Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-28963
Volltext verfügbar? / Dokumentlieferung
Titel: Assigning crystallographic electron densities with free energy calculations-The case of the fluoride channel Fluc
VerfasserIn: Ariz-Extreme, Igor
Hub, Jochen Sebastian
Sprache: Englisch
Titel: PloS one
Bandnummer: 13
Heft: 5
Verlag/Plattform: Public Library of Science (PLoS)
Erscheinungsjahr: 2018
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Approximately 90% of the structures in the Protein Data Bank (PDB) were obtained by X-ray crystallography or electron microscopy. Whereas the overall quality of structure is considered high, thanks to a wide range of tools for structure validation, uncertainties may arise from density maps of small molecules, such as organic ligands, ions or water, which are non-covalently bound to the biomolecules. Even with some experience and chemical intuition, the assignment of such disconnected electron densities is often far from obvious. In this study, we suggest the use of molecular dynamics (MD) simulations and free energy calculations, which are well-established computational methods, to aid in the assignment of ambiguous disconnected electron densities. Specifically, estimates of (i) relative binding affinities, for instance between an ion and water, (ii) absolute binding free energies, i.e., free energies for transferring a solute from bulk solvent to a binding site, and (iii) stability assessments during equilibrium simulations may reveal the most plausible assignments. We illustrate this strategy using the crystal structure of the fluoride specific channel (Fluc), which contains five disconnected electron densities previously interpreted as four fluoride and one sodium ion. The simulations support the assignment of the sodium ion. In contrast, calculations of relative and absolute binding free energies as well as stability assessments during free MD simulations suggest that four of the densities represent water molecules instead of fluoride. The assignment of water is compatible with the loss of these densities in the non-conductive F82I/F85I mutant of Fluc. We critically discuss the role of the ion force fields for the calculations presented here. Overall, these findings indicate that MD simulations and free energy calculations are helpful tools for modeling water and ions into crystallographic density maps.
DOI der Erstveröffentlichung: 10.1371/journal.pone.0196751
Link zu diesem Datensatz: hdl:20.500.11880/27786
http://dx.doi.org/10.22028/D291-28963
ISSN: 1932-6203
Datum des Eintrags: 17-Sep-2019
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Physik
Professur: NT - Prof. Dr. Jochen Hub
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.