Please use this identifier to cite or link to this item:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-29578
Title: | Robust Electrical and Mechanical Parameter Identification of Low-Power PMSMs |
Author(s): | König, Niklas Grasso, Emanuele Nienhaus, Matthias |
Editor(s): | Nienhaus, Matthias |
Language: | English |
Title: | Innovative Klein- und Mikroantriebstechnik : Beiträge der 11. GMM/ETG-Fachtagung 27.-28. September 2017 in Saarbrücken |
Startpage: | 92 |
Endpage: | 97 |
Publisher/Platform: | VDE-Verlag |
Year of Publication: | 2017 |
Title of the Conference: | IKMT-Tagung 2017 - 11. GMM/ETG-Fachtagung |
Place of the conference: | Saarbrücken, Germany |
Publikation type: | Conference Paper |
Abstract: | Parameter identification is an important task in the field of motor control and final stage inspection. Over the years, the demand for robust parameter identification increased especially in the field of highly miniaturized and integrated PMSMs. Nevertheless, current measurements on such kind of motors are characterized by small signal-to-noise ratios, thus limiting the performance of identification algorithms. In this paper, a RLS algorithm is combined with a first order Sliding Mode Differentiator (SMD) used for derivative estimation. This allows the algorithm to estimate the electrical and mechanical parameters of a PMSM while rejecting noise, PWM switching components or quantization effects. Experimental results on a PMSM without and with SMD are shown and compared in terms of estimation performance. |
URL of the first publication: | https://www.vde-verlag.de/proceedings-de/454461015.html |
Link to this record: | hdl:20.500.11880/28312 http://dx.doi.org/10.22028/D291-29578 |
ISBN: | 978-3-8007-4461-9 |
Date of registration: | 16-Nov-2019 |
Faculty: | NT - Naturwissenschaftlich- Technische Fakultät |
Department: | NT - Systems Engineering |
Professorship: | NT - Prof. Dr. Matthias Nienhaus |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
There are no files associated with this item.
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.