Please use this identifier to cite or link to this item:
doi:10.22028/D291-29909
Title: | Engineering formal systems in constructive type theory |
Author(s): | Schäfer, Steven |
Language: | English |
Year of Publication: | 2019 |
DDC notations: | 004 Computer science, internet |
Publikation type: | Dissertation |
Abstract: | This thesis presents a practical methodology for formalizing the meta-theory of formal systems with binders and coinductive relations in constructive type theory. While constructive type theory offers support for reasoning about formal systems built out of inductive definitions, support for syntax with binders and coinductive relations is lacking. We provide this support. We implement syntax with binders using well-scoped de Bruijn terms and parallel substitutions. We solve substitution lemmas automatically using the rewriting theory of the -calculus. We present the Autosubst library to automate our approach in the proof assistant Coq. Our approach to coinductive relations is based on an inductive tower construction, which is a type-theoretic form of transfinite induction. The tower construction allows us to reduce coinduction to induction. This leads to a symmetric treatment of induction and coinduction and allows us to give a novel construction of the companion of a monotone function on a complete lattice. We demonstrate our methods with a series of case studies. In particular, we present a proof of type preservation for CC!, a proof of weak and strong normalization for System F, a proof that systems of weakly guarded equations have unique solutions in CCS, and a compiler verification for a compiler from a non-deterministic language into a deterministic language. All technical results in the thesis are formalized in Coq. In dieser Dissertation beschreiben wir praktische Techniken um Formale Systeme mit Bindern und koinduktiven Relationen in Konstruktiver Typtheorie zu implementieren. Während Konstruktive Typtheorie bereits gute Unterstützung für Induktive Definition bietet, gibt es momentan kaum Unterstützung für syntaktische Systeme mit Bindern, oder koinduktiven Definitionen. Wir kodieren Syntax mit Bindern in Typtheorie mit einer de Bruijn Darstellung und zeigen alle Substitutionslemmas durch Termersetzung mit dem -Kalkül. Wir präsentieren die Autosubst Bibliothek, die unseren Ansatz im Beweisassistenten Coq implementiert. Für koinduktive Relationen verwenden wir eine induktive Turmkonstruktion, welche das typtheoretische Analog zur Transfiniten Induktion darstellt. Auf diese Art erhalten wir neue Beweisprinzipien für Koinduktion und eine neue Konstruktion von Pous’ “companion” einer monotonen Funktion auf einem vollständigen Verband. Wir validieren unsere Methoden an einer Reihe von Fallstudien. Alle technischen Ergebnisse in dieser Dissertation sind mit Coq formalisiert. |
Link to this record: | urn:nbn:de:bsz:291--ds-299099 hdl:20.500.11880/28298 http://dx.doi.org/10.22028/D291-29909 |
Advisor: | Smolka, Gert |
Date of oral examination: | 12-Jul-2019 |
Date of registration: | 15-Nov-2019 |
Faculty: | MI - Fakultät für Mathematik und Informatik |
Department: | MI - Informatik |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
Thesis Schaefer.pdf | 920,99 kB | Adobe PDF | View/Open |
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.