Please use this identifier to cite or link to this item:
doi:10.22028/D291-30064
Title: | Analyzing epigenomic data in a large-scale context |
Author(s): | Fernandes Albrecht, Felipe |
Language: | English |
Year of Publication: | 2019 |
DDC notations: | 500 Science 004 Computer science, internet |
Publikation type: | Dissertation |
Abstract: | While large amounts of epigenomic data are publicly available, their retrieval in a form suitable for downstream analysis is a bottleneck in current research. In a typical analysis, users are required to download huge files that span the entire genome, even if they are only interested in a small subset (e.g., promoter regions) or an aggregation thereof. Moreover, complex operations on genome-level data are not always feasible on a local computer due to resource limitations. The DeepBlue Epigenomic Data Server mitigates this issue by providing a robust server that affords a powerful API for searching, filtering, transforming, aggregating, enriching, and downloading data from several epigenomic consortia. Furthermore, its main component implements scalable data storage and Manipulation methods that scale with the increasing amount of epigenetic data, thereby making it the ideal resource for researchers that seek to integrate epigenomic data into their analysis workflow. This work also presents companion tools that utilize the DeepBlue API to enable users not proficient in scripting or programming languages to analyze epigenomic data in a user-friendly way: (i) an R/Bioconductor package that integrates DeepBlue into the R analysis workflow. The extracted data are automatically converted into suitable R data structures for downstream analysis and visualization within the Bioconductor frame- work; (ii) a web portal that enables users to search, select, filter and download the epigenomic data available in the DeepBlue Server. This interface provides elements, such as data tables, grids, data selections, developed for empowering users to find the required epigenomic data in a straightforward interface; (iii) DIVE, a web data analysis tool that allows researchers to perform large-epigenomic data analysis in a programming-free environment. DIVE enables users to compare their datasets to the datasets available in the DeepBlue Server in an intuitive interface, which summarizes the comparison of hundreds of datasets in a simple chart. Furthermore, these tools are integrated, being capable of sharing results among themselves, creating a powerful large-scale epigenomic data analysis environment. The DeepBlue Epigenomic Data Server and its ecosystem was well received by the International Human Epigenome Consortium and already attracted much attention by the epigenomic research community with currently 160 registered users and more than three million anonymous workflow processing requests since its release. Während große Mengen epigenomischer Daten öffentlich verfügbar sind, ist ihre Abfrage in einer für die Downstream-Analyse geeigneten Form ein Engpass in der aktuellen Forschung. Bei einer typischen Analyse müssen Benutzer riesige Dateien herunterladen, die das gesamte Genom umfassen, selbst wenn sie nur an einer kleinen Teilmenge (z.B., Promotorregionen) oder einer Aggregation davon interessiert sind. Darüber hinaus sind komplexe Vorgänge mit Daten auf Genomebene aufgrund von Ressourceneinschränkungen auf einem lokalen Computer nicht immer möglich. Der DeepBlue Epigenomic Data Server behebt dieses Problem, indem er eine leistungsstarke API zum Suchen, Filtern, Umwandeln, Aggregieren, Anreichern und Herunterladen von Daten verschiedener epigenomischer Konsortien bietet. Darüber hinaus implementiert der DeepBlue-Server skalierbare Datenspeicherungs- und manipulationsmethoden, die der zunehmenden Menge epigenetischer Daten gerecht werden. Dadurch ist der DeepBlue Server ideal für Forscher geeignet, die die aktuellen epigenomischen Ressourcen in ihren Analyse-Workflow integrieren möchten. In dieser Arbeit werden zusätzlich Begleittools vorgestellt, die die DeepBlue-API verwenden, um Benutzern, die sich mit Scripting oder Programmiersprachen nicht auskennen, die Möglichkeit zu geben, epigenomische Daten auf benutzerfreundliche Weise zu analysieren: (i) ein R/ Bioconductor-Paket, das DeepBlue in den R-Analyse-Workflow integriert. Die extrahierten Daten werden automatisch in geeignete R-Datenstrukturen für die Downstream-Analyse und Visualisierung innerhalb des Bioconductor-Frameworks konvertiert; (ii) ein Webportal, über das Benutzer die auf dem DeepBlue Server verfügbaren epigenomischen Daten suchen, auswählen, filtern und herunterladen können. Diese Schnittstelle bietet Elemente wie Datentabellen, Raster, Datenselektionen, mit denen Benutzer die erforderlichen epigenomischen Daten in einer einfachen Schnittstelle finden können; (iii) DIVE, ein Webdatenanalysetool, mit dem Forscher umfangreiche epigenomische Datenanalysen in einer programmierungsfreien Umgebung durchführen können. Mit DIVE können Benutzer ihre Datensätze mit den im Deep- Blue Server verfügbaren Datensätzen in einer intuitiven Benutzeroberfläche vergleichen. Dabei kann der Vergleich hunderter Datensätze in einem Diagramm ausgedrückt werden. Aufgrund der großen Datenmenge, die in DIVE verfügbar ist, werden Methoden bereitgestellt, mit denen die ähnlichsten Datensätze für eine vergleichende Analyse vorgeschlagen werden können. Alle zuvor genannten Tools sind miteinander integriert, so dass sie die Ergebnisse untereinander austauschen können, wodurch eine leistungsstarke Umgebung für die Analyse epigenomischer Daten entsteht. Der DeepBlue Epigenomic Data Server und sein Ökosystem wurden vom International Human Epigenome Consortium äußerst gut aufgenommen und erreichten seit ihrer Veröffentlichung große Aufmerksamkeit bei der epigenomischen Forschungsgemeinschaft mit derzeit 160 registrierten Benutzern und mehr als drei Millionen anonymen Verarbeitungsanforderungen. |
Link to this record: | urn:nbn:de:bsz:291--ds-300644 hdl:20.500.11880/28473 http://dx.doi.org/10.22028/D291-30064 |
Advisor: | Lengauer, Thomas |
Date of oral examination: | 9-Dec-2019 |
Date of registration: | 13-Dec-2019 |
Faculty: | MI - Fakultät für Mathematik und Informatik |
Department: | MI - Informatik |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
thesis_main_corrected.pdf | Main text | 14,24 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License