data quality for static
blockchains. In 35th IEEE International Conference on Data Engineering Work-
shops, ICDE Workshops 2019, Macao, China, April 8-12, 2019, pages 19–21.
IEEE, 2019.

[54] Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Dinesh Das, Amit Ganesh,
Mike Gleeson, Sanket Hase, Allison Holloway, Jesse Kamp, Teck-Hua Lee, Juan
Loaiza, Neil MacNaughton, Vineet Marwah, Niloy Mukherjee, Atrayee Mullick,
Sujatha Muthulingam, Vivekanandhan Raja, Marty Roth, Ekrem Soylemez, and
Mohamed Zaı̈t. Oracle database in-memory: A dual format in-memory database.
In Johannes Gehrke, Wolfgang Lehner, Kyuseok Shim, Sang Kyun Cha, and
Guy M. Lohman, editors, 31st IEEE International Conference on Data Engi-
neering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, pages 1253–1258.
IEEE Computer Society, 2015.

[55] Per-Åke Larson, Adrian Birka, Eric N. Hanson, Weiyun Huang, Michal
Nowakiewicz, and Vassilis Papadimos. Real-time analytical processing with SQL
server. PVLDB, 8(12):1740–1751, 2015.

[56] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.
Patel, and Mike Zwilling. High-performance concurrency control mechanisms
for main-memory databases. PVLDB, 5(4):298–309, 2011.

[57] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. Cicada: Depend-
ably fast multi-core in-memory transactions. In Proceedings of the 2017 ACM

BIBLIOGRAPHY 144

International Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, pages 21–35, 2017.

[58] Gang Luo, Jeffrey F. Naughton, Curt J. Ellmann, and Michael Watzke. Transac-
tion reordering. Data Knowl. Eng., 69(1):29–49, 2010.

[59] Sujaya Maiyya, Victor Zakhary, Mohammad Javad Amiri, Divyakant Agrawal,
and Amr El Abbadi. Database and distributed computing foundations of
blockchains. In Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol
Deshpande, and Tim Kraska, editors, Proceedings of the 2019 International Con-
ference on Management of Data, SIGMOD Conference 2019, Amsterdam, The
Netherlands, June 30 - July 5, 2019, pages 2036–2041. ACM, 2019.

[60] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso.
Batchdb: Efficient isolated execution of hybrid OLTP+OLAP workloads for in-
teractive applications. In Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun
Yang, and Dan Suciu, editors, Proceedings of the 2017 ACM International Con-
ference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA,
May 14-19, 2017, pages 37–50. ACM, 2017.

[61] Hagar Meir, Artem Barger, and Yacov Manevich. Increasing concurrency in
hyperledger fabric. In SYSTOR, page 179. ACM, 2019.

[62] Qingzhong Meng, Xuan Zhou, Shiping Chen, and Shan Wang. Swingdb: An em-
bedded in-memory DBMS enabling instant snapshot sharing. In ADMS/IMDM
Workshop 2016, pages 134–149, 2016.

[63] C. Mohan. Blockchains and databases: A new era in distributed computing. In
34th IEEE International Conference on Data Engineering, ICDE 2018, Paris,
France, April 16-19, 2018, pages 1739–1740. IEEE Computer Society, 2018.

[64] C. Mohan, Don Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter M.
Schwarz. ARIES: A transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging. ACM Trans. Database
Syst., 17(1):94–162, 1992.

[65] C. Mohan, Hamid Pirahesh, and Raymond A. Lorie. Efficient and flexible meth-
ods for transient versioning of records to avoid locking by read-only transactions.
In SIGMOD 1992, pages 124–133, 1992.

[66] Henrik Mühe, Alfons Kemper, and Thomas Neumann. How to efficiently snap-
shot transactional data: hardware or software controlled? In DaMoN 2011,
Athens, Greece, pages 17–26, 2011.

BIBLIOGRAPHY 145

[67] Tobias Mühlbauer, Wolf Rödiger, Angelika Reiser, Alfons Kemper, and Thomas
Neumann. Scyper: A hybrid oltp&olap distributed main memory database
system for scalable real-time analytics. In Volker Markl, Gunter Saake, Kai-
Uwe Sattler, Gregor Hackenbroich, Bernhard Mitschang, Theo Härder, and Veit
Köppen, editors, Datenbanksysteme für Business, Technologie und Web (BTW),
15. Fachtagung des GI-Fachbereichs ”Datenbanken und Informationssysteme”
(DBIS), 11.-15.3.2013 in Magdeburg, Germany. Proceedings, volume P-214 of
LNI, pages 499–502. GI, 2013.

[68] Muhammad Muzammal, Qiang Qu, and Bulat Nasrulin. Renovating blockchain
with distributed databases: An open source system. Future Generation Comp.
Syst., 90:105–117, 2019.

[69] Satoshi Nakamoto. Bitcoin: https://bitcoin.org/bitcoin.pdf.

[70] Senthil Nathan, Chander Govindarajan, Adarsh Saraf, Manish Sethi, and Praveen
Jayachandran. Blockchain meets database: Design and implementation of a
blockchain relational database. PVLDB, 12(11):1539–1552, 2019.

[71] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. Fast serializable
multi-version concurrency control for main-memory database systems. In SIG-
MOD 2015, pages 677–689, 2015.

[72] Muhsen Owaida, David Sidler, Kaan Kara, and Gustavo Alonso. Centaur: A
framework for hybrid CPU-FPGA databases. In FCCM 2017, Napa, CA, USA,
April 30 - May 2, 2017, pages 211–218, 2017.

[73] Zhe Peng, Haotian Wu, Bin Xiao, and Songtao Guo. VQL: providing query ef-
ficiency and data authenticity in blockchain systems. In 35th IEEE International
Conference on Data Engineering Workshops, ICDE Workshops 2019, Macao,
China, April 8-12, 2019, pages 1–6. IEEE, 2019.

[74] Dan R. K. Ports and Kevin Grittner. Serializable snapshot isolation in postgresql.
PVLDB, 5(12):1850–1861, 2012.

[75] Thamir M. Qadah and Mohammad Sadoghi. Quecc: A queue-oriented, control-
free concurrency architecture. In Proceedings of the 19th International Middle-
ware Conference, Middleware 2018, Rennes, France, December 10-14, 2018,
pages 13–25, 2018.

[76] Yingyao Rong, Jingjing Zhang, Jing Bian, and Weigang Wu. ERBFT: efficient
and robust byzantine fault tolerance. In HPCC/SmartCity/DSS, pages 265–272.
IEEE, 2019.

BIBLIOGRAPHY 146

[77] Felix Martin Schuhknecht, Jens Dittrich, and Ankur Sharma. RUMA has it:
Rewired user-space memory access is possible! PVLDB, 9(10):768–779, 2016.

[78] Felix Martin Schuhknecht, Ankur Sharma, Jens Dittrich, and Divya Agrawal.
Chainifydb: How to blockchainify any data management system. arXiv preprint
arXiv:1912.04820, 2019.

[79] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.
How to databasify a blockchain: the case of hyperledger fabric. arXiv preprint
arXiv:1810.13177, 2018.

[80] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.
Blurring the lines between blockchains and database systems: the case of hyper-
ledger fabric. In SIGMOD Conference, pages 105–122. ACM, 2019.

[81] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. Accelerating an-
alytical processing in mvcc using fine-granular high-frequency virtual snapshot-
ting. arXiv preprint arXiv:1709.04284, 2017.

[82] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. Accelerating ana-
lytical processing in MVCC using fine-granular high-frequency virtual snapshot-
ting. In SIGMOD 2018, Houston, TX, USA, June 10-15, 2018, pages 245–258,
2018.

[83] Yihan Sun, Guy E. Blelloch, Wan Shen Lim, and Andrew Pavlo. On supporting
efficient snapshot isolation for hybrid workloads with multi-versioned indexes.
PVLDB, 13(2):211–225, 2019.

[84] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J.
Comput., 1(2):146–160, 1972.

[85] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
Speedy transactions in multicore in-memory databases. In ACM SIGOPS 24th
Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA,
November 3-6, 2013, pages 18–32, 2013.

[86] Annett Ungethüm, Dirk Habich, Tomas Karnagel, Sebastian Haas, Eric Mier,
Gerhard Fettweis, and Wolfgang Lehner. Overview on hardware optimizations
for database engines. In BTW 2017, 6.-10. März 2017, Stuttgart, Germany, Pro-
ceedings, pages 383–402, 2017.

[87] Hoang Tam Vo, Ashish Kundu, and Mukesh K Mohania. Research directions in
blockchain data management and analytics. In EDBT, pages 445–448, 2018.

BIBLIOGRAPHY 147

[88] Hoang Tam Vo, Sheng Wang, Divyakant Agrawal, Gang Chen, and Beng Chin
Ooi. Logbase: A scalable log-structured database system in the cloud. PVLDB,
5(10):1004–1015, 2012.

[89] Marko Vukolic. The quest for scalable blockchain fabric: Proof-of-work vs. BFT
replication. In Jan Camenisch and Dogan Kesdogan, editors, Open Problems in
Network Security - IFIP WG 11.4 International Workshop, iNetSec 2015, Zurich,
Switzerland, October 29, 2015, Revised Selected Papers, volume 9591 of Lecture
Notes in Computer Science, pages 112–125. Springer, 2015.

[90] Jiaping Wang and Hao Wang. Monoxide: Scale out blockchains with asyn-
chronous consensus zones. In Jay R. Lorch and Minlan Yu, editors, 16th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2019,
Boston, MA, February 26-28, 2019, pages 95–112. USENIX Association, 2019.

[91] Qinshen Wang, Hongzhi Wang, and Bo Zheng. An efficient distributed storage
strategy for blockchain. In Proceedings of the ACM Turing Celebration Con-
ference - China, ACM TUR-C 2019, Chengdu, China, May 17-19, 2019, pages
54:1–54:5. ACM, 2019.

[92] Sheng Wang, David Maier, and Beng Chin Ooi. Lightweight indexing of obser-
vational data in log-structured storage. PVLDB, 7(7):529–540, 2014.

[93] Tianzheng Wang, Ryan Johnson, Alan Fekete, and Ippokratis Pandis. Efficiently
making (almost) any concurrency control mechanism serializable. The VLDB
Journal, 26(4):537–562, Aug 2017.

[94] Tianzheng Wang and Hideaki Kimura. Mostly-optimistic concurrency control for
highly contended dynamic workloads on a thousand cores. PVLDB, 10(2):49–60,
2016.

[95] Gerhard Weikum and Gottfried Vossen. Transactional Information Systems: The-
ory, Algorithms, and the Practice of Concurrency Control and Recovery. Morgan
Kaufmann, 2002.

[96] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An empirical
evaluation of in-memory multi-version concurrency control. PVLDB, 10(7):781–
792, 2017.

[97] Cheng Xu, Ce Zhang, and Jianliang Xu. vchain: Enabling verifiable boolean
range queries over blockchain databases. In Peter A. Boncz, Stefan Manegold,
Anastasia Ailamaki, Amol Deshpande, and Tim Kraska, editors, Proceedings of

BIBLIOGRAPHY 148

the 2019 International Conference on Management of Data, SIGMOD Confer-
ence 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pages 141–158.
ACM, 2019.

[98] Chang Yao, Divyakant Agrawal, Gang Chen, Qian Lin, Beng Chin Ooi, Weng-
Fai Wong, and Meihui Zhang. Exploiting single-threaded model in multi-core
in-memory systems. IEEE Trans. Knowl. Data Eng., 28(10):2635–2650, 2016.

[99] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael
Stonebraker. Staring into the abyss: An evaluation of concurrency control with
one thousand cores. PVLDB, 8(3):209–220, 2014.

[100] Yuan Yuan, Kaibo Wang, Rubao Lee, Xiaoning Ding, Jing Xing, Spyros Blanas,
and Xiaodong Zhang. BCC: reducing false aborts in optimistic concurrency con-
trol with low cost for in-memory databases. PVLDB, 9(6):504–515, 2016.

[101] Maciej Zbierski. Parallel byzantine fault tolerance. In ACS, volume 342 of Ad-
vances in Intelligent Systems and Computing, pages 321–333. Springer, 2014.

[102] Bo Zhang, Binoy Ravindran, and Roberto Palmieri. Reducing aborts in dis-
tributed transactional systems through dependency detection. In Proceedings of
the 2015 International Conference on Distributed Computing and Networking,
ICDCN 2015, Goa, India, January 4-7, 2015, pages 13:1–13:10, 2015.

[103] Wenbing Zhao. Optimistic byzantine fault tolerance. IJPEDS, 31(3):254–267,
2016.

[104] Ningnan Zhou, Xuan Zhou, Xiao Zhang, et al. Reordering transaction execution
to boost high-frequency trading applications. Data Science and Engineering,
2(4):301–315, 2017.

[105] Yanchao Zhu, Zhao Zhang, Cheqing Jin, Aoying Zhou, and Ying Yan. SEBDB:
semantics empowered blockchain database. In 35th IEEE International Confer-
ence on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019, pages
1820–1831. IEEE, 2019.

	Introduction
	Background
	Contribution
	AnKerDB
	Fabric++
	ChainifyDB
	Personal Contributions
	Publications, Technical Reports, Patent, and Grant

	AnKerDB: Optimizing MVCC using Hyperfast Virtual Snapshotting
	Introduction
	Limitations of Multi-version Concurrency Control
	Hybrid Processing
	Challenges

	Background
	MVCC in Hybrid Processing
	High-Frequency Snapshotting
	Structure & Contributions

	AnKer
	Mechanisms of MVCC
	Hybrid MVCC

	State-of-the-art Snapshotting
	Physical Snapshotting
	Virtual Snapshotting
	Reevaluating the State-of-the-Art

	System Call vm_snapshot
	Semantics
	Implementation
	Evaluating Virtual Memory Snapshotting
	MVCC Scan Performance
	Snapshot Creation Cost

	Experimental Evaluation
	System Configurations
	Experimental Setup
	Snapshotting Cost and OLAP Latency
	Transaction Throughput
	Scaling

	Future Work
	Conclusion

	Fabric++: Optimizing Transaction Processing in Hyperledger Fabric
	Introduction
	Catching up
	Fabric++

	Hyperledger Fabric
	Architecture
	High-level Workflow

	Related Work
	Class 1: Transaction Throughput
	Class 2: Transaction Abort & Success

	Blurred Lines: Fabric vs Distributed Database Systems
	The Importance of Transaction Order
	On the Lifetime of Transactions

	Fabric++
	Transaction Reordering
	Early Transaction Abort using Concurrency Control

	Experimental Evaluation
	Setup
	Benchmark Framework and Workload
	The Impact of the Blocksize
	Transactional Throughput
	Optimization Breakdown
	Scaling Channels and Clients
	Hyperledger Caliper

	Conclusion

	ChainifyDB: A Non-invasive Transformation of Database Systems into a Blockchain System
	Introduction
	Order-Consensus-Execute
	Whatever-LedgerConsensus
	Contributions

	Related Work
	Whatever-Ledger Consensus
	Core Idea
	Processing Model

	Whatever Recovery
	Non-Consenting Organization Scenario
	The 2 3 Recovery Landscape
	No Recovery
	Recovery from a State
	Full Replay
	Partial Replay from a State
	Optimized Full Replay
	Optimized Partial Replay from a State
	Abstraction vs Implementation

	Chainify DB
	Overview on our WLC-Implementation
	Logical per Block Digests
	LedgerBlocks
	Consensus Algorithm
	Logical Checkpointing and Recovery

	Optimizations
	Transaction Agreement
	Iterative WLC-Setups
	Parallel Transaction Execution

	System Architecture
	Running Example

	Experimental Evaluation
	Setup and Workload
	Throughput
	Robustness and Recovery
	Cost Breakdown
	Varying Blocksize

	Conclusion

	Conclusion
	Future Work

	AnKer's System Call Implementation
	List of Figures
	List of Tables
	Bibliography

